Lecture 12

- Policies that change over time
- Policy composition
- Deducible security
- Generalized noninterference
- Restrictiveness
- Information flow
- Entropy

Policies Changing Over Time

- Problem: previous analysis assumes static system – In real life, ACM changes as system commands issued
- Example: $w \in C^*$ leads to current state
	- *cando*(*w*, *s*, *z*) holds if *s* can execute *z* in current state
	- Condition noninterference on *cando*
	- If ¬*cando*(*w*, Lara, "write *f*"), Lara can't interfere with any other user by writing file *f*

Generalize Noninterference

• $G \subseteq S$ group of subjects, $A \subseteq Z$ set of commands, *p* predicate over elements of *C**

$$
\bullet \quad c_s = (c_1, \dots, c_n) \in C^*
$$

- $\pi''(\nu) = \nu$
- \bullet $\pi''((c_1, ..., c_n)) = (c_1', ..., c_n')$ $-$ *c*_i' = v if *p*(*c*₁', ..., *c*_{*i*-1}') and *c*_{*i*} = (*s*, *z*) with *s* ∈ *G* and *z* ∈ *A* $-c_i' = c_i$ otherwise

Intuition

- $\pi''(c_s) = c_s$
- But if p holds, and element of c_s involves both command in *A* and subject in *G*, replace corresponding element of c_s with empty command ν
	- Just like deleting entries from c_s as $\pi_{A,G}$ does earlier

Noninterference

- $G, G' \subseteq S$ groups of subjects, $A \subseteq Z$ set of commands, *p* predicate over *C**
- Users in *G* executing commands in *A* are noninterfering with users in G' under condition *p* iff, for all $c_s \in C^*$, all $s \in G'$, $proj(s, c_s, \sigma_i) = proj(s, \pi''(c_s), \sigma_i)$ $-$ Written A, G : G' if p

Example

• From earlier one, simple security policy based on noninterference:

∀(*s* ∈ *S*) ∀(*z* ∈ *Z*)

 $\lceil \{z\}, \{s\} : S$ **if** $\neg \text{cando}(w, s, z) \rceil$

• If subject can't execute command (the ¬*cando* part), subject can't use that command to interfere with another subject

Another Example

• Consider system in which rights can be passed

$$
- \text{pass}(s, z) \text{ gives } s \text{ right to execute } z
$$
\n
$$
- w_n = v_1, \dots, v_n \text{ sequence of } v_i \in C^*
$$
\n
$$
- \text{prev}(w_n) = w_{n-1}; \text{last}(w_n) = v_n
$$

Policy

• No subject *s* can use *z* to interfere if, in previous state, *s* did not have right to *z*, and no subject gave it to *s*

$$
\{ z \}, \{ s \} : S \textbf{ if }
$$

$$
[\neg cando(prev(w), s, z) \land [\neg cando(prev(w), s', pass(s, z)) \Rightarrow \neg last(w) = (s', pass(s, z))]]
$$

February 15, 2011 *ECS 235B, Winter Quarter 2011* Slide #12-8

Effect

- Suppose $s_1 \in S$ can execute $pass(s_2, z)$
- For all $w \in C^*$, *cando*(*w*, s_1 , *pass*(s_2 , *z*)) true
- Initially, $cando(v, s₂, z)$ false
- Let $z' \in Z$ be such that (s_3, z') noninterfering with (s_2, z)

 $-$ So for each w_n with $v_n = (s_3, z'),$ $cando(w_n, s_2, z) = cando(w_{n-1}, s_2, z)$

February 15, 2011 *ECS 235B, Winter Quarter 2011* Slide #12-9

Effect

- Then policy says for all $s \in S$ $proj(s, ((s_2, z), (s_1, pass(s_2, z)), (s_3, z'), (s_2, z)), \sigma_i)$ $= proj(s, ((s_1, pass(s_2, z)), (s_3, z'), (s_2, z)), \sigma_i)$
- So *s*₂'s first execution of *z* does not affect any subject's observation of system

Policy Composition I

- Assumed: Output function of input
	- Means deterministic (else not function)
	- Means uninterruptability (differences in timings can cause differences in states, hence in outputs)
- This result for deterministic, noninterference-secure systems

Compose Systems

- Louie, Dewey LOW
- Hughie HIGH
- \bullet *b_L* output buffer
	- Anyone can read it
- b_H input buffer
	- From HIGH source
- Hughie reads from:
	- b_{IH} (Louie writes)
	- b_{LDH} (Louie, Dewey write)
	- b_{DH} (Dewey writes)

Systems Secure

- All noninterferencesecure
	- Hughie has no output
		- So inputs don't interfere with it
	- Louie, Dewey have no input
		- So (nonexistent) inputs don't interfere with outputs

Security of Composition

- Buffers finite, sends/receives blocking: composition *not* secure!
	- Example: assume b_{DH} , b_{IH} have capacity 1
- Algorithm:
	- 1. Louie (Dewey) sends message to b_{IH} (b_{DH})
		- Fills buffer
	- 2. Louie (Dewey) sends second message to b_{LH} (b_{DH})
	- 3. Louie (Dewey) sends a 0 (1) to b_L
	- 4. Louie (Dewey) sends message to b_{LDH}
		- Signals Hughie that Louie (Dewey) completed a cycle

ECS 235B, Winter Quarter 2011 February 15, 2011 Slide #12-14

Hughie

- Reads bit from b_H
	- $-$ If 0, receive message from b_{LH}
	- $-$ If 1, receive message from b_{DH}
- Receive on b_{LDH}
	- To wait for buffer to be filled

Example

- Hughie reads 0 from b_H
	- $-$ Reads message from b_{IH}
- Now Louie's second message goes into b_{LH} – Louie completes setp 2 and writes 0 into b_L
- Dewey blocked at step 1

– Dewey cannot write to b_L

- Symmetric argument shows that Hughie reading 1 produces a 1 in b_L
- So, input from b_H copied to output b_I

Nondeducibility

- Noninterference: do state transitions caused by high level commands interfere with sequences of state transitions caused by low level commands?
- Really case about inputs and outputs:
	- Can low level subject deduce *anything* about high level outputs from a set of low level outputs?

Example: 2-Bit System

- *High* operations change only *High* bit – Similar for *Low*
- $\sigma_0 = (0, 0)$
- Commands (Heidi, xor_1), (Lara, xor_0), $(Lara, xor₁), (Lara, xor₀), (Heidi, xor₁),$ $(Lara, xor₀)$

– Both bits output after each command

• Output is: 00 10 10 11 11 01 01

Security

- Not noninterference-secure w.r.t. Lara
	- Lara sees output as 0001111
	- Delete *High* and she sees 00111
- But Lara still cannot deduce the commands deleted
	- Don't affect values; only lengths
- So it is deducibly secure
	- Lara can't deduce the commands Heidi gave

Event System

- 4-tuple (E, I, O, T)
	- *E* set of events
	- $-I ⊆ E$ set of input events
	- $− Q ⊆ E$ set of output events
	- *T* set of all finite sequences of events legal within system
- *E* partitioned into *H*, *L*
	- *H* set of *High* events
	- *L* set of *Low* events

More Events …

- *H* ∩ *I* set of *High* inputs
- *H* ∩ *O* set of *High* outputs
- *L* ∩ *I* set of *Low* inputs
- *L* ∩ *O* set of *Low* outputs
- *T_{Low}* set of all possible sequences of *Low* events that are legal within system
- π_L : $T \rightarrow T_{Low}$ projection function deleting all *High* inputs from trace
	- ‒ *Low* observer should not be able to deduce anything about *High* inputs from trace $t_{Low} \in T_{low}$

Deducibly Secure

- System deducibly secure if, for every trace $t_{Low} \in T_{Low}$, the corresponding set of high level traces contains every possible trace $t \in T$ for which $\pi_L(t) = t_{Low}$
	- Given any t_{Low} , the trace $t \in T$ producing that t_{Low} is equally likely to be *any* trace with $\pi_{I}(t) = t_{Low}$

Example

- Back to our 2-bit machine
	- Let xor0, xor1 apply to both bits
	- Both bits output after each command
- Initial state: $(0, 1)$
- $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
- Outputs: 10 10 01 01 10 10
- Lara (at *Low*) sees: 001100
	- Does not know initial state, so does not know first input; but can deduce fourth input is 0
- Not deducibly secure

Example

- Now xor_0 , xor_1 apply only to state bit with same level as user
- Inputs: $1_H0_I 1_I0_H 1_I0_I$
- Outputs: 10 11 11 10 11
- Lara sees: 01101
- She cannot deduce *anything* about input $-$ Could be $0_H 0_L 1_I 0_H 1_I 0_L$ or $0_L 1_H 1_I 0_H 1_I 0_L$ for example
- Deducibly secure

Security of Composition

- In general: deducibly secure systems not composable
- *Strong noninterference*: deducible security + requirement that no *High* output occurs unless caused by a *High* input
	- Systems meeting this property *are* composable

Example

- 2-bit machine done earlier does not exhibit strong noninterference
	- Because it puts out *High* bit even when there is no *High* input
- Modify machine to output only state bit at level of latest input

– *Now* it exhibits strong noninterference

Problem

- Too restrictive; it bans some systems that are *obviously* secure
- Example: System *upgrade* reads *Low* inputs, outputs those bits at *High*
	- Clearly deducibly secure: low level user sees no outputs
	- Clearly does not exhibit strong noninterference, as no high level inputs!

Remove Determinism

- Previous assumption
	- Input, output synchronous
	- Output depends only on commands triggered by input
		- Sometimes absorbed into commands ...
	- Input processed one datum at a time
- Not realistic

– In real systems, lots of asynchronous events

Generalized Noninterference

- Nondeterministic systems meeting noninterference property meet *generalized noninterference-secure property*
	- More robust than deducible security because minor changes in assumptions affect whether system is deducibly secure

Example

- System with *High* Holly, *Low* lucy, text file at *High*
	- File fixed size, symbol b marks empty space
	- Holly can edit file, Lucy can run this program:

```
while true do begin
    n := read_integer_from_user;
    if n > file_length or char in file[n] = <u>b</u> then
           print random_character;
    else
           print char_in_file[n];
end;
```
Security of System

- Not noninterference-secure
	- High level inputs—Holly's changes—affect low level outputs
- *May* be deducibly secure
	- Can Lucy deduce contents of file from program?
	- If output meaningful ("This is right") or close ("Thes is riqht"), yes
	- Otherwise, no
- So deducibly secure depends on which inferences are allowed

Composition of Systems

- Does composing systems meeting generalized noninterference-secure property give you a system that also meets this property?
- Define two systems (*cat*, *dog*)
- Compose them

First System: *cat*

- Inputs, outputs can go left or right
- After some number of inputs, *cat* sends two outputs
	- First *stop_count*
	- Second parity of *High* inputs, outputs

Noninterference-Secure?

- If even number of *High* inputs, output could be:
	- 0 (even number of outputs)
	- 1 (odd number of outputs)
- If odd number of *High* inputs, output could be:
	- 0 (odd number of outputs)
	- 1 (even number of outputs)
- High level inputs do not affect output
	- So noninterference-secure

Second System: *dog*

- High outputs to left
- Low outputs of 0 or 1 to right
- *stop_count* input from the left
	- When it arrives, *dog* emits 0 or 1

Noninterference-Secure?

- When *stop_count* arrives:
	- May or may not be inputs for which there are no corresponding outputs
	- Parity of *High* inputs, outputs can be odd or even
	- Hence *dog* emits 0 or 1
- High level inputs do not affect low level outputs – So noninterference-secure
Compose Them

- Once sent, message arrives
	- But *stop_count* may arrive before all inputs have generated corresponding outputs
	- If so, even number of *High* inputs and outputs on *cat*, but odd number on *dog*
- Four cases arise

February 15, 2011 *ECS 235B, Winter Quarter 2011*

The Cases

- *cat*, odd number of inputs, outputs; *dog*, even number of inputs, odd number of outputs
	- Input message from *cat* not arrived at *dog*, contradicting assumption
- *cat*, even number of inputs, outputs; *dog*, odd number of inputs, even number of outputs
	- Input message from *dog* not arrived at *cat*, contradicting assumption

The Cases

- cat, odd number of inputs, outputs; dog, odd number of inputs, even number of outputs
	- dog sent even number of outputs to cat, so cat has had at least one input from left
- cat, even number of inputs, outputs; dog, even number of inputs, odd number of outputs
	- dog sent odd number of outputs to cat, so cat has had at least one input from left

The Conclusion

- Composite system *catdog* emits 0 to left, 1 to right (or 1 to left, 0 to right)
	- Must have received at least one input from left
- Composite system *catdog* emits 0 to left, 0 to right (or 1 to left, 1 to right)
	- Could not have received any from left
- So, *High* inputs affect *Low* outputs
	- Not noninterference-secure

Feedback-Free Systems

- System has *n* distinct components
- Components c_i , c_j connected if any output of c_i is input to c_i
- System is *feedback-free* if for all c_i connected to c_j , c_j not connected to any *ci*
	- Intuition: once information flows from one component to another, no information flows back from the second to the first

Feedback-Free Security

• *Theorem*: A feedback-free system composed of noninterference-secure systems is itself noninterference-secure

Some Feedback

- *Lemma*: A noninterference-secure system can feed a high level output *o* to a high level input *i* if the arrival of *o* at the input of the next component is delayed until *after* the next low level input or output
- *Theorem*: A system with feedback as described in the above lemma and composed of noninterference-secure systems is itself noninterference-secure

Why Didn't They Work?

- For compositions to work, machine must act same way regardless of what precedes low level input (high, low, nothing)
- *dog* does not meet this criterion
	- If first input is *stop_count*, *dog* emits 0
	- If high level input precedes *stop_count*, *dog* emits 0 or 1

State Machine Model

- 2-bit machine, levels *High*, *Low*, meeting 4 properties:
- 1. For every input i_k , state σ_j , there is an element $c_m \in C^*$ such that $T^*(c_m, \sigma_j) = \sigma_n$, where $\sigma_n \neq \sigma_j$ –*T** is total function, inputs and commands

always move system to a different state

Property 2

- There is an equivalence relation ≡ such that:
	- $-$ If system in state σ _i and high level sequence of inputs causes transition from σ_i to σ_j , then $\sigma_i \equiv \sigma_j$
	- $−$ If $σ_i ≡ σ_j$ and low level sequence of inputs $i₁, ..., i_n$ causes system in state σ_i to transition to σ'_i , then there is a state σ'_j such that $\sigma_i' = \sigma_j'$ and the inputs i_1, \ldots, i_n cause system in state σ_j to transition to σ_j'
- ≡ holds if low level projections of both states are same

Property 3

- Let $\sigma_i = \sigma_j$. If high level sequence of outputs o_1, \ldots, o_n indicate system in state σ_i transitioned to state σ_i' , then for some state σ_j' with $\sigma_j' = \sigma_i'$, high level sequence of outputs $o'_1, ..., o'_m$ indicates system in σ_j transitioned to σ_j'
	- High level outputs do not indicate changes in low level projection of states

Property 4

- Let $\sigma_i = \sigma_j$, let *c*, *d* be high level output sequences, *e* a low level output. If *ced* indicates system in state σ_{*i*} transitions to σ_i' , then there are high level output sequences *c*['] and *d*' and state σ_j' such that *c'ed'* indicates system in state σ_j transitions to state σ_j'
	- Intermingled low level, high level outputs cause changes in low level state reflecting low level outputs only

Restrictiveness

• System is *restrictive* if it meets the preceding 4 properties

Composition

• Intuition: by 3 and 4, high level output followed by low level output has same effect as low level input, so composition of restrictive systems should be restrictive

Composite System

- System M_1 's outputs are M_2 's inputs
- μ_{1i} , μ_{2i} states of M_1, M_2
- States of composite system pairs of M_1, M_2 states (μ_{1i}, μ_{2i})
- *e* event causing transition
- *e* causes transition from state (μ_{1a}, μ_{2a}) to state (μ_{1b}, μ_{2b}) if any of 3 conditions hold

Conditions

- 1. M₁ in state μ_{1a} and *e* occurs, M₁ transitions to μ_{1b} ; *e* not an event for M_2 ; and $\mu_{2a} = \mu_{2b}$
- 2. M₂ in state μ_{2a} and *e* occurs, M₂ transitions to μ_{2b} ; *e* not an event for M_1 ; and $\mu_{1a} = \mu_{1b}$
- 3. M₁ in state μ_{1a} and *e* occurs, M₁ transitions to μ_{1b} ; M₂ in state μ_{2a} and *e* occurs, M₂ transitions to μ_{2b} ; *e* is input to one machine, and output from other

Intuition

- Event causing transition in composite system causes transition in at least 1 of the components
- If transition occurs in exactly one component, event must not cause transition in other component when not connected to the composite system

Equivalence for Composite

- Equivalence relation for composite system $(\sigma_a, \sigma_b) =_C (\sigma_c, \sigma_d)$ iff $\sigma_a = \sigma_c$ and $\sigma_b = \sigma_d$
- Corresponds to equivalence relation in property 2 for component system

Information Flow

- Basics and background – Entropy
- Nonlattice flow policies
- Compiler-based mechanisms
- Execution-based mechanisms
- Examples
	- Security Pipeline Interface
	- Secure Network Server Mail Guard

Basics

- Bell-LaPadula Model embodies information flow policy
	- Given compartments *A*, *B*, info can flow from *A* to *B* iff *B dom A*
- Variables *x*, *y* assigned compartments *x*, *y* as well as values

- If
$$
\underline{x} = A
$$
 and $\underline{y} = B$, and A *dom* B, then $x := y$
allowed but not $y := x$

Quick Review of Entropy

- Random variables
- Joint probability
- Conditional probability
- Entropy (or uncertainty in bits)
- Joint entropy
- Conditional entropy
- Applying it to secrecy of ciphers

Random Variable

- Variable that represents outcome of an event
	- *X* represents value from roll of a fair die; probability for rolling *n*: $p(X = n) = 1/6$
	- If die is loaded so 2 appears twice as often as other numbers, $p(X = 2) = 2/7$ and, for $n \ne 2$, $p(X = n) = 1/7$
- Note: $p(X)$ means specific value for *X* doesn't matter
	- Example: all values of *X* are equiprobable

Joint Probability

- Joint probability of *X* and *Y*, *p*(*X*, *Y*), is probability that *X* and *Y* simultaneously assume particular values
	- $-$ If *X*, *Y* independent, $p(X, Y) = p(X)p(Y)$
- Roll die, toss coin

 $-p(X = 3, Y = heads) = p(X = 3)p(Y = heads) =$ $1/6 \times 1/2 = 1/12$

Two Dependent Events

• $X =$ roll of red die, $Y =$ sum of red, blue die rolls

p(*Y*=2) = 1/36 *p*(*Y*=3) = 2/36 *p*(*Y*=4) = 3/36 *p*(*Y*=5) = 4/36 *p*(*Y*=6) = 5/36 *p*(*Y*=7) = 6/36 *p*(*Y*=8) = 5/36 *p*(*Y*=9) = 4/36 *p*(*Y*=10) = 3/36 *p*(*Y*=11) = 2/36 *p*(*Y*=12) = 1/36

• Formula:

$$
- p(X=1, Y=11) = p(X=1)p(Y=11) = (1/6)(2/36) = 1/108
$$

Conditional Probability

- Conditional probability of *X* given *Y*, written $p(X | Y)$, is probability that *X* takes on a particular value given *Y* has a particular value
- Continuing example ... $-p(Y = 7 | X = 1) = 1/6$

$$
-p(Y = 7 | X = 3) = 1/6
$$

Relationship

- $p(X, Y) = p(X | Y) p(Y) = p(X) p(Y | X)$
- Example:

 $p(X = 3, Y = 8) = p(X = 3 | Y = 8) p(Y = 8) = 0$ $(1/5)(5/36) = 1/36$

• Note: if *X*, *Y* independent:

$$
-p(X \mid Y) = p(X)
$$

Entropy

- Uncertainty of a value, as measured in bits
- Example: *X* value of fair coin toss; *X* could be heads or tails, so 1 bit of uncertainty – Therefore entropy of *X* is $H(X) = 1$
- Formal definition: random variable *X*, values x_1, \ldots, x_n ; so Σ_i $p(X = x_i) = 1$ $H(X) = -\sum_{i} p(X = x_i) \lg p(X = x_i)$

Heads or Tails?

- $H(X) = -p(X = \text{heads}) \lg p(X = \text{heads})$ $-p(X = \text{tails})$ lg $p(X = \text{tails})$ $=$ – (1/2) lg (1/2) – (1/2) lg (1/2) $=$ $-(1/2) (-1) - (1/2) (-1) = 1$
- Confirms previous intuitive result

n-Sided Fair Die

$$
H(X) = -\sum_{i} p(X = x_i) \lg p(X = x_i)
$$

As $p(X = x_i) = 1/n$, this becomes

$$
H(X) = -\sum_{i} (1/n) \lg (1/n) = -n(1/n) (-\lg n)
$$

so

$H(X) = \lg n$

which is the number of bits in *n*, as expected

Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul *W* represents the winner. What is its entropy?

-
$$
w_1
$$
 = Ann, w_2 = Pam, w_3 = Paul
- $p(W=w_1) = p(W=w_2) = 2/5$, $p(W=w_3) = 1/5$

• So
$$
H(W) = -\sum_i p(W = w_i) \lg p(W = w_i)
$$

= -(2/5) lg (2/5) - (2/5) lg (2/5) - (1/5) lg (1/5)
= -(4/5) + lg 5 \approx 1.52

• If all equally likely to win, $H(W) = \lg 3 = 1.58$

Joint Entropy

- *X* takes values from $\{x_1, \ldots, x_n\}$ $-\sum_{i} p(X = x_i) = 1$
- *Y* takes values from $\{y_1, \ldots, y_m\}$ $-\sum_{i} p(Y = y_i) = 1$
- Joint entropy of *X*, *Y* is: $-H(X, Y) = -\sum_{j} \sum_{i} p(X=x_i, Y=y_j) \lg p(X=x_i, Y=y_j)$

Example

X: roll of fair die, *Y*: flip of coin $p(X=1, Y=heads) = p(X=1) p(Y=heads) = 1/12$ – As *X* and *Y* are independent *H*(*X*, *Y*) = $-\Sigma_j \Sigma_i p(X=x_i, Y=y_j) \lg p(X=x_i, Y=y_j)$ $= -2 [6 [(1/12) \lg (1/12)]] = \lg 12$

Conditional Entropy

- *X* takes values from $\{x_1, \ldots, x_n\}$ $-\sum_{i} p(X=x_i) = 1$
- *Y* takes values from $\{y_1, \ldots, y_m\}$ $-\sum_{i} p(Y=y_i) = 1$
- Conditional entropy of *X* given *Y*=*yj* is: $-H(X \mid Y=y_j) = -\sum_i p(X=x_i \mid Y=y_j) \lg p(X=x_i \mid Y=y_j)$
- Conditional entropy of *X* given *Y* is: $-H(X \mid Y) = -\sum_j p(Y=y_j) \sum_i p(X=x_i \mid Y=y_j) \lg p(X=x_i \mid Y=y_j)$

Example

- *X* roll of red die, *Y* sum of red, blue roll
- Note $p(X=1 | Y=2) = 1, p(X=i | Y=2) = 0$ for $i \neq 1$ – If the sum of the rolls is 2, both dice were 1
- $H(X|Y=2) = -\sum_i p(X=x_i | Y=2) \lg p(X=x_i | Y=2) = 0$

• Note
$$
p(X=i, Y=7) = 1/6
$$

- If the sum of the rolls is 7, the red die can be any of 1, …, 6 and the blue die must be 7–roll of red die
- $H(X|Y=7) = -\sum_i p(X=x_i | Y=7) \lg p(X=x_i | Y=7)$ $= -6$ (1/6) lg (1/6) = lg 6

Perfect Secrecy

- Cryptography: knowing the ciphertext does not decrease the uncertainty of the plaintext
- $M = \{m_1, \ldots, m_n\}$ set of messages
- $C = \{c_1, \ldots, c_n\}$ set of messages
- Cipher $c_i = E(m_i)$ achieves *perfect secrecy* if $H(M \mid C) = H(M)$

Entropy and Information Flow

- Idea: info flows from *x* to *y* as a result of a sequence of commands *c* if you can deduce information about *x* before *c* from the value in *y* after *c*
- Formally:
	- *s* time before execution of *c*, *t* time after
	- $-H(x_s | y_t) < H(x_s | y_s)$
	- $-$ If no *y* at time *s*, then $H(x_s | y_t) < H(x_s)$
Example 1

• Command is $x := y + z$; where:

 $-0 \le y \le 7$, equal probability

 $z = 1$ with prob. $1/2$, $z = 2$ or 3 with prob. $1/4$ each

• *s* state before command executed; *t*, after; so

$$
- \text{H}(y_s) = \text{H}(y_t) = -8(1/8) \text{ lg } (1/8) = 3
$$

- \text{H}(z_s) = \text{H}(z_t) = -(1/2) \text{ lg } (1/2) -2(1/4) \text{ lg } (1/4) = 1.5

• If you know x_t , y_s can have at most 3 values, so *H* $(y_s | x_t) = -3(1/3) \lg(1/3) = \lg 3$

Example 2

• Command is

$$
- if x = 1 then y := 0 else y := 1;
$$

where:

– *x*, *y* equally likely to be either 0 or 1

- $H(x_s) = 1$ as x can be either 0 or 1 with equal probability
- $H(x_s | y_t) = 0$ as if $y_t = 1$ then $x_s = 0$ and vice versa $-$ Thus, $H(x_s | y_t) = 0 < 1 = H(x_s)$
- So information flowed from *x* to *y*