Lecture 13

* Entropy and information flow

e Information flow policies
— Non-transitive
— Transitive non-lattice

 Compiler-based mechanisms
e Execution-based mechanisms

February 17,2011 ECS 235B, Winter Quarter 2011

Slide #13-1

Entropy and Information Flow

e Idea: info flows from x to y as a result of a
sequence of commands c if you can deduce
information about x before ¢ from the value
in y after ¢

 Formally:
— 5 time before execution of ¢, f time after

—Hx, ly)<H(x |y,)
— If no y at time s, then H(x, | y,) < H(x,)

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-2

Example 1

e Command is x :=y + z; where:
— 0 =y =<7, equal probability
— z =1 with prob. 1/2, z =2 or 3 with prob. 1/4 each
e ¢ state before command executed; ¢, after; so
— H(y,) = H(y,) = -8(1/8) 1g (1/8) =3
— H(z) = H(z,) = —(1/2) 1g (1/2) =2(1/4) 1g (1/4) = 1.5
e If you know x,, y, can have at most 3 values, so H
(v, lx)=-3(1/3)1g (1/3) =1g 3

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-3

Example 2

e Command i1s
—ifx=1theny:=0elsey:=1;
where:
— x,y equally likely to be either O or 1
* H(x,) =1 as x can be either O or 1 with equal
probability
e Hx,ly)=0asify =1 thenx =0 and vice versa
— Thus, H(x,1y)=0<1=H(x,))
e So information flowed from x to y

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-4

Implicit Flow of Information

e Information flows from x to y without an
explicit assignment of the form y := f(x)

— f(x) an arithmetic expression with variable x
 Example from previous slide:
—ifx=1theny:=0
else y .= 1;
* So must look for implicit flows of
information to analyze program

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-5

Notation

e x means class of x

— In Bell-LaPadula based system, same as “label
of security compartment to which x belongs”™

* x <y means “information can flow from an

element 1n class of x to an element 1n class
of y”

— Or, “information with a label placing it in class
x can flow 1nto class y”

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-6

Information Flow Policies

Information flow policies are usually:

e reflexive

— So information can flow freely among members
of a single class

e transitive

— So if information can flow from class 1 to class
2, and from class 2 to class 3, then information
can flow from class 1 to class 3

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-7

Non-Transitive Policies

e Betty 1s a confident of Anne
e Cathy 1s a confident of Betty

— With transitivity, information flows from Anne
to Betty to Cathy

* Anne confides to Betty she 1s having an
affair with Cathy’s spouse

— Transitivity undesirable in this case, probably

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-8

Transitive Non-Lattice Policies

e 2 faculty members co-PIs on a grant
— Equal authority; neither can overrule the other

* (Grad students report to faculty members
* Undergrads report to grad students

e Information flow relation is:
— Reflexive and transitive

* But some elements (people) have no “least upper
bound” element

— What is 1t for the faculty members?

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-9

Confidentiality Policy Model

e Lattice model fails in previous 2 cases
* Generalize: policy I = (SC,, <, join,):
— SC, set of security classes
— <, ordering relation on elements of SC,
— join, function to combine two elements of SC,

e Example: Bell-LaPadula Model

— SC, set of security compartments
— <, ordering relation dom
— join, function lub

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-10

Confinement Flow Model

e (I, 0, confine, —)
- 1=(8C,, =, join,)
— O set of entities
— —: Ox0 with (a, b) € — (written a — b) 1iff
information can flow from a to b
— for a € O, confine(a) = (a;, a;) € SCxSC, with q; <, a,

* Interpretation: for a € O, if x <; ay, info can flow from x to a,
and 1f a; <, x, info can flow from a to x

* So a,; lowest classification of info allowed to flow out of a, and
a;; highest classification of info allowed to flow into a

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-11

Assumptions, efc.

* Assumes: object can change security classes

— S0, variable can take on security class of its
data

e Object x has security class x currently
e Note transitivity not required

e If information can flow from a to b, then b
dominates a under ordering of policy I:

(Va,beO)a—=b=a, < b,]

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-12

Example 1

e SC,={U,C, S, TS },withU<x,C,C <, S, and
S <, TS
 a.b,ce 0
— confine(a) =[C, C]
— confine(b) =[S, S |
— confine(c) =[TS, TS]
e Secure information flows: a = b,a —c,b — ¢

— Transitivity holds

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-13

Example 2

e SC,, <,as 1n Example 1

* x,y,2€ 0
— confine(x) =[C, C]
— confine(y)=[S,S]
— confine(z) =[C, TS]
e Secure information flows: x =y, x =z, y — z,
=X, —YV
— ASX; <Yy, X1 < 2ys YL <1 2y 2 <1 Xys 20 S Vo

— Transitivity does not hold
e y—zandz— x,buty— x 1s false, because y, <, x,, 1s false

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-14

Transitive Non-Lattice Policies

* Q=(Sy,=p) 1s a quasi-ordered set when <,
1s transitive and reflexive over SQ
e How to handle information flow?

— Define a partially ordered set containing quasi-
ordered set

— Add least upper bound, greatest lower bound to
partially ordered set

— It’s a lattice, so apply lattice rules!

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-15

In Detail ...

s VxeSyletfix)y={ylyES,ny=<,x}
— Define S,p={f(x) I x&€ S, }
— Define <,p={ (x,y) lx,yES, A xCy}
* Syp partially ordered set under <,
* fpreserves order, so y <, x iff f(x) <,p f(Y)
* Add upper, lower bounds
— Sop =Spp U {8y, D}
— Upper bound ub(x,y) ={z1z€SppAxCzayLz}
— Least upper bound lub(x, y) = Nub(x, y)

e Lower bound, greatest lower bound defined analogously

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-16

And the Policy Is ...

* Now (Syp , <pp) 18 lattice

e Information flow policy on quasi-ordered
set emulates that of this lattice!

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-17

Non-transitive Flow Policies

 Government agency information flow policy
(on next slide)

* Entities public relations officers PRO,
analysts A, spymasters S

— confine(PRO) = { public, analysis }
— confine(A) = { analysis, top-level }
— confine(S) = { covert, top-level }

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-18

Information Flow

By confinement flow

model.: top-level
— PRO<A,A<PRO
- PRO<S /
- A=<5,5=<A analysis cqvert

Data cannot flow to
public relations
officers; not transitive
-~ S<A,A=<PRO
— S <PRO 1s false

public

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-19

Transforming Into Lattice

 Rough idea: apply a special mapping to generate a
subset of the power set of the set of classes
— Done so this set 1s partially ordered
— Means it can be transformed into a lattice

e Can show this mapping preserves ordering relation

— So it preserves non-orderings and non-transitivity of
elements corresponding to those of original set

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-20

Dual Mapping

* R=(SCg, =g, joing) reflexive info flow policy
e P=($p,=<p) ordered set

— Define dual mapping functions I, hp: SCp—Sp

¢ L) ={x}
e hp(x)={ylyeSCrAny=<px}

— Sp contains subsets of SCp; <, subset relation

— Dual mapping function order preserving iff
(Va,be SCp) a<pb <= [(a) <p hp(b)]

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-21

Theorem

Dual mapping from reflexive info flow policy
R to ordered set P order-preserving

Proof sketch: all notation as before

(=) Leta <, b. Then a € [(a),a € hy(b), so
[(a) © hp(b), or [(a) <p hp(b)

(<) Let [(a) <p hp(b). Then [(a) C hy(b).
But [(a) ={ a },s80 a € hg(b), giving a <, b

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-22

Info Flow Requirements

 Interpretation: let confine(x) = { x;, x;, },
consider class y

— Information can flow from x to element of y iff

X; <g Y, 0r [p(x;) & hg(y)
— Information can flow from element of y to x iff
Y =g Xy, OF [p(¥) & hp(xy)

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-23

Revisit Government Example

e Information flow policy i1s R

* Flow relationships among classes are:

public <, public

public <, analysis analysis <, analysis
public <, covert covert <, covert
public <, top-level covert <, top-level

analysis <, top-level top-level <, top-level

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-24

Dual Mapping of R

e Elements /5, hp:
[(public) = { public }
hy(public = { public }
[.(analysis) = { analysis }
hp(analysis) = { public, analysis }
[.(covert) = { covert }
hp(covert) = { public, covert }
[(top-level) = { top-level }
hp(top-level) = { public, analysis, covert, top-level }

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-25

confine

e Let p be entity of type PRO, a of type A, s
of type S

e In terms of P (not R), we get:
— confine(p) = [{ public }, { public, analysis }]
— confine(a) = [{ analysis },
{ public, analysis, covert, top-level }]
— confine(s) = [{ covert },
{ public, analysis, covert, top-level } |

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-26

And the Flow Relations Are ...

* p—aas ly(p) & hyp(a)

— Ix(p) = { public }
— hg(a) = { public, analysis, covert, top-level }

e Similarly: a = p,p = s,a—>s,5s = a
* Buts — pis false as [(s) T hy(p)

— [(s) = { covert }

— hg(p) = { public, analysis }

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-27

Analysis

* (Sp, <p)1s a lattice, so it can be analyzed
like a lattice policy

* Dual mapping preserves ordering, hence
non-ordering and non-transitivity, of
original policy

— So results of analysis of (S5, <p) can be mapped
back into (SCy, <, joing)

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-28

Compiler-Based Mechanisms

e Detect unauthorized information flows in a
program during compilation
* Analysis not precise, but secure

— If a flow could violate policy (but may not), it 1s
unauthorized

— No unauthorized path along which information could
flow remains undetected

e Set of statements certified with respect to
information flow policy it flows in set of
statements do not violate that policy

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-29

Example

if x = 1 then y := a;

else y := b;

e Info flows from x and a to y, or from x and b
toy

e Certifiedonlyif x<yanda<yand b =<y

— Note flows for both branches must be true
unless compiler can determine that one branch

will never be taken

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-30

Declarations

e Notation:
x: int class { A, B }

means x 1S an integer variable with security
class at least lub{ A,B },so lub{ A,B } <x

e Distinguished classes Low, High

— Constants are always Low

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-31

Input Parameters

e Parameters through which data passed into
procedure

e Class of parameter 1s class of actual
argument

1,2 type class { i, }

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-32

Output Parameters

Parameters through which data passed out of
procedure

— If data passed 1n, called “input/output parameter”

As information can flow from input parameters to
output parameters, class must include this:

o,: type class { r,, . . ., r,}

where r; 1s class of ith input or input/output
argument

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-33

Example

proc sum(x: int class { A };
var out: int class { A, B });
begin
out := out + x;
end

we

* Require x < out and out < out

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-34

Array Elements

e Information flowing out:
:= a[i]
Value of i, a[i] both affect result, so class 1s
lub{ ali], i }
e Information flowing in:
afi] := .

e Only value of a[i] affected, so class 1s ai

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-35

Assignment Statements

X:=y+2z

e Information flows from y, z to x, so this
requires lub(y,z) <x

More generally:
y = f(xy, « « o, X,)
e the relation lub(x,, ..., X,) <y must hold

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-36

Compound Statements

X:=y+z,a:=b*c-ux;
e First statement: [ub(y, z) < Xx

e Second statement: [ub(b, c,x) <a

* So, both must hold (i.e., be secure)
More generally:
S;7 « .« o S,;

n

e Each individual S; must be secure

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-37

Conditional Statements

if x + y < z then a := b else d := b * ¢ — x; end
e The statement executed reveals information about
xX,y,2,80 lub(x,y, z) < glb(a, d)

More generally:
if f(x,, . . ., x,) then S, else S,; end

e §,,S, must be secure
* lub(x,,...,x,) <

glb(y | y target of assignment in S, S,)

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-38

Iterative Statements

while i1 < n do begin a[i] := b[i]; 1 := 1 + 1;
end

e Same 1deas as for “if”’, but must terminate

More generally:

while f(x;, . . ., X,) do S;
e Loop must terminate;
e S must be secure
* lub(x,,...,x,) <

glb(y | y target of assignment in §)

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-39

Iterative Statements

while i < n do begin a[i] := b[1]; 1 := 1 + 1; end
e Same ideas as for “if”’, but must terminate
More generally:

while f(x,, . . ., Xx,) do S;
e Loop must terminate;
e S must be secure
* lub(x,...,x,) <

glb(y | y target of assignment in §)

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-40

Goto Statements

* No assignments

— Hence no explicit flows
* Need to detect implicit flows

* Basic block 1s sequence of statements that
have one entry point and one exit point

— Control in block always flows from entry point
to exit point

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-41

Example Program

proc tm(x: array[l..10][1..10] of int class {x};
var y: array[l..10][1..10] of int class {y});

var 1, j: int {i};

begin

by 1 := 1;

b, L2: if 1 > 10 goto L7;

by j = 1;

b, L4: if 7 > 10 then goto L6;

bs y[J104i] := x[i1[J1; J := j + 1; goto L4;
bs L6: i := 1 + 1; goto L2;

b, L7:

end;

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-42

Flow of Control

v

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-43

IFDs

e Idea: when two paths out of basic block, implicit
flow occurs

— Because information says which path to take
* When paths converge, either:

— Implicit flow becomes irrelevant; or

— Implicit flow becomes explicit

e Immediate forward dominator of basic block b
(written IFD(b)) 1s first basic block lying on all
paths of execution passing through b

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-44

IFD Example

* In previous procedure:
— IFD(b,) = b, one path
— IFD(b,) = b, b,—b- or by,—>b;—b.—>b,—b;
— IFD(b;) = b, one path
— IFD(b,) = by b,—b or b,—>bs—b,
— IFD(bs) = b, one path
— IFD(b¢) = b, one path

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-45

Requirements

* B.1s set of basic blocks along an execution path
from b, to IFD(),)

— Analogous to statements in conditional statement
* x,,...,X; variables in expression selecting which
execution path containing basic blocks in B; used
— Analogous to conditional expression

e Requirements for secure:
— All statements in each basic blocks are secure
— lub(x;;, < glb{ y | y target of assignment in B, }

’—m) =

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-46

Example of Requirements

e Within each basic block:
b,: Low <1 by: Low <] b¢: lub{ Low,i } <i
bs: lub(x[i][]], i,) = Yljllil; lub(Low,) < |
— Combining, lub(x[i][j], 1,)) < yljlli]
— From declarations, true when lub(x,i) <y
e B,=1{bs, by, bs, b}
— Assignments to i, j, y[j][i]; conditional is i < 10
— Requires i < glb(i, j, yI[jlli])
— From declarations, true wheni <y

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-47

Example (continued)

* B,={bs5}
— Assignments to j, y[j][i]; conditional 1s j < 10
— Requires j < glb(j, y[jlli])
— From declarations, means i <y

e Result:

— Combine lub(x,i) <y, i<Vy;i<Yy

— Requirement 1s lub(x,1) <y

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-48

Procedure Calls

tm(a, b);

From previous slides, to be secure, lub(x, i) <y must hold
e In call, x corresponds to a, y to b

e Means that lub(a,i) <b,ora<b

More generally:

proc pn(i,, « « ., i,: int; var o;, . . ., O,: 1int)
begin S end;

e S must be secure
* Foralljandk,if ;;< o, then x; <y,
* Foralljandk,1f 0;<9,,then y,<y,

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-49

Exceptions

proc copy(x: int class { x };

var y: 1int class Low)

var sum: 1int class { x };
z: int class Low;

begin
y = z := sum := 0;
while z = 0 do begin
sum := sum + X;
y : =y +1;
end
end

February 17,2011 ECS 235B, Winter Quarter 2011

Slide #13-50

Exceptions (cont)

* When sum overflows, integer overtlow trap
— Procedure exits
— Value of x 1s MAXINT/y
— Info flows from y to x, but x <y never checked

* Need to handle exceptions explicitly

— Idea: on integer overflow, terminate loop

on integer overflow exception sum do z := 1;

— Now info flows from sum to z, meaning sum < z

— This 1s false (sum = { X } dominates z = Low)

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-51

Infinite Loops

proc copy(x: int 0..1 class { x };
var y: int 0..1 class Low)

begin

y = 0;
while x = 0 do
(* nothing *);

y = 1;
end

e [If x =0 mitially, infinite loop
e If x =1 initially, terminates with y set to 1
* No explicit flows, but implicit flow from x to y

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-52

Semaphores

Use these constructs:

wait(x): if x = 0 then block until x > 0; x := x — 1;
signal(x): x := x + 1;

— x 1s semaphore, a shared variable
— Both executed atomically

Consider statement
wait(sem); x := x + 1;

e Implicit flow from sem to x
— Certification must take this into account!

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-53

Flow Requirements

e Semaphores 1n signal irrelevant
— Don’t affect information flow in that process

o Statement S 1s a wait

— shared(S): set of shared variables read
e Idea: information flows out of variables in shared(sS)

— fglb(S): glb of assignment targets following S
— So, requirement is shared(S) < fglb(S)
* begin$,;;...S, end
— All §; must be secure
— For all 7, shared(S,) < fglb(S;)

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-54

Example

begin
X 1=y + z; (* S; *)
walit (sem); (* S, *)
a := b * ¢ — x; (* S; *)
end

* Requirements:
o lub&a g) =X
o lub(éa (&P)_C) =da

— sem=<a
* Because fg/b(S,) = a and shared(S,) = sem

February 17,2011 ECS 235B, Winter Quarter 2011

Slide #13-55

Concurrent Loops

e Similar, but wait in loop affects all statements in
loop

— Because if flow of control loops, statements in loop
before wait may be executed after wait

* Requirements
— Loop terminates

— All statements S, ..., S, in loop secure
— lub(shared(S,), ..., shared(S,) } < glb(t,, ...,t,)

* Where ¢, ..., t, are variables assigned to in loop

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-56

Loop Example

while 1 < n do begin

a[i] := item; (* S, *)
walit (sem); (* S, *)
i := 1+ 1; (* S; *)

end

e Conditions for this to be secure:
— Loop terminates, so this condition met
— S, secure if lub(i, item) < a[i]
— S, secure 1f sem < i and sem < ali]

— 5, trivially secure

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-57

cobegin/coend

cobegin
X 1=y + z; (* S; *)
a := b * ¢ — y; (* S, *)
coend

* No information flow among statements
— For §,, lub(y,z) <x
— For S,, lub(b,c,y)<a
e Security requirement 1s both must hold
— So this i1s secure if lub(y,z) <x A lub(b,c,y)<a

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-58

Soundness

e Above exposition intuitive

e Can be made rigorous:
— Express flows as types
— Equate certification to correct use of types

— Checking for valid information flows same as
checking types conform to semantics imposed
by security policy

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-59

Execution-Based Mechanisms

e Detect and stop flows of information that violate
policy
— Done at run time, not compile time
* (Obvious approach: check explicit flows
— Problem: assume for security, x <y
if x =1 then y := a;

— When x # 1, x = High, y = Low, a = Low, appears okay
—but implicit flow violates condition!

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-60

Fenton’s Data Mark Machine

e Each variable has an associated class
* Program counter (PC) has one too

e Idea: branches are assignments to PC, so
you can treat implicit flows as explicit flows

e Stack-based machine, so everything done in
terms of pushing onto and popping from a
program stack

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-61

Instruction Description

e skip means instruction not executed

* push(x, x) means push variable x and its
security class x onto program stack

* pop(x,x) means pop top value and security
class from program stack, assign them to
variable x and its security class x
respectively

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-62

Instructions

e x := x + 1 (Increment)
— Same as:
if PC = x then x := x + 1 else skip

¢ if x = 0 then goto n else x = x — 1 (branch

and save PC on stack)
— Same as:
if x = 0 then begin
push(PC, PC); PC := lub{PC, x}; PC := n;
end else if PC = x then
X 1= x -1
else

skip;
February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-63

More Instructions

e if x = 0 then goto n else x := x — 1
(branch without saving PC on stack)
— Same as:
1if x = 0 then
if x = PC then PC := n else skip

else

if PC = x then x := x - 1 else skip

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-64

More Instructions

* return (gO to just after last if)

— Same as:
pop(PC, PC);
* halt (Stop)
— Same as:

1f program stack empty then halt

— Note stack empty to prevent user obtaining information
from it after halting

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-65

Example Program

Il
o]

|
-

if x = 0 then goto 4 else x :

I
N
I
=

if z = 0 then goto 6 else z

z + 1
return

y : =y + 1
return

<N O O b W DN R
N
Il

. Initially x=0o0rx=1,y=0,z=0
e Program copies value of x to y

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-66

Example Execution

X y Z PC PC stack check

1 0 0 1 Low —

0 0 0 2 Low — Low <x
0 0 0 6 Z (3, Low)

0 1 0 7 Z (3,Low) PC=<y
0 1 0 3 Low —

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-67

Handling Errors

e Ignore statement that causes error, but
continue execution

— If aborted or a visible exception taken, user
could deduce information

— Means errors cannot be reported unless user has

clearance at least equal to that of the
information causing the error

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-68

Variable Classes

 Up to now, classes fixed

— Check relationships on assignment, etc.
e Consider variable classes
— Fenton’s Data Mark Machine does this for PC

— On assignment of form y := f(x,, ..., x,), ¥
changed to lub(x,, ..., x,)

— Need to consider implicit flows, also

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-69

Example Program

(* Copy value from x to y
* Tnitially, x is 0 or 1 ¥*)
proc copy(x: int class { X };
var y: int class { y })
var z: int class variable { Low };
begin
y
z 3=
if x
if z
end;

I
I o o

0 then z :
0 then y :

1;
1;

e zchanges when z assigned to
e Assumey< x

February 17,2011 ECS 235B, Winter Quarter 2011

Slide #13-70

Analysis of Example

e x=0
— z := 0 sets zto Low
— if x = 0 then z := 1setsztol andztox

— Soonexit,y=0
e x=1
— z := 0 sets zto Low
— if z = 0 then y := 1 setsyto 1 and checks that lub
{Low,z} <y
— Soonexit,y=1
e Information flowed from x to y even though y < x

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-71

Handling This (1)

* Fenton’s Data Mark Machine detects
implicit flows violating certification rules

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-72

Handling This (2)

e Raise class of variables assigned to 1n conditionals
even when branch not taken

* Also, verify information flow requirements even
when branch not taken
 Example:
— Inif x = 0 then z := 1,zraised to x whether or not
x=0
— Certification check in next statement, that z < y, fails, as
z = x from previous statement, and y < x

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-73

Handling This (3)

e Change classes only when explicit flows occur,
but all flows (implicit as well as explicit) force
certification checks

 Example
— When x =0, first “if”” sets z to Low then checks x < z
— When x = 1, first “if”” checks that x < z
— This holds i1f and only 1f x = Low

* Not possible as y < x = Low and there 1s no such class

February 17,2011 ECS 235B, Winter Quarter 2011 Slide #13-74

