
Lecture #7	

•  Policy languages	

•  Secure and precise mechanisms	

–  Can we do both?	

•  Bell-LaPadula model	

–  Informal: lattice version	

–  Formal: more mathematical one (but still a lattice!)	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

 Slide #7-1	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Policy Languages	

•  Express security policies in a precise way	

•  High-level languages	

– Policy constraints expressed abstractly	

•  Low-level languages	

– Policy constraints expressed in terms of
program options, input, or specific
characteristics of entities on system	

Slide #7-2	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

High-Level Policy Languages	

•  Constraints expressed independent of
enforcement mechanism	

•  Constraints restrict entities, actions	

•  Constraints expressed unambiguously	

– Requires a precise language, usually a
mathematical, logical, or programming-like
language	

Slide #7-3	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Example: Web Browser	

•  Goal: restrict actions of Java programs that
are downloaded and executed under control
of web browser	

•  Language specific to Java programs	

•  Expresses constraints as conditions

restricting invocation of entities	

Slide #7-4	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Expressing Constraints	

•  Entities are classes, methods	

–  Class: set of objects that an access constraint constrains	

–  Method: set of ways an operation can be invoked	

•  Operations	

–  Instantiation: s creates instance of class c: s –| c	

–  Invocation: s1 executes object s2: s1 |→ s2	

•  Access constraints	

–  deny(s op x) when b	

–  While b is true, subject s cannot perform op on (subject

or class) x; empty s means all subjects	

Slide #7-5	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Sample Constraints	

•  Downloaded program cannot access password
database file on UNIX system	

•  Program’s class and methods for files:	

class File {!
!public file(String name);!
!public String getfilename();!
!public char read();!

•  Constraint:	

deny(|-> file.read) when!
!!(file.getfilename() == “/etc/passwd”)!

Slide #7-6	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Another Sample Constraint	

•  At most 100 network connections open	

•  Socket class defines network interface	

– Network.numconns method giving number of
active network connections	

•  Constraint	

deny(-| Socket) when!
!! !(Network.numconns >= 100)!

Slide #7-7	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Low-Level Policy Languages	

•  Set of inputs or arguments to commands	

– Check or set constraints on system	

•  Low level of abstraction	

– Need details of system, commands	

Slide #7-8	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Example: tripwire	

•  File scanner that reports changes to file
system and file attributes	

–  tw.config describes what may change	

!/usr/mab/tripwire +gimnpsu012345678-a!

•  Check everything but time of last access (“-a”)	

– Database holds previous values of attributes	

Slide #7-9	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Example Database Record	

!/usr/mab/tripwire/README 0/. 100600 45763
1 917 10 33242 .gtPvf .gtPvY .gtPvY
0 .ZD4cc0Wr8i21ZKaI..LUOr3 .
0fwo5:hf4e4.8TAqd0V4ubv ?...... ...9b3
1M4GX01xbGIX0oVuGo1h15z3 ?:Y9jfa04rdzM1q:eqt1AP
gHk ?.Eb9yo.2zkEh1XKovX1:d0wF0kfAvC ?
1M4GX01xbGIX2947jdyrior38h15z3 0!

•  file name, version, bitmask for attributes, mode,
inode number, number of links, UID, GID, size,
times of creation, last modification, last access,
cryptographic checksums!

Slide #7-10	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Comments	

•  System administrators not expected to edit
database to set attributes properly	

•  Checking for changes with tripwire is easy	

–  Just run once to create the database, run again to check	

•  Checking for conformance to policy is harder	

–  Need to either edit database file, or (better) set system

up to conform to policy, then run tripwire to construct
database	

Slide #7-11	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Example English Policy	

•  Computer security policy for academic
institution	

–  Institution has multiple campuses, administered

from central office	

– Each campus has its own administration, and

unique aspects and needs	

•  Authorized Use Policy	

•  Electronic Mail Policy	

Slide #7-12	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Authorized Use Policy	

•  Intended for one campus (Davis) only	

•  Goals of campus computing	

–  Underlying intent	

•  Procedural enforcement mechanisms	

–  Warnings	

–  Denial of computer access	

–  Disciplinary action up to and including expulsion	

•  Written informally, aimed at user community	

Slide #7-13	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Electronic Mail Policy	

•  Systemwide, not just one campus	

•  Three parts	

– Summary	

– Full policy	

–  Interpretation at the campus	

Slide #7-14	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Summary	

•  Warns that electronic mail not private	

– Can be read during normal system

administration	

– Can be forged, altered, and forwarded	

•  Unusual because the policy alerts users to
the threats	

– Usually, policies say how to prevent problems,

but do not define the threats	

Slide #7-15	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Summary	

•  What users should and should not do	

–  Think before you send	

–  Be courteous, respectful of others	

–  Don’t interfere with others’ use of email	

•  Personal use okay, provided overhead minimal	

•  Who it applies to	

–  Problem is UC is quasi-governmental, so is bound by rules that
private companies may not be	

–  Educational mission also affects application	

Slide #7-16	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Full Policy	

•  Context	

–  Does not apply to Dept. of Energy labs run by the university	

–  Does not apply to printed copies of email	

•  Other policies apply here	

•  E-mail, infrastructure are university property	

–  Principles of academic freedom, freedom of speech apply	

–  Access without user’s permission requires approval of vice

chancellor of campus or vice president of UC	

–  If infeasible, must get permission retroactively	

Slide #7-17	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Uses of E-mail	

•  Anonymity allowed	

– Exception: if it violates laws or other policies	

•  Can’t interfere with others’ use of e-mail	

– No spam, letter bombs, e-mailed worms, etc.	

•  Personal e-mail allowed within limits	

– Cannot interfere with university business	

– Such e-mail may be a “university record”

subject to disclosure	

Slide #7-18	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Security of E-mail	

•  University can read e-mail	

– Won’t go out of its way to do so	

– Allowed for legitimate business purposes	

– Allowed to keep e-mail robust, reliable	

•  Archiving and retention allowed	

– May be able to recover e-mail from end system

(backed up, for example)	

Slide #7-19	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Implementation	

•  Adds campus-specific requirements and

procedures	

–  Example: “incidental personal use” not allowed if it

benefits a non-university organization	

–  Allows implementation to take into account differences

between campuses, such as self-governance by
Academic Senate	

•  Procedures for inspecting, monitoring, disclosing
e-mail contents	

•  Backups	

Slide #7-20	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Types of Mechanisms	

secure	

 precise	

 broad	

set of reachable states	

 set of secure states	

Slide #7-21	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Secure, Precise Mechanisms	

•  Can one devise a procedure for developing a
mechanism that is both secure and precise?	

–  Consider confidentiality policies only here	

–  Integrity policies produce same result	

•  Program a function with multiple inputs and one
output	

–  Let p be a function p: I1 × ... × In → R. Then p is a

program with n inputs ik ∈ Ik, 1 ≤ k ≤ n, and one output
r ∈ R	

Slide #7-22	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Programs and Postulates	

•  Observability Postulate: the output of a function

encodes all available information about its inputs	

–  Covert channels considered part of the output	

•  Example: authentication function	

–  Inputs name, password; output Good or Bad	

–  If name invalid, immediately print Bad; else access

database	

–  Problem: time output of Bad, can determine if name

valid	

–  This means timing is part of output	

Slide #7-23	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Protection Mechanism	

•  Let p be function p: I1 × ... × In → R. Protection
mechanism m is a function m: I1 × ... × In → R ∪ E
for which, when ik ∈ Ik, 1 ≤ k ≤ n, either	

–  m(i1, ..., in) = p(i1, ..., in) or	

–  m(i1, ..., in) ∈ E.	

•  E is set of error outputs	

–  In above example, E = { “Password Database Missing”,

“Password Database Locked” }	

Slide #7-24	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Confidentiality Policy	

•  Confidentiality policy for program p says which

inputs can be revealed	

–  Formally, for p: I1 × ... × In → R, it is a function	

	

 	

 	

c: I1 × ... × In → A, where A ⊆ I1 × ... × In	

–  A is set of inputs available to observer	

•  Security mechanism is function	

	

 	

 	

m: I1 × ... × In → R ∪ E	

–  m secure iff ∃ m´: A → R ∪ E such that,	

	

 	

for all ik ∈ Ik, 1 ≤ k ≤ n, m(i1, ..., in) = m´(c(i1, ..., in))	

–  m returns values consistent with c	

Slide #7-25	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Examples	

•  c(i1, ..., in) = C, a constant	

– Deny observer any information (output does

not vary with inputs)	

•  c(i1, ..., in) = (i1, ..., in), and m´ = m	

– Allow observer full access to information	

•  c(i1, ..., in) = i1	

– Allow observer information about first input
but no information about other inputs.	

Slide #7-26	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Precision	

•  Security policy may be over-restrictive	

–  Precision measures how over-restrictive	

•  m1, m2 distinct protection mechanisms for program
p under policy c	

–  m1 as precise as m2 (m1 ≈ m2) if, for all inputs i1, …, in,	

	

m2(i1, …, in) = p(i1, …, in) ⇒ m1(i1, …, in) = p(i1, …, in)	

–  m1 more precise than m2 (m1 ~ m2) if there is an input	

	

(i1´, …, in´) such that m1(i1´, …, in´) = p(i1´, …, in´) and	

	

m2(i1´, …, in´) ≠ p(i1´, …, in´).	

Slide #7-27	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Combining Mechanisms	

•  m1, m2 protection mechanisms	

•  m3 = m1 ∪ m2	

–  For inputs on which m1 and m2 return same value as p,
m3 does also; otherwise, m3 returns same value as m1	

•  Theorem: if m1, m2 secure, then m3 secure	

–  Also, m3 ≈ m1 and m3 ≈ m2	

–  Follows from definitions of secure, precise, and m3 	

Slide #7-28	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Existence Theorem	

•  For any program p and security policy c,
there exists a precise, secure mechanism m*
such that, for all secure mechanisms m
associated with p and c, m* ≈ m	

– Maximally precise mechanism	

– Ensures security	

– Minimizes number of denials of legitimate

actions	

Slide #7-29	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Lack of Effective Procedure	

•  There is no effective procedure that
determines a maximally precise, secure
mechanism for any policy and program.	

– Sketch of proof: let c be constant function, and

p compute function T(x). Assume T(x) = 0.
Consider program q, where	

p;!
if z = 0 then y := 1 else y := 2;!
halt;!

	

Slide #7-30	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Rest of Sketch	

•  m associated with q, y value of m, z output of p

corresponding to T(x)	

•  ∀x[T(x) = 0] → m(x) = 1	

•  ∃x´ [T(x´) ≠ 0] → m(x) = 2 or m(x)↑	

•  If you can determine m, you can determine

whether T(x) = 0 for all x	

•  Determines some information about input (is it 0?)	

•  Contradicts constancy of c.	

•  Therefore no such procedure exists	

Slide #7-31	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Overview	

•  Bell-LaPadula	

–  Informally	

– Formally	

– Example Instantiation	

•  Tranquility	

•  Controversy	

– System Z	

Slide #7-32	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Confidentiality Policy	

•  Goal: prevent the unauthorized disclosure of
information	

– Deals with information flow	

–  Integrity incidental	

•  Multi-level security models are best-known
examples	

– Bell-LaPadula Model basis for many, or most,

of these	

Slide #7-33	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Bell-LaPadula Model, Step 1	

•  Security levels arranged in linear ordering	

– Top Secret: highest	

– Secret	

– Confidential	

– Unclassified: lowest	

•  Levels consist of security clearance L(s)	

– Objects have security classification L(o)	

Slide #7-34	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Example	

security level	

 subject	

 object	

Top Secret	

 Tamara	

 Personnel Files	

Secret	

 Samuel	

 E-Mail Files	

Confidential	

 Claire	

 Activity Logs	

Unclassified	

 Ulaley	

 Telephone Lists	

•  Tamara can read all files	

•  Claire cannot read Personnel or E-Mail Files	

•  Ulaley can only read Telephone Lists	

Slide #7-35	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Reading Information	

•  Information flows up, not down	

–  “Reads up” disallowed, “reads down” allowed	

•  Simple Security Condition (Step 1)	

– Subject s can read object o iff, L(o) ≤ L(s) and s

has permission to read o	

•  Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)	

– Sometimes called “no reads up” rule	

Slide #7-36	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Writing Information	

•  Information flows up, not down	

–  “Writes up” allowed, “writes down” disallowed	

•  *-Property (Step 1)	

– Subject s can write object o iff L(s) ≤ L(o) and s

has permission to write o	

•  Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)	

– Sometimes called “no writes down” rule	

Slide #7-37	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Basic Security Theorem, Step 1	

•  If a system is initially in a secure state, and
every transition of the system satisfies the
simple security condition, step 1, and the *-
property, step 1, then every state of the
system is secure	

– Proof: induct on the number of transitions	

Slide #7-38	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Bell-LaPadula Model, Step 2	

•  Expand notion of security level to include
categories	

•  Security level is (clearance, category set)	

•  Examples	

–  (Top Secret, { NUC, EUR, ASI })	

–  (Confidential, { EUR, ASI })	

–  (Secret, { NUC, ASI })	

Slide #7-39	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Levels and Lattices	

•  (A, C) dom (Aʹ′, Cʹ′) iff Aʹ′ ≤ A and Cʹ′ ⊆ C	

•  Examples	

–  (Top Secret, {NUC, ASI}) dom (Secret, {NUC})	

–  (Secret, {NUC, EUR}) dom (Confidential,{NUC, EUR})	

–  (Top Secret, {NUC}) ¬dom (Confidential, {EUR})	

•  Let C be set of classifications, K set of categories.
Set of security levels L = C × K, dom form lattice	

–  lub(L) = (max(A), C)	

–  glb(L) = (min(A), ∅)	

Slide #7-40	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Levels and Ordering	

•  Security levels partially ordered	

– Any pair of security levels may (or may not) be

related by dom	

•  “dominates” serves the role of “greater

than” in step 1	

–  “greater than” is a total ordering, though	

Slide #7-41	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Reading Information	

•  Information flows up, not down	

–  “Reads up” disallowed, “reads down” allowed	

•  Simple Security Condition (Step 2)	

– Subject s can read object o iff L(s) dom L(o)

and s has permission to read o	

•  Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)	

– Sometimes called “no reads up” rule	

Slide #7-42	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Writing Information	

•  Information flows up, not down	

–  “Writes up” allowed, “writes down” disallowed	

•  *-Property (Step 2)	

– Subject s can write object o iff L(o) dom L(s)

and s has permission to write o	

•  Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)	

– Sometimes called “no writes down” rule	

Slide #7-43	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Basic Security Theorem, Step 2	

•  If a system is initially in a secure state, and every

transition of the system satisfies the simple
security condition, step 2, and the *-property, step
2, then every state of the system is secure	

–  Proof: induct on the number of transitions	

–  In actual Basic Security Theorem, discretionary access

control treated as third property, and simple security
property and *-property phrased to eliminate
discretionary part of the definitions — but simpler to
express the way done here.	

Slide #7-44	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Problem	

•  Colonel has (Secret, {NUC, EUR})
clearance	

•  Major has (Secret, {EUR}) clearance	

– Major can talk to colonel (“write up” or “read

down”)	

– Colonel cannot talk to major (“read up” or

“write down”)	

•  Clearly absurd!	

Slide #7-45	

January 25, 2011	

 ECS 235B Winter Quarter 2011	

Solution	

•  Define maximum, current levels for subjects	

–  maxlevel(s) dom curlevel(s)	

•  Example	

–  Treat Major as an object (Colonel is writing to him/her)	

–  Colonel has maxlevel (Secret, { NUC, EUR })	

–  Colonel sets curlevel to (Secret, { EUR })	

–  Now L(Major) dom curlevel(Colonel)	

•  Colonel can write to Major without violating “no writes down”	

–  Does L(s) mean curlevel(s) or maxlevel(s)?	

•  Formally, we need a more precise notation	

Slide #7-46	

