Lecture 3 Outline

Reading: text, §3

- 1. What is the safety question?
 - a. An unauthorized state is one in which a generic right *r* could be leaked into an entry in the ACM that did not previously contain *r*. An initial state is safe for *r* if it cannot lead to a state in which *r* could be leaked.
 - b. Question: in a given arbitrary protection system, is safety decidable?
- 2. Mono-operational case: there is an algorithm that decides whether a given mono-operational system and initial state is safe for a given generic right.
- 3. General case: It is undecidable whether a given state of a given protection system is safe for a given generic right.
 - a. Approach: represent Turing machine tape as access control matrix, transitions as commands
 - b. Reduce halting problem to it
- 4. Take-Grant
 - a. Counterpoint to HRU result
 - b. Symmetry of take and grant rights
 - c. Islands (maximal subject-only tg-connected subgraphs)
 - d. Bridges (as a combination of terminal and initial spans)
- 5. Sharing
 - a. Definition: $can \bullet share(r, \mathbf{x}, \mathbf{y}, G_0)$ true iff there exists a sequence of protection graphs $G_0, ..., G_n$ such that $G_0 \vdash^* G_n$ using only take, grant, create, remove rules and in G_n , there is an edge from \mathbf{x} to \mathbf{y} labeled r
 - b. Theorem: $can \bullet share(r, \mathbf{x}, \mathbf{y}, G_0)$ iff there is an edge from \mathbf{x} to \mathbf{y} labeled r in G_0 , or all of the following hold:
 - i. there is a vertex y' with an edge from y' to y labeled r;
 - ii. there is a subject y'' which terminally spans to y', or y'' = y';
 - iii. there is a subject \mathbf{x}' which initially spans to \mathbf{x} , or $\mathbf{x}' = \mathbf{x}$; and
 - iv. there is a sequence of islands $I_1, ..., I_n$ connected by bridges for which $\mathbf{x}' \in I_1$ and $\mathbf{y}' \in I_n$.
- 6. Model Interpretation
 - a. ACM very general, broadly applicable; Take-Grant more specific, can model fewer situations
 - b. Theorem: G_0 protection graph with exactly one subject, no edges; R set of rights. Then $G_0 \vdash^* G_n$ iff G_0 is a finite directed graph containing subjects and objects only, with edges labeled from nonempty subsets of R, and with at least one subject with no incoming edges
 - c. Example: shared buffer managed by trusted third part
- 7. Stealing
 - a. Definition: $can \bullet steal(r, \mathbf{x}, \mathbf{y}, G_0)$ true iff there is no edge from \mathbf{x} to \mathbf{y} labeled r in G_0 , and there exists a sequence of protection graphs $G_0, ..., G_n$ such that $G_0 \vdash^* G_n$ in which:
 - b. G_n has an edge from **x** to **y** labeled r
 - c. There is a sequence of rule applications $\rho_1,...,\rho_n$ such that $G_{i-1} \vdash G_i$; and
 - d. For all vertices $\mathbf{v}, \mathbf{w} \in G_{i-1}$, if there is an edge from \mathbf{v} to \mathbf{y} in G_0 labeled r, then ρ_i is not of the form " \mathbf{v} grants (r to \mathbf{y}) to \mathbf{w} "
 - e. Example