Lecture 14 Outline

Reading: *text*, §16.5, 17

- 1. Examples
 - a. Security pipeline interface
 - b. Secure network server mail guard
- 2. Connement problem
 - a. What it is
 - b. Covert channels
 - c. Rule of transitive connement
 - d. Difculty of preventing leaking
- 3. Isolation: virtual machines
 - a. What it is
 - b. Example: KVM/370
 - c. Example: VAX/VMM
- 4. Isolation: sandboxes
 - a. What it is
 - b. Adding mechanisms to libraries or kernel
 - c. Modify program or process to be executed
 - d. Example: Janus
- 5. Covert channels
 - a. Storage vs. timing
 - b. Noise vs. noiseless
 - c. Existence
 - d. Bandwidth
- 6. Covert channel detection
 - a. Noninterference
 - b. Shared Resource Matrix Model
 - c. Information ow analysis
 - d. Covert ow trees
- 7. Noninterference
 - a. Version of the Unwinding Theorem
 - b. Specifications of SAT
 - c. Example analysis for SAT
- 8. Shared resource matrix methodology
 - a. Identify shared resources, attributes
 - b. Operations accessing those attributes
 - c. Building the matrix
 - d. Issues about the methodology
- 9. Covert ow trees
 - a. What it is
 - b. Node types
 - c. Construction
 - i. Determine what attributes primitive operations reference, modify, return
 - ii. Locate covert storage channel that uses some attribute
 - iii. Construct lists: sequences of operations that modify, recognize modications
 - d. Analysis
- 10. Capacity and noninterference
 - a. When is bandwidth of covert channel 0?

- b. Noninterference sufcient but not necessary
- c. Analysis
- d. Measuring capacity
- 11. Mitigating covert channels
 - a. Preallocation and hold until process terminates
 - b. Impose uniformity
 - c. Randomize resource allocation
 - d. Efciency/performance vs. security