Lecture 11 Outline

Reading: text, §8

- 1. Role-based Access Control (RBAC)
 - a. Definition of role
 - b. Partitioning as job function
 - c. Containment
- 2. Problem with instantiation of Bell-LaPadula Model
 - a. Covert channel example: what is "writing"?
 - b. Composition of lattices
 - c. Principles of autonomy and security
- 3. Deterministic noninterference
 - a. Model of system
 - b. Example
 - c. Relationship of output to states
 - d. Projections and purge functions
- 4. Alternative definition of security policy
 - a. Output-consistent
 - b. Security policy
 - c. Alternate projection function
 - d. Noninterference-secure with respect to the policy r
- 5. Unwinding Theorem
 - a. Locally respects
 - b. Transition-consistent
 - c. Unwinding theorem
- 6. Access Control Matrix interpretation
 - a. Model
 - b. ACM conditions
 - c. Policy conditions
 - d. Result
- 7. Policies that change over time
 - a. Generalization of noninterference
 - b. Example
- 8. Composing deterministic, noninterference-secure systems

Table of Notation

notation

meaning

- *C* set of commands (s, z), where *s* executes operation *z*
- C^* set of sequences of commands
- π'' generalized noninterference analogue to the purge function $\pi_{G,A}$
- v empty string
- c_s sequence of commands
- $P(c, \sigma_i)$ output from command *c* being executed in state σ_i
- $P^*(c_s, \sigma_i)$ outputs when command sequence c_s is executed in state σ_i
- $proj(s, c_s, \sigma_i)$ set of outputs in $P * (c_s, \sigma_i)$ that subject s is authorized to see
 - w sequence of elements of C leading up to current state
- cando(w, s, z) true if s can execute z in current state
 - pass(s,z) give s right to execute z
 - $w_n \quad v_1, \dots, v_n$ where $v_i \in C^*$
 - $prev(w_n) = w_{n-1}$
 - $last(w_n) = v_n$
 - π_L projection function deleting all *High* inputs from trace