
Lecture 14: Flow & Confinement	

•  Examples of information flow applications	

•  The confinement problem	

•  Isolation: virtual machines, sandboxes	

•  Covert channels	

– Detection	

– Mitigation	

•  The pump	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-1	

Examples	

•  Use access controls of various types to
inhibit information flows	

•  Security Pipeline Interface	

– Analyzes data moving from host to destination	

•  Secure Network Server Mail Guard	

– Controls flow of data between networks that

have different security classifications	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-2	

Security Pipeline Interface	

•  SPI analyzes data going to, from host	

–  No access to host main memory	

–  Host has no control over SPI	

host	

second disk	

first disk	

SPI	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-3	

Use	

•  Store files on first disk	

•  Store corresponding crypto checksums on second

disk	

•  Host requests file from first disk	

–  SPI retrieves file, computes crypto checksum	

–  SPI retrieves file’s crypto checksum from second disk	

–  If a match, file is fine and forwarded to host	

–  If discrepancy, file is compromised and host notified	

•  Integrity information flow restricted here	

–  Corrupt file can be seen but will not be trusted	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-4	

Secure Network Server Mail
Guard (SNSMG)	

•  Filters analyze outgoing messages	

–  Check authorization of sender	

–  Sanitize message if needed (words and viruses, etc.)	

•  Uses type checking to enforce this	

–  Incoming, outgoing messages of different type	

–  Only appropriate type can be moved in or out	

MTA	

 MTA	

out	

 in	

filters	

SECRET
computer	

UNCLASSIFIED
computer	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-5	

Confinement	

•  What is the problem?	

•  Isolation: virtual machines, sandboxes	

•  Detecting covert channels	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-6	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

Example Problem	

•  Server balances bank accounts for clients	

•  Server security issues:	

– Record correctly who used it	

– Send only balancing info to client	

•  Client security issues:	

– Log use correctly	

– Do not save or retransmit data client sends	

Slide #14-7	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

Generalization	

•  Client sends request, data to server	

•  Server performs some function on data	

•  Server returns result to client	

•  Access controls:	

–  Server must ensure the resources it accesses on behalf
of client include only resources client is authorized to
access	

–  Server must ensure it does not reveal client’s data to
any entity not authorized to see the client’s data	

Slide #14-8	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

Confinement Problem	

•  Problem of preventing a server from leaking
information that the user of the service
considers confidential	

Slide #14-9	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

Total Isolation	

•  Process cannot communicate with any other
process	

•  Process cannot be observed	

	

Impossible for this process to leak information	

– Not practical as process uses observable
resources such as CPU, secondary storage,
networks, etc.	

Slide #14-10	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

Example	

•  Processes p, q not allowed to communicate	

–  But they share a file system!	

•  Communications protocol:	

–  p sends a bit by creating a file called 0 or 1, then a
second file called send	

•  p waits until send is deleted before repeating to send another
bit	

–  q waits until file send exists, then looks for file 0 or 1;
whichever exists is the bit	

•  q then deletes 0, 1, and send and waits until send is recreated
before repeating to read another bit	

Slide #14-11	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

Covert Channel	

•  A path of communication not designed to be
used for communication	

•  In example, file system is a (storage) covert
channel	

Slide #14-12	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

Rule of Transitive Confinement	

•  If p is confined to prevent leaking, and it
invokes q, then q must be similarly confined
to prevent leaking	

•  Rule: if a confined process invokes a second
process, the second process must be as
confined as the first	

Slide #14-13	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

Lipner’s Notes	

•  All processes can obtain rough idea of time	

– Read system clock or wall clock time	

– Determine number of instructions executed	

•  All processes can manipulate time	

– Wait some interval of wall clock time	

– Execute a set number of instructions, then

block	

Slide #14-14	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

Kocher’s Attack	

•  This computes x = az mod n, where z = z0 … zk–1	

	

x := 1; atmp := a;!
for i := 0 to k–1 do begin!
!if zi = 1 then!
! !x := (x * atmp) mod n;!
!atmp := (atmp * atmp) mod n;!
end!
result := x;!

•  Length of run time related to number of 1 bits in z	

Slide #14-15	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

Isolation	

•  Present process with environment that appears to

be a computer running only those processes being
isolated	

–  Process cannot access underlying computer system, any

process(es) or resource(s) not part of that environment	

–  A virtual machine	

•  Run process in environment that analyzes actions
to determine if they leak information	

–  Alters the interface between process(es) and computer	

Slide #14-16	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

Virtual Machine	

•  Program that simulates hardware of a
machine	

– Machine may be an existing, physical one or an

abstract one	

•  Why?	

– Existing OSes do not need to be modified	

•  Run under VMM, which enforces security policy	

•  Effectively, VMM is a security kernel	

Slide #14-17	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

VMM as Security Kernel	

•  VMM deals with subjects (the VMs)	

–  Knows nothing about the processes within the VM	

•  VMM applies security checks to subjects	

–  By transitivity, these controls apply to processes on VMs	

•  Thus, satisfies rule of transitive confinement	

Slide #14-18	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

Example 1: KVM/370	

•  KVM/370 is security-enhanced version of
VM/370 VMM	

– Goal: prevent communications between VMs of

different security classes	

– Like VM/370, provides VMs with minidisks,

sharing some portions of those disks	

– Unlike VM/370, mediates access to shared

areas to limit communication in accordance
with security policy	

Slide #14-19	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

Example 2: VAX/VMM	

•  Can run either VMS or Ultrix	

•  4 privilege levels for VM system	

– VM user, VM supervisor, VM executive, VM
kernel (both physical executive)	

•  VMM runs in physical kernel mode	

– Only it can access certain resources	

•  VMM subjects: users and VMs	

Slide #14-20	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

Example 2	

•  VMM has flat file system for itself	

– Rest of disk partitioned among VMs	

– VMs can use any file system structure	

•  Each VM has its own set of file systems	

– Subjects, objects have security, integrity classes	

•  Called access classes	

– VMM has sophisticated auditing mechanism	

Slide #14-21	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

Problem	

•  Physical resources shared	

– System CPU, disks, etc.	

•  May share logical resources	

– Depends on how system is implemented	

•  Allows covert channels	

Slide #14-22	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

Sandboxes	

•  An environment in which actions are
restricted in accordance with security policy	

– Limit execution environment as needed	

•  Program not modified	

•  Libraries, kernel modified to restrict actions	

– Modify program to check, restrict actions	

•  Like dynamic debuggers, profilers	

Slide #14-23	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

Examples Limiting Environment	

•  Java virtual machine	

–  Security manager limits access of downloaded
programs as policy dictates	

•  Sidewinder firewall	

–  Type enforcement limits access	

–  Policy fixed in kernel by vendor	

•  Domain Type Enforcement	

–  Enforcement mechanism for DTEL	

–  Kernel enforces sandbox defined by system

administrator	

Slide #14-24	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

Modifying Programs	

•  Add breakpoints or special instructions to
source, binary code	

– On trap or execution of special instructions,

analyze state of process	

•  Variant: software fault isolation 	

– Add instructions checking memory accesses,
other security issues	

– Any attempt to violate policy causes trap	

Slide #14-25	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

Example: Janus	

•  Implements sandbox in which system calls
checked	

– Framework does runtime checking	

– Modules determine which accesses allowed	

•  Configuration file	

–  Instructs loading of modules	

– Also lists constraints	

Slide #14-26	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

Configuration File	

basic module!
basic!
!
define subprocess environment variables!
putenv IFS=“\t\n “ PATH=/sbin:/bin:/usr/bin TZ=PST8PDT!
!
deny access to everything except files under /usr!
path deny read,write *!
path allow read,write /usr/*!
allow subprocess to read files in library directories!
needed for dynamic loading!
path allow read /lib/* /usr/lib/* /usr/local/lib/*!
needed so child can execute programs!
path allow read,exec /sbin/* /bin/* /usr/bin/*!

Slide #14-27	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

How It Works	

•  Framework builds list of relevant system calls	

–  Then marks each with allowed, disallowed actions	

•  When monitored system call executed	

–  Framework checks arguments, validates that call is allowed for

those arguments	

•  If not, returns failure	

•  Otherwise, give control back to child, so normal system call proceeds	

Slide #14-28	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

Use	

•  Reading MIME Mail: fear is user sets mail reader to

display attachment using Postscript engine	

–  Has mechanism to execute system-level commands	

–  Embed a file deletion command in attachment …	

•  Janus configured to disallow execution of any
subcommands by Postscript engine	

–  Above attempt fails	

Slide #14-29	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

Sandboxes, VMs, and TCB	

•  Sandboxes, VMs part of trusted computing
bases	

– Failure: less protection than security officers,

users believe	

–  “False sense of security”	

•  Must ensure confinement mechanism
correctly implements desired security policy	

Slide #14-30	

Covert Channels	

•  Shared resources as communication paths	

•  Covert storage channel uses attribute of

shared resource	

–  Disk space, message size, etc.	

•  Covert timing channel uses temporal or
ordering relationship among accesses to
shared resource	

–  Regulating CPU usage, order of reads on disk	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-31	

Example Storage Channel	

•  Processes p, q not allowed to communicate	

–  But they share a file system!	

•  Communications protocol:	

–  p sends a bit by creating a file called 0 or 1, then a
second file called send	

•  p waits until send is deleted before repeating to send another
bit	

–  q waits until file send exists, then looks for file 0 or 1;
whichever exists is the bit	

•  q then deletes 0, 1, and send and waits until send is recreated
before repeating to read another bit	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-32	

Example Timing Channel	

•  System has two VMs	

–  Sending machine S, receiving machine R	

•  To send:	

–  For 0, S immediately relinquishes CPU	

•  For example, run a process that instantly blocks	

–  For 1, S uses full quantum	

•  For example, run a CPU-intensive process	

•  R measures how quickly it gets CPU	

–  Uses real-time clock to measure intervals between access to shared

resource (CPU)	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-33	

Example Covert Channel	

•  Uses ordering of events; does not use clock	

•  Two VMs sharing disk cylinders 100 to 200	

–  SCAN algorithm schedules disk accesses	

–  One VM is High (H), other is Low (L)	

•  Idea: L will issue requests for blocks on cylinders 139 and
161 to be read	

–  If read as 139, then 161, it’s a 1 bit	

–  If read as 161, then 139, it’s a 0 bit	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-34	

How It Works	

•  L issues read for data on cylinder 150	

–  Relinquishes CPU when done; arm now at 150	

•  H runs, issues read for data on cylinder 140	

–  Relinquishes CPU when done; arm now at 140	

•  L runs, issues read for data on cylinders 139 and 161	

–  Due to SCAN, reads 139 first, then 161	

–  This corresponds to a 1	

•  To send a 0, H would have issued read for data on cylinder
160	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-35	

Analysis	

•  Timing or storage?	

–  Usual definition ⇒ storage (no timer, clock)	

•  Modify example to include timer	

–  L uses this to determine how long requests take to
complete	

–  Time to seek to 139 < time to seek to 161 ⇒ 1;
otherwise, 0	

•  Channel works same way	

–  Suggests it’s a timing channel; hence our definition	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-36	

Noisy vs. Noiseless	

•  Noiseless: covert channel uses resource
available only to sender, receiver	

•  Noisy: covert channel uses resource
available to others as well as to sender,
receiver	

–  Idea is that others can contribute extraneous

information that receiver must filter out to
“read” sender’s communication	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-37	

Key Properties	

•  Existence: the covert channel can be used to
send/receive information	

•  Bandwidth: the rate at which information
can be sent along the channel	

•  Goal of analysis: establish these properties
for each channel	

–  If you can eliminate the channel, great!	

–  If not, reduce bandwidth as much as possible	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-38	

Step #1: Detection	

•  Manner in which resource is shared controls
who can send, receive using that resource	

– Noninterference	

– Shared Resource Matrix Methodology	

–  Information flow analysis	

– Covert flow trees	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-39	

Noninterference	

•  View “read”, “write” as instances of
information transfer	

•  Then two processes can communicate if
information can be transferred between
them, even in the absence of a direct
communication path	

– A covert channel	

– Also sounds like interference …	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-40	

Example: SAT	

•  Secure Ada Target, multilevel security policy	

•  Approach:	

–  π(i, l) removes all instructions issued by subjects dominated by
level l from instruction stream i	

–  A(i, σ) state resulting from execution of i on state σ	

–  σ.v(s) describes subject s’s view of state σ	

•  System is noninterference-secure iff for all instruction
sequences i, subjects s with security level l(s), states σ,	

A(π(i, l(s)), σ).v(s) = A(i, σ).v(s)	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-41	

Theorem	

•  Version of the Unwinding Theorem	

•  Let Σ be set of system states. A specification is

noninterference-secure if, for each subject s at security
level l(s), there exists an equivalence relation ≡: Σ×Σ such
that	

–  for σ1, σ2 ∈ Σ, when σ1 ≡ σ2, σ1.v(s) = σ2.v(s)	

–  for σ1, σ2 ∈ Σ and any instruction i, when σ1 ≡ σ2, A(i, σ1) ≡ A(i,
σ2)	

–  for σ ∈ Σ and instruction stream i, if π(i, l(s)) is empty, A(π(i, l(s)),
σ).v(s) = σ.v(s)	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-42	

Intuition	

•  System is noninterference-secure if:	

– Equivalent states have the same view for each

subject	

– View remains unchanged if any instruction is

executed	

–  Instructions from higher-level subjects do not

affect the state from the viewpoint of the lower-
level subjects	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-43	

Analysis of SAT	

•  Focus on object creation instruction and
readable object set	

•  In these specifications:	

–  s subject with security level l(s)	

–  o object with security level l(o), type τ(o)	

– σ current state	

– Set of existing objects listed in a global object

table T(σ)	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-44	

Specification 1	

•  object_create:	

[σʹ′ = object_create(s,o,l(o),τ(o),σ) ∧ σʹ′ ≠ σ]	

⇔	

[o ∉ T(σ) ∧ l(s) ≤ l(o)]	

•  The create succeeds if, and only if, the object does not yet
exist and the clearance of the object will dominate the
clearance of its creator	

–  In accord with the “writes up okay” idea	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-45	

Specification 2	

•  readable object set: set of existing objects that subject

could read	

–  can_read(s, o, σ) true if in state σ, o is of a type that s can read

(ignoring permissions)	

•  o ∉ readable(s, σ) ⇔ [o ∉ T(σ) ∨	

¬(l(o) ≤ l(s)) ∨ ¬(can_read(s, o, σ))]	

•  Can’t read a nonexistent object, one with a security level

that the subject’s security level does not dominate, or
object of the wrong type	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-46	

Specification 3	

•  SAT enforces tranquility	

–  Adding object to readable set means creating new object	

•  Add to readable set:	

[o ∉ readable(s, σ) ∧ o ∈ readable(s, σʹ′)] ⇔ [σʹ′ = object_create(s,o,l(o),τ
(o),σ) ∧ o ∉ T(σ) ∧ l(sʹ′) ≤ l(o) ≤ l(s) ∧ can_read(s, o, σʹ′)]	

•  Says object must be created, levels and discretionary access controls
set properly	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-47	

Check for Covert Channels	

•  σ1, σ2 the same except:	

–  o exists only in latter	

– ¬(l(o) ≤ l(s))	

•  Specification 2:	

–  o ∉ readable(s, σ1) { o doesn’t exist in σ1}	

–  o ∉ readable(s, σ2) { ¬(l(o) ≤ l(s)) }	

•  Thus σ1 ≡ σ2	

– Condition 1 of theorem holds	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-48	

Continue Analysis	

•  sʹ′ issues command to create o with:	

–  l(o) = l(s)	

–  of type with can_read(s, o, σ1ʹ′)	

•  σ1ʹ′ state after object_create(sʹ′, o, l(o), τ(o), σ1)	

•  Specification 1	

–  σ1ʹ′ differs from σ1 with o in T(σ1)	

•  New entry satisfies:	

–  can_read(s, o, σ1ʹ′)	

–  l(sʹ′) ≤ l(o) ≤ l(s), where sʹ′ created o	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-49	

Continue Analysis	

•  o exists in σ2 so:	

σ2ʹ′ = object_create(sʹ′, o, σ2) = σ2	

•  But this means	

¬[A(object_create(sʹ′, o, l(o), τ(o), σ2), σ2) ≡ A

(object_create(sʹ′, o, l(o), τ(o), σ1), σ1)]	

–  Because create fails in σ2 but succeeds in σ1	

•  So condition 2 of theorem fails	

•  This implies a covert channel as system is not

noninterference-secure	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-50	

Example Exploit	

•  To send 1:	

–  High subject creates high object	

–  Recipient tries to create same object but at low	

•  Creation fails, but no indication given	

–  Recipient gives different subject type permission to read, write

object	

•  Again fails, but no indication given	

–  Subject writes 1 to object, reads it	

•  Read returns nothing	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-51	

Example Exploit	

•  To send 0:	

–  High subject creates nothing	

–  Recipient tries to create same object but at low	

•  Creation succeeds as object does not exist	

–  Recipient gives different subject type permission to read, write

object	

•  Again succeeds	

–  Subject writes 1 to object, reads it	

•  Read returns 1	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-52	

Use	

•  Can analyze covert storage channels	

– Noninterference techniques reason in terms of

security levels (attributes of objects)	

•  Covert timing channels much harder	

– You would have to make ordering an attribute
of the objects in some way	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-53	

SRMM	

•  Shared Resource Matrix Methodology	

•  Goal: identify shared channels, how they are

shared	

•  Steps:	

–  Identify all shared resources, their visible attributes
[rows]	

–  Determine operations that reference (read), modify
(write) resource [columns]	

–  Contents of matrix show how operation accesses the
resource	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-54	

Example	

•  Multilevel security model	

•  File attributes:	

–  existence, owner, label, size	

•  File manipulation operations:	

–  read, write, delete, create	

–  create succeeds if file does not exist; gets creator as owner,

creator’s label	

–  others require file exists, appropriate labels	

•  Subjects:	

–  High, Low	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-55	

Shared Resource Matrix	

read	

 write	

 delete	

 create	

existence	

 R	

 R	

 R, M	

 R, M	

owner	

 R	

 M	

label	

 R	

 R	

 R	

 M	

size	

 R	

 M	

 M	

 M	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-56	

Covert Storage Channel	

•  Properties that must hold for covert storage
channel:	

1.  Sending, receiving processes have access to

same attribute of shared object;	

2.  Sender can modify that attribute;	

3.  Receiver can reference that attribute; and	

4.  Mechanism for starting processes, properly

sequencing their accesses to resource	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-57	

Example	

•  Consider attributes with both R, M in rows	

•  Let High be sender, Low receiver	

•  create operation both references, modifies existence

attribute	

–  Low can use this due to semantics of create	

•  Need to arrange for proper sequencing accesses to
existence attribute of file (shared resource)	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-58	

Use of Channel	

–  3 files: ready, done, 1bit	

–  Low creates ready at High level	

–  High checks that file exists	

–  If so, to send 1, it creates 1bit; to send 0, skip	

–  Delete ready, create done at High level	

–  Low tries to create done at High level	

–  On failure, High is done	

–  Low tries to create 1bit at level High	

–  Low deletes done, creates ready at High level	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-59	

Covert Timing Channel	

•  Properties that must hold for covert timing

channel:	

1. Sending, receiving processes have access to same

attribute of shared object;	

2. Sender, receiver have access to a time reference (wall

clock, timer, event ordering, …);	

3. Sender can control timing of detection of change to that

attribute by receiver; and	

4. Mechanism for starting processes, properly sequencing

their accesses to resource	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-60	

Example	

•  Revisit variant of KVM/370 channel	

–  Sender, receiver can access ordering of requests by disk
arm scheduler (attribute)	

–  Sender, receiver have access to the ordering of the
requests (time reference)	

–  High can control ordering of requests of Low process
by issuing cylinder numbers to position arm
appropriately (timing of detection of change)	

–  So whether channel can be exploited depends on
whether there is a mechanism to (1) start sender,
receiver and (2) sequence requests as desired	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-61	

Uses of SRM Methodology	

•  Applicable at many stages of software life cycle

model	

–  Flexbility is its strength	

•  Used to analyze Secure Ada Target	

–  Participants manually constructed SRM from flow

analysis of SAT model	

–  Took transitive closure	

–  Found 2 covert channels	

•  One used assigned level attribute, another assigned type
attribute	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-62	

Summary	

•  Methodology comprehensive but incomplete	

–  How to identify shared resources?	

–  What operations access them and how?	

•  Incompleteness a benefit	

–  Allows use at different stages of software engineering life cycle	

•  Incompleteness a problem	

–  Makes use of methodology sensitive to particular stage of software

development	

February 22, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #14-63	

