
Lecture 13	

•  Entropy and information flow	

•  Information flow policies	

– Non-transitive	

– Transitive non-lattice	

•  Compiler-based mechanisms	

•  Execution-based mechanisms	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-1	

Entropy and Information Flow	

•  Idea: info flows from x to y as a result of a
sequence of commands c if you can deduce
information about x before c from the value
in y after c	

•  Formally:	

–  s time before execution of c, t time after	

– H(xs | yt) < H(xs | ys)	

–  If no y at time s, then H(xs | yt) < H(xs)	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-2	

Example 1	

•  Command is x := y + z; where:	

–  0 ≤ y ≤ 7, equal probability	

–  z = 1 with prob. 1/2, z = 2 or 3 with prob. 1/4 each	

•  s state before command executed; t, after; so	

–  H(ys) = H(yt) = –8(1/8) lg (1/8) = 3	

–  H(zs) = H(zt) = –(1/2) lg (1/2) –2(1/4) lg (1/4) = 1.5	

•  If you know xt, ys can have at most 3 values, so H
(ys | xt) = –3(1/3) lg (1/3) = lg 3	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-3	

Example 2	

•  Command is	

–  if x = 1 then y := 0 else y := 1;	

	
where:	

–  x, y equally likely to be either 0 or 1	

•  H(xs) = 1 as x can be either 0 or 1 with equal

probability	

•  H(xs | yt) = 0 as if yt = 1 then xs = 0 and vice versa	

–  Thus, H(xs | yt) = 0 < 1 = H(xs)	

•  So information flowed from x to y	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-4	

Implicit Flow of Information	

•  Information flows from x to y without an
explicit assignment of the form y := f(x)	

–  f(x) an arithmetic expression with variable x	

•  Example from previous slide:	

–  if x = 1 then y := 0	

	
else y := 1;	

•  So must look for implicit flows of
information to analyze program	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-5	

Notation	

•  x means class of x	

–  In Bell-LaPadula based system, same as “label

of security compartment to which x belongs”	

•  x ≤ y means “information can flow from an

element in class of x to an element in class
of y”	

– Or, “information with a label placing it in class

x can flow into class y”	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-6	

Information Flow Policies	

Information flow policies are usually:	

•  reflexive	

– So information can flow freely among members
of a single class	

•  transitive	

– So if information can flow from class 1 to class

2, and from class 2 to class 3, then information
can flow from class 1 to class 3	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-7	

Non-Transitive Policies	

•  Betty is a confident of Anne	

•  Cathy is a confident of Betty	

– With transitivity, information flows from Anne
to Betty to Cathy	

•  Anne confides to Betty she is having an
affair with Cathy’s spouse	

– Transitivity undesirable in this case, probably	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-8	

Transitive Non-Lattice Policies	

•  2 faculty members co-PIs on a grant	

–  Equal authority; neither can overrule the other	

•  Grad students report to faculty members	

•  Undergrads report to grad students	

•  Information flow relation is:	

–  Reflexive and transitive	

•  But some elements (people) have no “least upper

bound” element	

–  What is it for the faculty members?	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-9	

Confidentiality Policy Model	

•  Lattice model fails in previous 2 cases	

•  Generalize: policy I = (SCI, ≤I, joinI):	

–  SCI set of security classes	

–  ≤I ordering relation on elements of SCI	

–  joinI function to combine two elements of SCI	
	

•  Example: Bell-LaPadula Model	

–  SCI set of security compartments	

–  ≤I ordering relation dom	

–  joinI function lub	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-10	

Confinement Flow Model	

•  (I, O, confine, →)	

–  I = (SCI, ≤I, joinI)	

–  O set of entities	

–  →: O×O with (a, b) ∈ → (written a → b) iff

information can flow from a to b	

–  for a ∈ O, confine(a) = (aL, aU) ∈ SCI×SCI with aL ≤I aU	

•  Interpretation: for a ∈ O, if x ≤I aU, info can flow from x to a,
and if aL ≤I x, info can flow from a to x	

•  So aL lowest classification of info allowed to flow out of a, and
aU highest classification of info allowed to flow into a 	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-11	

Assumptions, etc.	

•  Assumes: object can change security classes	

– So, variable can take on security class of its

data	

•  Object x has security class x currently	

•  Note transitivity not required	

•  If information can flow from a to b, then b

dominates a under ordering of policy I:	

(∀ a, b ∈ O)[a → b ⇒ aL ≤I bU]	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-12	

Example 1	

•  SCI = { U, C, S, TS }, with U ≤I C, C ≤I S, and

S ≤I TS	

•  a, b, c ∈ O	

–  confine(a) = [C, C]	

–  confine(b) = [S, S]	

–  confine(c) = [TS, TS]	

•  Secure information flows: a → b, a → c, b → c	

–  As aL ≤I bU, aL ≤I cU, bL ≤I cU	

–  Transitivity holds	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-13	

Example 2	

•  SCI, ≤I as in Example 1	

•  x, y, z ∈ O	

–  confine(x) = [C, C]	

–  confine(y) = [S, S]	

–  confine(z) = [C, TS]	

•  Secure information flows: x → y, x → z, y → z,
z → x, z → y	

–  As xL ≤I yU, xL ≤I zU, yL ≤I zU, zL ≤I xU, zL ≤I yU	

–  Transitivity does not hold	

•  y → z and z → x, but y → x is false, because yL ≤I xU is false	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-14	

Transitive Non-Lattice Policies	

•  Q = (SQ, ≤Q) is a quasi-ordered set when ≤Q
is transitive and reflexive over SQ	

•  How to handle information flow?	

– Define a partially ordered set containing quasi-

ordered set	

– Add least upper bound, greatest lower bound to

partially ordered set	

–  It’s a lattice, so apply lattice rules!	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-15	

In Detail …	

•  ∀x ∈ SQ: let f(x) = { y | y ∈ SQ ∧ y ≤Q x }	

–  Define SQP = { f(x) | x ∈ SQ }	

–  Define ≤QP = { (x, y) | x, y ∈ SQ ∧ x ⊆ y }	

•  SQP partially ordered set under ≤QP 	

•  f preserves order, so y ≤Q x iff f(x) ≤QP f(y)	

•  Add upper, lower bounds	

–  SQPʹ′ = SQP ∪ { SQ, ∅ }	

–  Upper bound ub(x, y) = { z | z ∈ SQP ∧ x ⊆ z ∧ y ⊆ z }	

–  Least upper bound lub(x, y) = ∩ub(x, y)	

•  Lower bound, greatest lower bound defined analogously	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-16	

And the Policy Is …	

•  Now (SQPʹ′, ≤QP) is lattice	

•  Information flow policy on quasi-ordered

set emulates that of this lattice!	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-17	

Non-transitive Flow Policies	

•  Government agency information flow policy
(on next slide)	

•  Entities public relations officers PRO,
analysts A, spymasters S	

–  confine(PRO) = { public, analysis }	

–  confine(A) = { analysis, top-level }	

–  confine(S) = { covert, top-level }	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-18	

Information Flow	

•  By confinement flow

model:	

–  PRO ≤ A, A ≤ PRO	

–  PRO ≤ S	

–  A ≤ S, S ≤ A	

•  Data cannot flow to
public relations
officers; not transitive	

–  S ≤ A, A ≤ PRO	

–  S ≤ PRO is false	

top-level	

analysis	
 covert	

public	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-19	

Transforming Into Lattice	

•  Rough idea: apply a special mapping to generate a
subset of the power set of the set of classes	

–  Done so this set is partially ordered	

–  Means it can be transformed into a lattice	

•  Can show this mapping preserves ordering relation	

–  So it preserves non-orderings and non-transitivity of

elements corresponding to those of original set	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-20	

Dual Mapping	

•  R = (SCR, ≤R, joinR) reflexive info flow policy	

•  P = (SP, ≤P) ordered set	

–  Define dual mapping functions lR, hR: SCR→SP	

•  lR(x) = { x }	

•  hR(x) = { y | y ∈ SCR ∧ y ≤R x }	

–  SP contains subsets of SCR; ≤P subset relation	

–  Dual mapping function order preserving iff	

(∀a, b ∈ SCR)[a ≤R b ⇔ lR(a) ≤P hR(b)]	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-21	

Theorem	

Dual mapping from reflexive info flow policy
R to ordered set P order-preserving	

Proof sketch: all notation as before	

(⇒) Let a ≤R b. Then a ∈ lR(a), a ∈ hR(b), so
lR(a) ⊆ hR(b), or lR(a) ≤P hR(b)	

(⇐) Let lR(a) ≤P hR(b). Then lR(a) ⊆ hR(b).
But lR(a) = { a }, so a ∈ hR(b), giving a ≤R b	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-22	

Info Flow Requirements	

•  Interpretation: let confine(x) = { xL, xU },
consider class y	

–  Information can flow from x to element of y iff

xL ≤R y, or lR(xL) ⊆ hR(y)	

–  Information can flow from element of y to x iff

y ≤R xU, or lR(y) ⊆ hR(xU)	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-23	

Revisit Government Example	

•  Information flow policy is R	

•  Flow relationships among classes are:	

public ≤R public	

public ≤R analysis 	
analysis ≤R analysis	

public ≤R covert 	
covert ≤R covert	

public ≤R top-level 	
covert ≤R top-level	

analysis ≤R top-level 	
top-level ≤R top-level	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-24	

Dual Mapping of R	

•  Elements lR, hR:	

lR(public) = { public }	

hR(public = { public }	

lR(analysis) = { analysis }	

hR(analysis) = { public, analysis }	

lR(covert) = { covert }	

hR(covert) = { public, covert }	

lR(top-level) = { top-level }	

hR(top-level) = { public, analysis, covert, top-level }	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-25	

confine	

•  Let p be entity of type PRO, a of type A, s
of type S	

•  In terms of P (not R), we get:	

–  confine(p) = [{ public }, { public, analysis }]	

–  confine(a) = [{ analysis },	

	
 	
{ public, analysis, covert, top-level }]	

–  confine(s) = [{ covert },	

	
 	
{ public, analysis, covert, top-level }]	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-26	

And the Flow Relations Are …	

•  p → a as lR(p) ⊆ hR(a)	

–  lR(p) = { public }	

–  hR(a) = { public, analysis, covert, top-level }	

•  Similarly: a → p, p → s, a → s, s → a	

•  But s → p is false as lR(s) ⊄ hR(p)	

–  lR(s) = { covert }	

–  hR(p) = { public, analysis }	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-27	

Analysis	

•  (SP, ≤P) is a lattice, so it can be analyzed
like a lattice policy	

•  Dual mapping preserves ordering, hence
non-ordering and non-transitivity, of
original policy	

– So results of analysis of (SP, ≤P) can be mapped

back into (SCR, ≤R, joinR)	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-28	

Compiler-Based Mechanisms	

•  Detect unauthorized information flows in a

program during compilation	

•  Analysis not precise, but secure	

–  If a flow could violate policy (but may not), it is
unauthorized	

–  No unauthorized path along which information could
flow remains undetected	

•  Set of statements certified with respect to
information flow policy if flows in set of
statements do not violate that policy	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-29	

Example	

if x = 1 then y := a;!
else y := b;!

•  Info flows from x and a to y, or from x and b
to y	

•  Certified only if x ≤ y and a ≤ y and b ≤ y 	

– Note flows for both branches must be true

unless compiler can determine that one branch
will never be taken	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-30	

Declarations	

•  Notation:	

x: int class { A, B }	

 	
means x is an integer variable with security
class at least lub{ A, B }, so lub{ A, B } ≤ x	

•  Distinguished classes Low, High	

– Constants are always Low	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-31	

Input Parameters	

•  Parameters through which data passed into
procedure	

•  Class of parameter is class of actual
argument	

ip: type class { ip }	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-32	

Output Parameters	

•  Parameters through which data passed out of
procedure	

–  If data passed in, called “input/output parameter”	

•  As information can flow from input parameters to
output parameters, class must include this:	

op: type class { r1, . . ., rn }	

	
where ri is class of ith input or input/output
argument 	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-33	

Example	

proc sum(x: int class { A };!
! !var out: int class { A, B });!
begin!
!out := out + x;!
end;!

•  Require x ≤ out and out ≤ out 	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-34	

Array Elements	

•  Information flowing out:	

. . . := a[i]!

	
Value of i, a[i] both affect result, so class is
lub{ a[i], i }	

•  Information flowing in:	

a[i] := . . .	

•  Only value of a[i] affected, so class is a[i] 	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-35	

Assignment Statements	

x := y + z;	

•  Information flows from y, z to x, so this

requires lub(y, z) ≤ x	

More generally:	

y := f(x1, . . ., xn)	

•  the relation lub(x1, …, xn) ≤ y must hold	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-36	

Compound Statements	

x := y + z; a := b * c – x;	

•  First statement: lub(y, z) ≤ x	

•  Second statement: lub(b, c, x) ≤ a	

•  So, both must hold (i.e., be secure)	

More generally:	

S1; . . . Sn;	

•  Each individual Si must be secure	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-37	

Conditional Statements	

if x + y < z then a := b else d := b * c – x; end!

•  The statement executed reveals information about
x, y, z, so lub(x, y, z) ≤ glb(a, d)	

More generally:	

if f(x1, . . ., xn) then S1 else S2; end!

•  S1, S2 must be secure	

•  lub(x1, …, xn) ≤	

 glb(y | y target of assignment in S1, S2)	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-38	

Iterative Statements	

while i < n do begin a[i] := b[i]; i := i + 1;

end!

•  Same ideas as for “if”, but must terminate	

More generally:	

while f(x1, . . ., xn) do S;	

•  Loop must terminate;	

•  S must be secure	

•  lub(x1, …, xn) ≤	

 glb(y | y target of assignment in S)	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-39	

Iterative Statements	

while i < n do begin a[i] := b[i]; i := i + 1; end!

•  Same ideas as for “if”, but must terminate	

More generally:	

while f(x1, . . ., xn) do S;	

•  Loop must terminate;	

•  S must be secure	

•  lub(x1, …, xn) ≤	

 glb(y | y target of assignment in S)	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-40	

Goto Statements	

•  No assignments	

– Hence no explicit flows	

•  Need to detect implicit flows	

•  Basic block is sequence of statements that

have one entry point and one exit point	

– Control in block always flows from entry point

to exit point	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-41	

Example Program	

proc tm(x: array[1..10][1..10] of int class {x};!
 var y: array[1..10][1..10] of int class {y});!
var i, j: int {i};!
begin!
b1 i := 1;!
b2 L2: if i > 10 goto L7;!
b3 j := 1;!
b4 L4: if j > 10 then goto L6;!
b5 y[j][i] := x[i][j]; j := j + 1; goto L4;!
b6 L6: i := i + 1; goto L2;!
b7 L7:!
end;!

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-42	

Flow of Control	

b1	
 b2	
 b7	

b6	

b3	

b4	

b5	

i > n	

i ≤ n	

j > n	

j ≤ n	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-43	

IFDs	

•  Idea: when two paths out of basic block, implicit

flow occurs	

–  Because information says which path to take	

•  When paths converge, either:	

–  Implicit flow becomes irrelevant; or	

–  Implicit flow becomes explicit	

•  Immediate forward dominator of basic block b
(written IFD(b)) is first basic block lying on all
paths of execution passing through b	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-44	

IFD Example	

•  In previous procedure:	

–  IFD(b1) = b2 	
one path	

–  IFD(b2) = b7 	
b2→b7 or b2→b3→b6→b2→b7	

–  IFD(b3) = b4 	
one path	

–  IFD(b4) = b6 	
b4→b6 or b4→b5→b6	

–  IFD(b5) = b4 	
one path	

–  IFD(b6) = b2 	
one path	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-45	

Requirements	

•  Bi is set of basic blocks along an execution path

from bi to IFD(bi)	

–  Analogous to statements in conditional statement	

•  xi1, …, xin variables in expression selecting which
execution path containing basic blocks in Bi used	

–  Analogous to conditional expression	

•  Requirements for secure:	

–  All statements in each basic blocks are secure	

–  lub(xi1, …, xin) ≤ glb{ y | y target of assignment in Bi }	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-46	

Example of Requirements	

•  Within each basic block:	

b1: Low ≤ i	
 	
b3: Low ≤ j 	
 b6: lub{ Low, i } ≤ i	

b5: lub(x[i][j], i, j) ≤ y[j][i]; lub(Low, j) ≤ j	

–  Combining, lub(x[i][j], i, j) ≤ y[j][i]	

–  From declarations, true when lub(x, i) ≤ y	

•  B2 = {b3, b4, b5, b6}	

–  Assignments to i, j, y[j][i]; conditional is i ≤ 10	

–  Requires i ≤ glb(i, j, y[j][i])	

–  From declarations, true when i ≤ y	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-47	

Example (continued)	

•  B4 = { b5 }	

– Assignments to j, y[j][i]; conditional is j ≤ 10	

– Requires j ≤ glb(j, y[j][i])	

– From declarations, means i ≤ y	

•  Result:	

– Combine lub(x, i) ≤ y; i ≤ y; i ≤ y	

– Requirement is lub(x, i) ≤ y	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-48	

Procedure Calls	

tm(a, b);!

From previous slides, to be secure, lub(x, i) ≤ y must hold	

•  In call, x corresponds to a, y to b	

•  Means that lub(a, i) ≤ b, or a ≤ b 	

More generally:	

proc pn(i1, . . ., im: int; var o1, . . ., on: int) !
begin S end;	

•  S must be secure	

•  For all j and k, if ij ≤ ok, then xj ≤ yk	

•  For all j and k, if oj ≤ ok, then yj ≤ yk	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-49	

Exceptions	

proc copy(x: int class { x };!
 var y: int class Low)!
var sum: int class { x };!
 z: int class Low;!
begin!
 y := z := sum := 0;!
 while z = 0 do begin!
 sum := sum + x;!
 y := y + 1;!
 end!
end!

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-50	

Exceptions (cont)	

•  When sum overflows, integer overflow trap	

–  Procedure exits	

–  Value of x is MAXINT/y	

–  Info flows from y to x, but x ≤ y never checked	

•  Need to handle exceptions explicitly	

–  Idea: on integer overflow, terminate loop	

on integer_overflow_exception sum do z := 1;!

–  Now info flows from sum to z, meaning sum ≤ z	

–  This is false (sum = { x } dominates z = Low)	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-51	

Infinite Loops	

proc copy(x: int 0..1 class { x };!
 var y: int 0..1 class Low)!
begin!
 y := 0;!
 while x = 0 do!
 (* nothing *);!
 y := 1;!
end!
•  If x = 0 initially, infinite loop	

•  If x = 1 initially, terminates with y set to 1	

•  No explicit flows, but implicit flow from x to y	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-52	

Semaphores	

Use these constructs:	

wait(x): if x = 0 then block until x > 0; x := x – 1;!
signal(x): x := x + 1;	

–  x is semaphore, a shared variable	

– Both executed atomically	

Consider statement	

wait(sem); x := x + 1;!

•  Implicit flow from sem to x	

– Certification must take this into account!	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-53	

Flow Requirements	

•  Semaphores in signal irrelevant	

–  Don’t affect information flow in that process	

•  Statement S is a wait	

–  shared(S): set of shared variables read	

•  Idea: information flows out of variables in shared(S)	

–  fglb(S): glb of assignment targets following S	

–  So, requirement is shared(S) ≤ fglb(S)	

•  begin S1; . . . Sn end	

–  All Si must be secure	

–  For all i, shared(Si) ≤ fglb(Si)	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-54	

Example	

begin!
 x := y + z; (* S1 *)!
 wait(sem); (* S2 *)!
 a := b * c – x; (* S3 *)!
end!

•  Requirements:	

–  lub(y, z) ≤ x	

–  lub(b, c, x) ≤ a	

–  sem ≤ a	

•  Because fglb(S2) = a and shared(S2) = sem	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-55	

Concurrent Loops	

•  Similar, but wait in loop affects all statements in
loop	

–  Because if flow of control loops, statements in loop

before wait may be executed after wait	

•  Requirements	

–  Loop terminates	

–  All statements S1, …, Sn in loop secure	

–  lub(shared(S1), …, shared(Sn) } ≤ glb(t1, …, tm)	

•  Where t1, …, tm are variables assigned to in loop	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-56	

Loop Example	

while i < n do begin!
 a[i] := item; (* S1 *)!
 wait(sem); (* S2 *)!
 i := i + 1; (* S3 *)!
end!

•  Conditions for this to be secure:	

–  Loop terminates, so this condition met	

–  S1 secure if lub(i, item) ≤ a[i]	

–  S2 secure if sem ≤ i and sem ≤ a[i]	

–  S3 trivially secure	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-57	

cobegin/coend	

cobegin!
 x := y + z; (* S1 *)!
 a := b * c – y; (* S2 *)!
coend	

•  No information flow among statements	

–  For S1, lub(y, z) ≤ x	

–  For S2, lub(b, c, y) ≤ a	

•  Security requirement is both must hold	

–  So this is secure if lub(y, z) ≤ x ∧ lub(b, c, y) ≤ a	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-58	

Soundness	

•  Above exposition intuitive	

•  Can be made rigorous:	

– Express flows as types	

– Equate certification to correct use of types	

– Checking for valid information flows same as

checking types conform to semantics imposed
by security policy	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-59	

Execution-Based Mechanisms	

•  Detect and stop flows of information that violate
policy	

–  Done at run time, not compile time	

•  Obvious approach: check explicit flows	

–  Problem: assume for security, x ≤ y	

if x = 1 then y := a;	

–  When x ≠ 1, x = High, y = Low, a = Low, appears okay

—but implicit flow violates condition!	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-60	

Fenton’s Data Mark Machine	

•  Each variable has an associated class	

•  Program counter (PC) has one too	

•  Idea: branches are assignments to PC, so

you can treat implicit flows as explicit flows	

•  Stack-based machine, so everything done in

terms of pushing onto and popping from a
program stack	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-61	

Instruction Description	

•  skip means instruction not executed	

•  push(x, x) means push variable x and its

security class x onto program stack	

•  pop(x, x) means pop top value and security

class from program stack, assign them to
variable x and its security class x
respectively	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-62	

Instructions	

•  x := x + 1 (increment)	

–  Same as:	

!if PC ≤ x then x := x + 1 else skip!

•  if x = 0 then goto n else x := x – 1 (branch
and save PC on stack)	

–  Same as:	

!if x = 0 then begin!
!!push(PC, PC); PC := lub{PC, x}; PC := n;!
 end else if PC ≤ x then!
!!x := x - 1!
!else!
!!skip;!

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-63	

More Instructions	

•  if’ x = 0 then goto n else x := x – 1

(branch without saving PC on stack)	

–  Same as:	

!if x = 0 then!
!!if x ≤ PC then PC := n else skip!
!else!
!!if PC ≤ x then x := x - 1 else skip!

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-64	

More Instructions	

•  return (go to just after last if)	

–  Same as:	

!pop(PC, PC);!

•  halt (stop)	

–  Same as:	

!if program stack empty then halt!

–  Note stack empty to prevent user obtaining information
from it after halting	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-65	

Example Program	

1  if x = 0 then goto 4 else x := x - 1!
2  if z = 0 then goto 6 else z := z - 1!
3  halt!
4  z := z + 1!
5  return!
6  y := y + 1!
7  return!
•  Initially x = 0 or x = 1, y = 0, z = 0	

•  Program copies value of x to y	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-66	

Example Execution!
x 	
y 	
z 	
PC 	
PC 	
stack 	
check	

1 	
0 	
0 	
1 	
Low 	
—	

0 	
0 	
0 	
2 	
Low 	
— 	
 	
Low ≤ x	

0 	
0 	
0 	
6 	
z 	
(3, Low)	

0 	
1 	
0 	
7 	
z 	
(3, Low) 	
PC ≤ y	

0 	
1 	
0 	
3 	
Low 	
—	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-67	

Handling Errors	

•  Ignore statement that causes error, but
continue execution	

–  If aborted or a visible exception taken, user

could deduce information	

– Means errors cannot be reported unless user has

clearance at least equal to that of the
information causing the error	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-68	

Variable Classes	

•  Up to now, classes fixed	

– Check relationships on assignment, etc.	

•  Consider variable classes	

– Fenton’s Data Mark Machine does this for PC	

– On assignment of form y := f(x1, …, xn), y

changed to lub(x1, …, xn)	

– Need to consider implicit flows, also	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-69	

Example Program	

(* Copy value from x to y!
 * Initially, x is 0 or 1 *)!
proc copy(x: int class { x };!
! ! ! !var y: int class { y })!

var z: int class variable { Low };!
begin!
!y := 0;!
!z := 0;!
!if x = 0 then z := 1;!
!if z = 0 then y := 1;!

end;!

•  z changes when z assigned to	

•  Assume y < x!
February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-70	

Analysis of Example	

•  x = 0	

–  z := 0 sets z to Low	

–  if x = 0 then z := 1 sets z to 1 and z to x	

–  So on exit, y = 0	

•  x = 1	

–  z := 0 sets z to Low	

–  if z = 0 then y := 1 sets y to 1 and checks that lub

{Low, z} ≤ y	

–  So on exit, y = 1	

•  Information flowed from x to y even though y < x	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-71	

Handling This (1)	

•  Fenton’s Data Mark Machine detects
implicit flows violating certification rules	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-72	

Handling This (2)	

•  Raise class of variables assigned to in conditionals
even when branch not taken	

•  Also, verify information flow requirements even
when branch not taken	

•  Example:	

–  In if x = 0 then z := 1, z raised to x whether or not

x = 0	

–  Certification check in next statement, that z ≤ y, fails, as

z = x from previous statement, and y ≤ x	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-73	

Handling This (3)	

•  Change classes only when explicit flows occur,
but all flows (implicit as well as explicit) force
certification checks	

•  Example	

–  When x = 0, first “if” sets z to Low then checks x ≤ z	

–  When x = 1, first “if” checks that x ≤ z	

–  This holds if and only if x = Low	

•  Not possible as y < x = Low and there is no such class	

February 17, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #13-74	

