
Lecture 12	

•  Policies that change over time	

•  Policy composition	

•  Deducible security	

•  Generalized noninterference	

•  Restrictiveness	

•  Information flow	

•  Entropy	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-1	

Policies Changing Over Time	

•  Problem: previous analysis assumes static system	

–  In real life, ACM changes as system commands issued	

•  Example: w ∈ C* leads to current state	

–  cando(w, s, z) holds if s can execute z in current state	

–  Condition noninterference on cando	

–  If ¬cando(w, Lara, “write f”), Lara can’t interfere with

any other user by writing file f	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-2	

Generalize Noninterference	

•  G ⊆ S group of subjects, A ⊆ Z set of commands, p

predicate over elements of C*	

•  cs = (c1, …, cn) ∈ C*	

•  πʹ′ʹ′(ν) = ν	

•  πʹ′ʹ′((c1, …, cn)) = (c1ʹ′, …, cnʹ′)	

–  ciʹ′ = ν if p(c1ʹ′, …, ci–1ʹ′) and ci = (s, z) with s ∈ G and z ∈ A	

–  ciʹ′ = ci otherwise	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-3	

Intuition	

•  πʹ′ʹ′(cs) = cs	

•  But if p holds, and element of cs involves

both command in A and subject in G,
replace corresponding element of cs with
empty command ν	

–  Just like deleting entries from cs as πA,G does

earlier	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-4	

Noninterference	

•  G, Gʹ′ ⊆ S groups of subjects, A ⊆ Z set of
commands, p predicate over C*	

•  Users in G executing commands in A are
noninterfering with users in Gʹ′ under
condition p iff, for all cs ∈ C*, all s ∈ Gʹ′,
proj(s, cs, σi) = proj(s, πʹ′ʹ′(cs), σi)	

– Written A,G :| Gʹ′ if p	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-5	

Example	

•  From earlier one, simple security policy
based on noninterference:	

	

∀(s ∈ S) ∀(z ∈ Z)	

	

 	

[{z}, {s} :| S if ¬cando(w, s, z)]	

•  If subject can’t execute command (the
¬cando part), subject can’t use that
command to interfere with another subject	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-6	

Another Example	

•  Consider system in which rights can be
passed	

–  pass(s, z) gives s right to execute z	

– wn = v1, …, vn sequence of vi ∈ C*	

–  prev(wn) = wn–1; last(wn) = vn	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-7	

Policy	

•  No subject s can use z to interfere if, in
previous state, s did not have right to z, and
no subject gave it to s	

{ z }, { s } :| S if	

	

[¬cando(prev(w), s, z) ∧	

	

 	

[cando(prev(w), sʹ′, pass(s, z)) ⇒	

	

 	

 	

¬last(w) = (sʹ′, pass(s, z))]]	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-8	

Effect	

•  Suppose s1 ∈ S can execute pass(s2, z)	

•  For all w ∈ C*, cando(w, s1, pass(s2, z)) true	

•  Initially, cando(ν, s2, z) false	

•  Let zʹ′ ∈ Z be such that (s3, zʹ′) noninterfering

with (s2, z)	

– So for each wn with vn = (s3, zʹ′),	

cando(wn, s2, z) = cando(wn–1, s2, z)	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-9	

Effect	

•  Then policy says for all s ∈ S	

proj(s, ((s2, z), (s1, pass(s2, z)), (s3, zʹ′), (s2, z)), σi)	

 = proj(s, ((s1, pass(s2, z)), (s3, zʹ′), (s2, z)), σi)	

•  So s2’s first execution of z does not affect
any subject’s observation of system	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-10	

Policy Composition I	

•  Assumed: Output function of input	

– Means deterministic (else not function)	

– Means uninterruptability (differences in timings

can cause differences in states, hence in
outputs)	

•  This result for deterministic,
noninterference-secure systems	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-11	

Compose Systems	

•  Louie, Dewey LOW	

•  Hughie HIGH	

•  bL output buffer	

–  Anyone can read it	

•  bH input buffer	

–  From HIGH source	

•  Hughie reads from:	

–  bLH (Louie writes)	

–  bLDH (Louie, Dewey write)	

–  bDH (Dewey writes)	

bL bH

Louie

Dewey

Hughie

bLH

bDH

bLDH

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-12	

Systems Secure	

•  All noninterference-
secure	

–  Hughie has no output	

•  So inputs don’t interfere
with it	

–  Louie, Dewey have no
input	

•  So (nonexistent) inputs
don’t interfere with
outputs	

bL bH

Louie

Dewey

Hughie

bLH

bDH

bLDH

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-13	

ECS 235B, Winter Quarter 2011	

Security of Composition	

• Buffers finite, sends/receives blocking: composition

not secure!	

–  Example: assume bDH, bLH have capacity 1	

• Algorithm:	

1.  Louie (Dewey) sends message to bLH (bDH)	

–  Fills buffer	

2.  Louie (Dewey) sends second message to bLH (bDH)	

3.  Louie (Dewey) sends a 0 (1) to bL	

4.  Louie (Dewey) sends message to bLDH	

–  Signals Hughie that Louie (Dewey) completed a cycle	

February 15, 2011	

 Slide #12-14	

ECS 235B, Winter Quarter 2011	

Hughie	

•  Reads bit from bH	

–  If 0, receive message from bLH	

–  If 1, receive message from bDH	

•  Receive on bLDH	

– To wait for buffer to be filled	

February 15, 2011	

 Slide #12-15	

ECS 235B, Winter Quarter 2011	

Example	

•  Hughie reads 0 from bH	

–  Reads message from bLH	

•  Now Louie’s second message goes into bLH	

–  Louie completes setp 2 and writes 0 into bL	

•  Dewey blocked at step 1	

–  Dewey cannot write to bL	

•  Symmetric argument shows that Hughie reading 1

produces a 1 in bL	

•  So, input from bH copied to output bL	

February 15, 2011	

 Slide #12-16	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Nondeducibility	

•  Noninterference: do state transitions caused
by high level commands interfere with
sequences of state transitions caused by low
level commands?	

•  Really case about inputs and outputs:	

– Can low level subject deduce anything about

high level outputs from a set of low level
outputs?	

Slide #12-17	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Example: 2-Bit System	

•  High operations change only High bit	

– Similar for Low	

•  σ0 = (0, 0)	

•  Commands (Heidi, xor1), (Lara, xor0),

(Lara, xor1), (Lara, xor0), (Heidi, xor1),
(Lara, xor0)	

– Both bits output after each command	

•  Output is: 00 10 10 11 11 01 01	

Slide #12-18	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Security	

•  Not noninterference-secure w.r.t. Lara	

–  Lara sees output as 0001111	

–  Delete High and she sees 00111	

•  But Lara still cannot deduce the commands deleted	

–  Don’t affect values; only lengths	

•  So it is deducibly secure	

–  Lara can’t deduce the commands Heidi gave	

Slide #12-19	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Event System	

•  4-tuple (E, I, O, T)	

–  E set of events	

–  I ⊆ E set of input events	

–  O ⊆ E set of output events	

–  T set of all finite sequences of events legal within system	

•  E partitioned into H, L	

–  H set of High events	

–  L set of Low events	

Slide #12-20	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

More Events …	

•  H ∩ I set of High inputs	

•  H ∩ O set of High outputs	

•  L ∩ I set of Low inputs	

•  L ∩ O set of Low outputs	

•  TLow set of all possible sequences of Low events that are

legal within system	

•  πL: T→TLow projection function deleting all High inputs

from trace	

‒  Low observer should not be able to deduce anything about High

inputs from trace tLow ∈ Tlow	

Slide #12-21	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Deducibly Secure	

•  System deducibly secure if, for every trace
tLow ∈ TLow, the corresponding set of high
level traces contains every possible trace
t ∈ T for which πL(t) = tLow 	

– Given any tLow, the trace t ∈ T producing that

tLow is equally likely to be any trace with
πL(t) = tLow 	

Slide #12-22	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Example	

•  Back to our 2-bit machine	

–  Let xor0, xor1 apply to both bits	

–  Both bits output after each command	

•  Initial state: (0, 1)	

•  Inputs: 1H0L1L0H1L0L	

•  Outputs: 10 10 01 01 10 10	

•  Lara (at Low) sees: 001100	

–  Does not know initial state, so does not know first input; but can
deduce fourth input is 0	

•  Not deducibly secure	

Slide #12-23	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Example	

•  Now xor0, xor1 apply only to state bit with same

level as user	

•  Inputs: 1H0L 1L0H 1L0L	

•  Outputs: 10 11 11 10 11	

•  Lara sees: 01101	

•  She cannot deduce anything about input	

–  Could be 0H0L 1L0H 1L0L or 0L1H 1L0H 1L0L for example	

•  Deducibly secure	

Slide #12-24	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Security of Composition	

•  In general: deducibly secure systems not
composable	

•  Strong noninterference: deducible security
+ requirement that no High output occurs
unless caused by a High input	

– Systems meeting this property are composable	

Slide #12-25	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Example	

•  2-bit machine done earlier does not exhibit
strong noninterference	

– Because it puts out High bit even when there is

no High input	

•  Modify machine to output only state bit at

level of latest input	

– Now it exhibits strong noninterference	

Slide #12-26	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Problem	

•  Too restrictive; it bans some systems that
are obviously secure	

•  Example: System upgrade reads Low
inputs, outputs those bits at High	

– Clearly deducibly secure: low level user sees no

outputs	

– Clearly does not exhibit strong noninterference,

as no high level inputs!	

Slide #12-27	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Remove Determinism	

•  Previous assumption	

–  Input, output synchronous	

– Output depends only on commands triggered

by input	

•  Sometimes absorbed into commands …	

–  Input processed one datum at a time	

•  Not realistic	

–  In real systems, lots of asynchronous events	

Slide #12-28	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Generalized Noninterference	

•  Nondeterministic systems meeting
noninterference property meet generalized
noninterference-secure property	

– More robust than deducible security because

minor changes in assumptions affect whether
system is deducibly secure	

Slide #12-29	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Example	

•  System with High Holly, Low lucy, text file at High	

–  File fixed size, symbol b marks empty space	

–  Holly can edit file, Lucy can run this program:	

!while true do begin!
! !n := read_integer_from_user;!
! !if n > file_length or char_in_file[n] = b then!
! ! !print random_character;!
! !else!
! ! !print char_in_file[n];!
!end;!

Slide #12-30	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Security of System	

•  Not noninterference-secure	

–  High level inputs—Holly’s changes—affect low level
outputs	

•  May be deducibly secure	

–  Can Lucy deduce contents of file from program?	

–  If output meaningful (“This is right”) or close (“Thes is

riqht”), yes	

–  Otherwise, no	

•  So deducibly secure depends on which inferences
are allowed 	

Slide #12-31	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Composition of Systems	

•  Does composing systems meeting
generalized noninterference-secure property
give you a system that also meets this
property?	

•  Define two systems (cat, dog)	

•  Compose them	

Slide #12-32	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

First System: cat	

•  Inputs, outputs can go
left or right	

•  After some number of
inputs, cat sends two
outputs	

–  First stop_count	

–  Second parity of High

inputs, outputs	

HIGH HIGH

LOW
stop_count0 or 1

catLOW

Slide #12-33	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Noninterference-Secure?	

•  If even number of High inputs, output could be:	

–  0 (even number of outputs)	

–  1 (odd number of outputs)	

•  If odd number of High inputs, output could be:	

–  0 (odd number of outputs)	

–  1 (even number of outputs)	

•  High level inputs do not affect output	

–  So noninterference-secure	

Slide #12-34	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Second System: dog	

•  High outputs to left	

•  Low outputs of 0 or 1

to right	

•  stop_count input from

the left	

–  When it arrives, dog

emits 0 or 1	

HIGH

HIGH LOW
0 or 1

dog

stop_count

Slide #12-35	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Noninterference-Secure?	

•  When stop_count arrives:	

–  May or may not be inputs for which there are no
corresponding outputs	

–  Parity of High inputs, outputs can be odd or even	

–  Hence dog emits 0 or 1	

•  High level inputs do not affect low level outputs	

–  So noninterference-secure	

Slide #12-36	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Compose Them	

•  Once sent, message arrives	

–  But stop_count may arrive before all inputs have generated corresponding

outputs	

–  If so, even number of High inputs and outputs on cat, but odd number on

dog	

•  Four cases arise	

HIGH HIGH

LOW
stop_count0 or 1

cat LOW
0 or 1

dog
LOW

Slide #12-37	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

The Cases	

•  cat, odd number of inputs, outputs; dog, even number of

inputs, odd number of outputs	

–  Input message from cat not arrived at dog, contradicting

assumption	

•  cat, even number of inputs, outputs; dog, odd number of

inputs, even number of outputs	

–  Input message from dog not arrived at cat, contradicting

assumption	

Slide #12-38	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

The Cases	

•  cat, odd number of inputs, outputs; dog, odd number of

inputs, even number of outputs	

–  dog sent even number of outputs to cat, so cat has had at least one

input from left	

•  cat, even number of inputs, outputs; dog, even number of

inputs, odd number of outputs	

–  dog sent odd number of outputs to cat, so cat has had at least one

input from left	

Slide #12-39	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

The Conclusion	

•  Composite system catdog emits 0 to left, 1 to right (or 1 to

left, 0 to right)	

–  Must have received at least one input from left	

•  Composite system catdog emits 0 to left, 0 to right (or 1 to
left, 1 to right)	

–  Could not have received any from left	

•  So, High inputs affect Low outputs	

–  Not noninterference-secure	

Slide #12-40	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Feedback-Free Systems	

•  System has n distinct components	

•  Components ci, cj connected if any output of ci is input to

cj 	

•  System is feedback-free if for all ci connected to cj, cj not

connected to any ci	

–  Intuition: once information flows from one component to another,

no information flows back from the second to the first	

Slide #12-41	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Feedback-Free Security	

•  Theorem: A feedback-free system
composed of noninterference-secure
systems is itself noninterference-secure	

Slide #12-42	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Some Feedback	

•  Lemma: A noninterference-secure system can feed a high

level output o to a high level input i if the arrival of o at the
input of the next component is delayed until after the next
low level input or output	

•  Theorem: A system with feedback as described in the
above lemma and composed of noninterference-secure
systems is itself noninterference-secure	

Slide #12-43	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Why Didn’t They Work?	

•  For compositions to work, machine must act
same way regardless of what precedes low
level input (high, low, nothing)	

•  dog does not meet this criterion	

–  If first input is stop_count, dog emits 0	

–  If high level input precedes stop_count, dog

emits 0 or 1	

Slide #12-44	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

State Machine Model	

•  2-bit machine, levels High, Low, meeting 4
properties:	

1.  For every input ik, state σj, there is an
element cm ∈ C* such that T*(cm, σj) = σn,
where σn ≠ σj	

– T* is total function, inputs and commands
always move system to a different state	

Slide #12-45	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Property 2	

•  There is an equivalence relation ≡ such that:	

–  If system in state σi and high level sequence of inputs causes
transition from σi to σj, then σi ≡ σj	

–  If σi ≡ σj and low level sequence of inputs i1, …, in causes system
in state σi to transition to σiʹ′, then there is a state σjʹ′ such that
σiʹ′ ≡ σjʹ′ and the inputs i1, …, in cause system in state σj to
transition to σjʹ′	

•  ≡ holds if low level projections of both states are same	

Slide #12-46	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Property 3	

•  Let σi ≡ σj. If high level sequence of outputs
o1, …, on indicate system in state σi
transitioned to state σiʹ′, then for some state
σjʹ′ with σjʹ′ ≡ σiʹ′, high level sequence of
outputs o1ʹ′, …, omʹ′ indicates system in σj
transitioned to σjʹ′	

– High level outputs do not indicate changes in

low level projection of states	

Slide #12-47	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Property 4	

•  Let σi ≡ σj, let c, d be high level output sequences, e a low

level output. If ced indicates system in state σi transitions
to σiʹ′, then there are high level output sequences c’ and d’
and state σjʹ′ such that cʹ′edʹ′ indicates system in state σj
transitions to state σjʹ′	

–  Intermingled low level, high level outputs cause changes in low

level state reflecting low level outputs only	

Slide #12-48	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Restrictiveness	

•  System is restrictive if it meets the
preceding 4 properties	

Slide #12-49	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Composition	

•  Intuition: by 3 and 4, high level output
followed by low level output has same
effect as low level input, so composition of
restrictive systems should be restrictive	

Slide #12-50	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Composite System	

•  System M1’s outputs are M2’s inputs	

•  µ1i, µ2i states of M1, M2	

•  States of composite system pairs of M1, M2

states (µ1i, µ2i)	

•  e event causing transition	

•  e causes transition from state (µ1a, µ2a) to

state (µ1b, µ2b) if any of 3 conditions hold	

Slide #12-51	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Conditions	

1.  M1 in state µ1a and e occurs, M1 transitions to µ1b; e not

an event for M2; and µ2a = µ2b	

2.  M2 in state µ2a and e occurs, M2 transitions to µ2b; e not
an event for M1; and µ1a = µ1b	

3.  M1 in state µ1a and e occurs, M1 transitions to µ1b; M2 in
state µ2a and e occurs, M2 transitions to µ2b; e is input to
one machine, and output from other	

Slide #12-52	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Intuition	

•  Event causing transition in composite
system causes transition in at least 1 of the
components	

•  If transition occurs in exactly one
component, event must not cause transition
in other component when not connected to
the composite system	

Slide #12-53	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

Equivalence for Composite	

•  Equivalence relation for composite system	

(σa, σb) ≡C (σc, σd) iff σa ≡ σc and σb ≡ σd	

•  Corresponds to equivalence relation in
property 2 for component system	

Slide #12-54	

Information Flow	

•  Basics and background	

– Entropy	

•  Nonlattice flow policies	

•  Compiler-based mechanisms	

•  Execution-based mechanisms	

•  Examples	

– Security Pipeline Interface	

– Secure Network Server Mail Guard	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-55	

Basics	

•  Bell-LaPadula Model embodies information
flow policy	

– Given compartments A, B, info can flow from A

to B iff B dom A	

•  Variables x, y assigned compartments x, y as

well as values	

–  If x = A and y = B, and A dom B, then x := y

allowed but not y := x	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-56	

Quick Review of Entropy	

•  Random variables	

•  Joint probability	

•  Conditional probability	

•  Entropy (or uncertainty in bits)	

•  Joint entropy	

•  Conditional entropy	

•  Applying it to secrecy of ciphers	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-57	

Random Variable	

•  Variable that represents outcome of an event	

–  X represents value from roll of a fair die; probability for

rolling n: p(X = n) = 1/6	

–  If die is loaded so 2 appears twice as often as other

numbers, p(X = 2) = 2/7 and, for n ≠ 2, p(X = n) = 1/7	

•  Note: p(X) means specific value for X doesn’t

matter	

–  Example: all values of X are equiprobable	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-58	

Joint Probability	

•  Joint probability of X and Y, p(X, Y), is
probability that X and Y simultaneously
assume particular values	

–  If X, Y independent, p(X, Y) = p(X)p(Y)	

•  Roll die, toss coin	

–  p(X = 3, Y = heads) = p(X = 3)p(Y = heads) =

1/6 × 1/2 = 1/12	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-59	

Two Dependent Events	

•  X = roll of red die, Y = sum of red, blue die
rolls	

•  Formula:	

–  p(X=1, Y=11) = p(X=1)p(Y=11) = (1/6)(2/36) =

1/108	

p(Y=2) = 1/36	

 p(Y=3) = 2/36	

 p(Y=4) = 3/36	

 p(Y=5) = 4/36	

p(Y=6) = 5/36	

 p(Y=7) = 6/36	

 p(Y=8) = 5/36	

 p(Y=9) = 4/36	

p(Y=10) = 3/36	

 p(Y=11) = 2/36	

 p(Y=12) = 1/36	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-60	

Conditional Probability	

•  Conditional probability of X given Y,
written p(X | Y), is probability that X takes
on a particular value given Y has a particular
value	

•  Continuing example …	

–  p(Y = 7 | X = 1) = 1/6	

–  p(Y = 7 | X = 3) = 1/6	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-61	

Relationship	

•  p(X, Y) = p(X | Y) p(Y) = p(X) p(Y | X)	

•  Example:	

–  p(X = 3, Y = 8) = p(X = 3 | Y = 8) p(Y = 8) =
(1/5)(5/36) = 1/36	

•  Note: if X, Y independent:	

–  p(X | Y) = p(X)	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-62	

Entropy	

•  Uncertainty of a value, as measured in bits	

•  Example: X value of fair coin toss; X could

be heads or tails, so 1 bit of uncertainty	

– Therefore entropy of X is H(X) = 1	

•  Formal definition: random variable X,
values x1, …, xn; so Σi p(X = xi) = 1	

	

H(X) = –Σi p(X = xi) lg p(X = xi)	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-63	

Heads or Tails?	

•  H(X) = 	

– p(X = heads) lg p(X = heads)	

	

 	

 	

– p(X = tails) lg p(X = tails)	

	

 	

 = 	

– (1/2) lg (1/2) – (1/2) lg (1/2)	

	

 	

 = – (1/2) (–1) – (1/2) (–1) = 1	

•  Confirms previous intuitive result 	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-64	

n-Sided Fair Die	

H(X) = –Σi p(X = xi) lg p(X = xi)	

As p(X = xi) = 1/n, this becomes	

H(X) = –Σi (1/n) lg (1/ n) = –n(1/n) (–lg n)	

so	

H(X) = lg n	

which is the number of bits in n, as expected	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-65	

Ann, Pam, and Paul	

Ann, Pam twice as likely to win as Paul	

W represents the winner. What is its entropy?	

–  w1 = Ann, w2 = Pam, w3 = Paul	

–  p(W= w1) = p(W= w2) = 2/5, p(W= w3) = 1/5	

•  So H(W) = –Σi p(W = wi) lg p(W = wi)	

	

= – (2/5) lg (2/5) – (2/5) lg (2/5) – (1/5) lg (1/5)	

	

= – (4/5) + lg 5 ≈ 1.52	

•  If all equally likely to win, H(W) = lg 3 = 1.58	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-66	

Joint Entropy	

•  X takes values from { x1, …, xn }	

– Σi p(X = xi) = 1	

•  Y takes values from { y1, …, ym }	

– Σi p(Y = yi) = 1	

•  Joint entropy of X, Y is:	

– H(X, Y) = –Σj Σi p(X=xi, Y=yj) lg p(X=xi, Y=yj)	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-67	

Example	

X: roll of fair die, Y: flip of coin	

p(X=1, Y=heads) = p(X=1) p(Y=heads) = 1/12	

– As X and Y are independent	

H(X, Y) = –Σj Σi p(X=xi, Y=yj) lg p(X=xi, Y=yj)	

 = –2 [6 [(1/12) lg (1/12)]] = lg 12	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-68	

Conditional Entropy	

•  X takes values from { x1, …, xn }	

–  Σi p(X=xi) = 1	

•  Y takes values from { y1, …, ym }	

–  Σi p(Y=yi) = 1	

•  Conditional entropy of X given Y=yj is:	

–  H(X | Y=yj) = –Σi p(X=xi | Y=yj) lg p(X=xi | Y=yj)	

•  Conditional entropy of X given Y is:	

–  H(X | Y) = –Σj p(Y=yj) Σi p(X=xi | Y=yj) lg p(X=xi | Y=yj)	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-69	

Example	

•  X roll of red die, Y sum of red, blue roll	

•  Note p(X=1 | Y=2) = 1, p(X=i | Y=2) = 0 for i ≠ 1	

–  If the sum of the rolls is 2, both dice were 1	

•  H(X|Y=2) = –Σi p(X=xi | Y=2) lg p(X=xi | Y=2) = 0	

•  Note p(X=i , Y=7) = 1/6	

–  If the sum of the rolls is 7, the red die can be any of 1,
…, 6 and the blue die must be 7–roll of red die	

•  H(X|Y=7) = –Σi p(X=xi | Y=7) lg p(X=xi | Y=7)	

 = –6 (1/6) lg (1/6) = lg 6	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-70	

Perfect Secrecy	

•  Cryptography: knowing the ciphertext does
not decrease the uncertainty of the plaintext	

•  M = { m1, …, mn } set of messages	

•  C = { c1, …, cn } set of messages	

•  Cipher ci = E(mi) achieves perfect secrecy if

H(M | C) = H(M)	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-71	

Entropy and Information Flow	

•  Idea: info flows from x to y as a result of a
sequence of commands c if you can deduce
information about x before c from the value
in y after c	

•  Formally:	

–  s time before execution of c, t time after	

– H(xs | yt) < H(xs | ys)	

–  If no y at time s, then H(xs | yt) < H(xs)	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-72	

Example 1	

•  Command is x := y + z; where:	

–  0 ≤ y ≤ 7, equal probability	

–  z = 1 with prob. 1/2, z = 2 or 3 with prob. 1/4 each	

•  s state before command executed; t, after; so	

–  H(ys) = H(yt) = –8(1/8) lg (1/8) = 3	

–  H(zs) = H(zt) = –(1/2) lg (1/2) –2(1/4) lg (1/4) = 1.5	

•  If you know xt, ys can have at most 3 values, so H
(ys | xt) = –3(1/3) lg (1/3) = lg 3	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-73	

Example 2	

•  Command is	

–  if x = 1 then y := 0 else y := 1;	

	

where:	

–  x, y equally likely to be either 0 or 1	

•  H(xs) = 1 as x can be either 0 or 1 with equal

probability	

•  H(xs | yt) = 0 as if yt = 1 then xs = 0 and vice versa	

–  Thus, H(xs | yt) = 0 < 1 = H(xs)	

•  So information flowed from x to y	

February 15, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #12-74	

