Outline	About This Course	Basic Components 000000 00	Policy and Mechanism oo o	Assurance 000 000000	Practical Issues

Lecture 1: Introduction and Overview

January 4, 2011

Lecture 1, Slide 1

ECS 235B, Foundations of Information and Computer Security

January 4, 2011

Outline	About This Course	Basic Components 000000 00	Policy and Mechanism 00 0	Assurance 000 000000	Practical Issues

- 2 Basic Components
 - Confidentiality, Integrity, Availability
 - Threats
- 3 Policy and Mechanism
 - Policy and Mechanism
 - Goals of Security

4 Assurance

- Trust and Assumptions
- Assurance

5 Practical Issues

Outline	About This Course	Basic Components 000000 00	Policy and Mechanism oo o	Assurance 000 000000	Practical Issues

Goals of the Course

- What can security decide, and what can it not decide?
- Policy models: what can systems and people do, and what can they not do?
- Information flow: how can information move around a system?

Outline	About This Course	Basic Components •00000 •0	Policy and Mechanism oo o	Assurance 000 000000	Practical Issues
Confidentialit	y, Integrity, Availability				

Confidentiality

- What it is
 - Concealing information, resources
 - May hide attributes (including existence) of data as well as content
 - May hide resources to keep others from using them
- How to do this
 - Cryptography
 - File access controls
 - Other access controls (e.g., firewalls)

Outline	About This Course	Basic Components 0●0000 00	Policy and Mechanism oo o	Assurance 000 000000	Practical Issues
Confidentialit	y, Integrity, Availability				

Confidentiality Example

Example: protecting a tax return on a PC

- Tax return is enciphered, so it cannot be read directly
- If owner has the cryptographic key, she can read it by deciphering the tax return
- So can anyone who has that cryptographic key
- If someone can rig the decryption program to send them the decryption key, that also compromises the tax return

Outline	About This Course	Basic Components 000000 00	Policy and Mechanism 00 0	Assurance 000 000000	Practical Issues
Confidentialit	y, Integrity, Availability				

Integrity

- What it is
 - Has the data been altered without authorization, or in unauthorized ways?
 - Is the data credible (trustworthy)
- Types of integrity
 - Data integrity (contents)
 - Origin integrity (source, *authentication*)
- Example: database transaction
 - If interrupted, may leave database in an inconsistent state
- Much harder to quantify than confidentiality

Outline	About This Course	Basic Components 000●00 00	Policy and Mechanism oo o	Assurance 000 000000	Practical Issues
Confidentialit	y, Integrity, Availability				

Integrity Example

Example: government leaking

- Newspaper prints information leaked to it from White House, attributing it to wrong source
- Data integrity: preserved, as information printed as received
- Origin integrity: corrupt, as source is mis-attributed
- Data trustworthiness: depends . . .

Outline	About This Course	Basic Components 0000●0 00	Policy and Mechanism 00 0	Assurance 000 000000	Practical Issues
Confidentialit	ty, Integrity, Availability				

Availability

- What it is
 - Ability to use information or resource desired
 - Key part of reliability as well as security
- Most models based on statistics, so assume a predicted pattern of use overall
 - Attackers change the pattern of use, so the model no longer applies
 - Mechanisms providing availability not designed for changed environment—and fail

Outline	About This Course	Basic Components 00000● 00	Policy and Mechanism 00 0	Assurance 000 000000	Practical Issues
Confidentialit	y, Integrity, Availability				

Availability Example

Example: compromising a bank

- Anne controls secondary server that supplies bank balances for credit cards
- Anne blocks access to primary server, so requests sent to secondary server
- Anne supplies any balance she likes, ensuring none of her purchases is declined

Outline	About This Course	Basic Components 000000 ●0	Policy and Mechanism oo o	Assurance 000 000000	Practical Issues
Threats					
Threa	ts				

- A potential violation of security
 - Actions that could cause it to occur are attacks
 - Four classes of threats
 - Disclosure: unauthorized access to information
 - Deception: acceptance of false data
 - Disruption: interruption or prevention of correct operation
 - Usurpation: unauthorized control of some part of a system

Outline	About This Course	Basic Components ○○○○○○ ○●	Policy and Mechanism oo o	Assurance 000 000000	Practical Issues
Threats					

Common Threats and Their Classes

- Snooping, passive wiretapping: disclosure
- Modification, active wiretapping: deception, disruption, usurpation
- Masquerading, spoofing: deception, usurpation
 - Delegation: a legitimate form of masquerading
- Repudiation of origin: deception
- Denial of receipt: deception
- Delay, denial of service: usurpation, may support deception

Outline	About This Course	Basic Components 000000 00	Policy and Mechanism ●○ ○	Assurance 000 000000	Practical Issues
Policy and M	echanism				

Policy and Mechanism

- Policy says what is, and is not, allowed
 - This defines "security" for the site/system/etc.
- Mechanisms enforce the policy
- Policy composition: if they conflict, the discrepancies may create security vulnerabilities

Outline	About This Course	Basic Components 000000 00	Policy and Mechanism ○● ○	Assurance 000 000000	Practical Issues
Policy and Me	echanism				

Expressions

Policy expression

- Natural language: usually imprecise, but easy to understand
- Mathematics: usually precise but hard to understand
- Policy languages: look like some form of programming language and try to balance precision with ease of understanding
- Mechanisms
 - Technical: controls in the computer enforce the policy
 - Require the user supply a password to authenticate herself before using the computer
 - Procedural: controls outside the system enforce the policy
 - Require the firing of someone who beings in a disk containing a game program obtained from an untrusted source

Outline	About This Course	Basic Components 000000 00	Policy and Mechanism ○○ ●	Assurance 000 000000	Practical Issues
Goals of Secu	rity				

Goals of Security

- Prevention: the attack will fail
- Detection: the attack will be identified
 - Appropriate when the attack cannot be prevented
 - Appropriate to check effectiveness of preventative measures
- Recovery: return system to correct functioning during (or after) attack
 - First form: stop attack, assess and repair damage from that attack
 - Second form: continue to function correctly during the attack ("attack tolerant")

Outline	About This Course	Basic Components 000000 00	Policy and Mechanism oo o	Assurance ●00 ○○○○○○	Practical Issues
Trust and Ass	umptions				

Trust and Assumptions

- Underlie all aspects of security
- What happens if assumptions incorrect?
 - \blacksquare Key needed to open a door lock \Rightarrow lock cannot be picked
 - Good lock picker can pick a lock
 - Consequent false, therefore antecedent (assumption) false

Outline	About This Course	Basic Components 000000 00	Policy and Mechanism oo o	Assurance 0●0 000000	Practical Issues
Trust and Ass	umptions				

Example Assumptions

- Assumptions policies make
 - Unambiguously partition system states
 - Correctly capture security requirements
- Assumptions mechanisms make
 - Correctly implemented
 - Support tools (libraries, operating system services, *etc.*) work correctly
 - Installed, administered correctly
 - Union of mechanisms implements all aspects of security policy

Outline	About This Course	Basic Components 000000 00	Policy and Mechanism 00 0	Assurance 00● 000000	Practical Issues
Trust and As	sumptions				

Types of Mechanisms

Outline	About This Course	Basic Components 000000 00	Policy and Mechanism 00 0	Assurance ○○○ ●○○○○○	Practical Issues
Assurance					
Assur	rance				

How much to trust a system, based on evidence obtained from specification, design, implementation, and operation

- Assurance based on assurance evidence gathered during analysis
- Assurance evidence provides a basis for assessing what one must trust in order to believe system is secure

Assurance does not guarantee correctness or security

Outline	About This Course	Basic Components 000000 00	Policy and Mechanism 00 0	Assurance ○○○ ○●○○○○	Practical Issues
Assurance					

Example: Aspirin

- Aspirin sold in safety-sealed container
 - Testing, certification of drugs by FDA
 - Manufacturing standards of company and precautions it takes to prevent contamination
- In 980s, technologies above considered sufficient to provide assurance evidence that aspirin not contaminated
 - Then someone contaminated the aspirin after manufacture but before consumer purchase
- Evidence no longer deemed sufficient sufficient
 - Safety seal on bottle added in 1980s to prevent introduction of harmful chemicals as happened above
- Assurance evidence then considered sufficient

Outline	About This Course	Basic Components 000000 00	Policy and Mechanism 00 0	Assurance ○○○ ○○●○○○	Practical Issues
Assurance					
Phase	es				

Specification: statement of desired functioning of system

- Need to meet requirements (requirements assurance)
- Specification may be formal or informal
- Statement of *functionality*, not assurance
- Design: translates specification into components that will implement the specification
 - Need to prove design satisfies specification (*design assurance*)
 - Design can be given in many ways (mathematics, pseudocode, etc.)
 - Typically, system treated as layers of abstraction, and then components of layers, and interfaces between layers, designed

Outline	About This Course	Basic Components 000000 00	Policy and Mechanism oo o	Assurance ○○○ ○○○●○○	Practical Issues
Assurance					
Phase	S				

Implementation: creates a system that satisfies the design

- Problem is to prove implementation satisfies design (and, by transitivity, specification)
- Approach
 - Specify preconditions, postconditions for each line of code
 - Build function preconditions, postconditions from those of lines of code
 - Derive preconditions, postconditions for programs from these
 - Verify all preconditions hold and all postconditions satisfy design

Outline	About This Course	Basic Components 000000 00	Policy and Mechanism oo o	Assurance ○○○ ○○○○●○	Practical Issues
Assurance					
Phase	S				

Problems with mathematical implementation assurance

- Problem is to prove implementation satisfies design (and, by transitivity, specification)
- Very difficult and time-consuming to do mathematically
 - Complexity of programs and environments makes any preconditions subtle
 - Assumption is that implementation is correctly compiled, linked, loaded, and libraries and supporting infrastructure is correct
 - If preconditions require specific forms or values in input, programs must check that the input conforms to the preconditions

Outline	About This Course	Basic Components 000000 00	Policy and Mechanism oo o	Assurance ○○○ ○○○○○●	Practical Issues
Assurance					
Phase	S				

Problems with mathematical implementation assurance

- Problem is to prove implementation satisfies design (and, by transitivity, specification)
- Very difficult and time-consuming to do mathematically
 - Complexity of programs and environments makes any preconditions subtle
 - Assumption is that implementation is correctly compiled, linked, loaded, and libraries and supporting infrastructure is correct
 - If preconditions require specific forms or values in input, programs must check that the input conforms to the preconditions

Outline	About This Course	Basic Components	Policy and Mechanism	Assurance	Practical Issues
		000000		000 000000	

Operational Issues: Cost-Benefit Analysis

- Balance benefit of security against its cost
- Analysis rarely clear-cut as benefits overlap and calculating cost, benefits involves judgement and guesswork
- Benefits may overlap, complicating the calculations

Outline	About This Course	Basic Components	Policy and Mechanism	Assurance	Practical Issues
		000000 00		000 000000	

Operational Issues: Risk Analysis

- What is the probability that the threat will materialize?
- Risk is a function of environment, and changes with time
 - Computer system not connected to Internet has one set of risks, generally local
 - Add a network connection and the risks change
- "Analysis paralysis", where risk analysis made but not acted upon

Outline	About This Course	Basic Components	Policy and Mechanism	Assurance	Practical Issues
		000000 00		000 000000	

Operational Issues: Laws and Customs

Constrain availability, use of technology, procedures

- Country X makes reading another's email illegal
- Attackers break in by compromising mail system
- Sysadmins gathering evidence look in mailbox—now they are criminals too!
- Systems in multiple jurisdictions complicate how they are (can be) used
 - Country A requires encryption keys to be registered with police
 - A multinational corporation has offices in Country A
 - Key and message management messy!
- That which is legal may be completely unacceptable

Outline	About This Course	Basic Components	Policy and Mechanism	Assurance	Practical Issues
		000000		000 000000	

Human Issues: Organizational Problems

- Security a supportive service (no direct benefit, especially not financial)
- Who is responsible for security—and do they have the power to implement needed controls?
 - Often lack of people knowledgeable in security
 - Security considered something "additional" to other work rather than job in itself
 - Lack of resources for developing, implementing, acquiring security mechanisms

Outline	About This Course	Basic Components	Policy and Mechanism	Assurance	Practical Issues
		000000 00		000 000000	

Human Issues: People Problems

People at the heart of every security system

- Security controls won't block unauthorized user who knows your login and password
- People trusted with access (*insiders*) who betray that trust difficult to thwart
 - Just look at the Wikileaks messages . . .
 - Untrained people also a threat
- Social engineering