
Lecture 15: Covert Channels, 
Assurance	


•  Covert channels	

– Detection	

– Mitigation	


•  The pump	

•  Why assurance?	

•  Trust and assurance	

•  Life cycle and assurance	
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SRMM	

•  Shared Resource Matrix Methodology	

•  Goal: identify shared channels, how they are 

shared	

•  Steps:	


–  Identify all shared resources, their visible attributes 
[rows]	


–  Determine operations that reference (read), modify 
(write) resource [columns]	


–  Contents of matrix show how operation accesses the 
resource	
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Example	

•  Multilevel security model	

•  File attributes:	


–  existence, owner, label, size	

•  File manipulation operations:	


–  read, write, delete, create	

–  create succeeds if file does not exist; gets creator as owner, 

creator’s label	

–  others require file exists, appropriate labels	


•  Subjects:	

–  High, Low	
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Shared Resource Matrix	


read	
 write	
 delete	
 create	


existence	
 R	
 R	
 R, M	
 R, M	


owner	
 R	
 M	


label	
 R	
 R	
 R	
 M	


size	
 R	
 M	
 M	
 M	
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Covert Storage Channel	


•  Properties that must hold for covert storage 
channel:	

1.  Sending, receiving processes have access to 

same attribute of shared object;	

2.  Sender can modify that attribute;	

3.  Receiver can reference that attribute; and	

4.  Mechanism for starting processes, properly 

sequencing their accesses to resource	
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Example	

•  Consider attributes with both R, M in rows	

•  Let High be sender, Low receiver	

•  create operation both references, modifies existence 

attribute	

–  Low can use this due to semantics of create	


•  Need to arrange for proper sequencing accesses to 
existence attribute of file (shared resource)	
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Use of Channel	

–  3 files: ready, done, 1bit	

–  Low creates ready at High level	

–  High checks that file exists	


–  If so, to send 1, it creates 1bit; to send 0, skip	

–  Delete ready, create done at High level	


–  Low tries to create done at High level	

–  On failure, High is done	

–  Low tries to create 1bit at level High	


–  Low deletes done, creates ready at High level	
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Covert Timing Channel	

•  Properties that must hold for covert timing 

channel:	

1. Sending, receiving processes have access to same 

attribute of shared object;	

2. Sender, receiver have access to a time reference (wall 

clock, timer, event ordering, …);	

3. Sender can control timing of detection of change to that 

attribute by receiver; and	

4. Mechanism for starting processes, properly sequencing 

their accesses to resource	
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Example	

•  Revisit variant of KVM/370 channel	


–  Sender, receiver can access ordering of requests by disk 
arm scheduler (attribute)	


–  Sender, receiver have access to the ordering of the 
requests (time reference)	


–  High can control ordering of requests of Low process 
by issuing cylinder numbers to position arm 
appropriately (timing of detection of change)	


–  So whether channel can be exploited depends on 
whether there is a mechanism to (1) start sender, 
receiver and (2) sequence requests as desired	
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Uses of SRM Methodology	

•  Applicable at many stages of software life cycle 

model	

–  Flexbility is its strength	


•  Used to analyze Secure Ada Target	

–  Participants manually constructed SRM from flow 

analysis of SAT model	

–  Took transitive closure	

–  Found 2 covert channels	


•  One used assigned level attribute, another assigned type 
attribute	
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Summary	

•  Methodology comprehensive but incomplete	


–  How to identify shared resources?	

–  What operations access them and how?	


•  Incompleteness a benefit	

–  Allows use at different stages of software engineering life cycle	


•  Incompleteness a problem	

–  Makes use of methodology sensitive to particular stage of software 

development	
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Measuring Capacity	


•  Intuitively, difference between 
unmodulated, modulated channel	

– Normal uncertainty in channel is 8 bits	

– Attacker modulates channel to send 

information, reducing uncertainty to 5 bits	

– Covert channel capacity is 3 bits	


•  Modulation in effect fixes those bits	
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Formally	

•  Inputs:	


–  A input from Alice (sender)	

–  V input from everyone else	

–  X output of channel	


•  Capacity measures uncertainty in X given A	

•  In other terms: maximize	


I(A; X) = H(X) – H(X | A)	

	
with respect to A	
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Example (continued)	

•  If A, V independent, p=p(A=0), q=p(V=0):	


–  p(A=0, V=0) = pq	

–  p(A=1, V=0) = (1–p)q	

–  p(A=0, V=1) = p(1–q)	

–  p(A=1, V=1) = (1–p)(1–q)	


•  So	

–  p(X=0) = p(A=0, V=0)+p(A=1, V=1) = pq + (1–p)(1–q)	

–  p(X=1) = p(A=0, V=1)+p(A=1, V=0)  = (1–p)q + p(1–q)	
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More Example	

•  Also:	


–  p(X=0|A=0) = q	

–  p(X=0|A=1) = 1–q	

–  p(X=1|A=0) = 1–q	

–  p(X=1|A=1) = q	


•  So you can compute:	

–  H(X) = –[(1–p)q + p(1–q)] lg [(1–p)q + p(1–q)]	

–  H(X|A) = –q lg q – (1–q) lg (1–q)	

–  I(A;X) = H(X)–H(X|A)	
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I(A;X)	

I(A; X) = – [pq + (1 – p)(1 – q)] lg [pq + (1 – p)(1 – q)] –	

	
 	
[(1 – p)q + p(1 – q)] lg [(1 – p)q + p(1 – q)] +	

	
 	
q lg q + (1 – q) lg (1 – q)	


•  Maximum when p = 0.5; then	

I(A;X) = 1 + q lg q + (1–q) lg (1–q) = 1–H(V)	


•  So, if V constant, q = 0, and I(A;X) = 1	

•  Also, if q = p = 0.5, I(A;X) = 0	
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Analyzing Capacity	


•  Assume a noisy channel	

•  Examine covert channel in MLS database 

that uses replication to ensure availability	

–  2-phase commit protocol ensures atomicity	

– Coordinator process manages global execution	

– Participant processes do everything else	
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How It Works	

•  Coordinator sends message to each participant 

asking whether to abort or commit transaction	

–  If any says “abort”, coordinator stops	


•  Coordinator gathers replies	

–  If all say “commit”, sends commit messages back to 

participants	

–  If any says “abort”, sends abort messages back to 

participants	

–  Each participant that sent commit waits for reply; on 

receipt, acts accordingly	
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Exceptions	


•  Protocol times out, causing party to act as if 
transaction aborted, when:	

– Coordinator doesn’t receive reply from 

participant	

– Participant who sends a commit doesn’t receive 

reply from coordinator	
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Covert Channel Here	

•  Two types of components	


–  One at Low security level, other at High	


•  Low component begins 2-phase commit	

–  Both High, Low components must cooperate in the 2-phase 

commit protocol	

•  High sends information to Low by selectively aborting 

transactions	

–  Can send abort messages	

–  Can just not do anything	
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Note	


•  If transaction always succeeded except 
when High component sending information, 
channel not noisy	

– Capacity would be 1 bit per trial	

– But channel noisy as transactions may abort for 

reasons other than the sending of information	
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Analysis	

•  X random variable: what High user wants to send	


–  Assume abort is 1, commit is 0	

–  p = p(X = 0) probability High sends 0	


•  A random variable: what Low receives	

–  For noiseless channel X = A	


•  n + 2 users	

–  Sender, receiver, n others	

–  q probability of transaction aborting at any of these n 

users	
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Basic Probabilities	


•  Probabilities of receiving given sending	

–  p(A=0 | X=0) = (1–q)n	

–  p(A=1 | X=0) = 1–(1–q)n	

–  p(A=0 | X=1) = 0	

–  p(A=1 | X=1) = 1	


•  So probabilities of receiving values:	

–  p(A=0) = p(1–q)n	


–  p(A=1) = 1–p(1–q)n	


March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-23	




More Probabilities	


•  Given sending, what is receiving?	

–  p(X=0 | A=0) = 1	

–  p(X=1 | A=0) = 0	

–  p(X=0 | A=1) = p[1–(1–q)n] / [1–p(1–q)n]	

–  p(X=1 | A=1) = (1–p) / [1–p(1–q)n]	
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Entropies	

•  H(X) = –p lg p – (1–p) lg (1–p) 	

•  H(X | A) = –p[1–(1–q)n] lg p	

	
 	
– p[1–(1–q)n] lg [1–(1–q)n]	

	
 	
+ [1–p(1–q)n] lg [1–p(1–q)n] 	

	
 	
– (1–p) lg (1–p)	


•  I(A;X) = 	
–p(1–q)n lg p	

	
 	
+ p[1–(1–q)n] lg [1–(1–q)n]	

	
 	
– [1–p(1–q)n] lg [1–p(1–q)n]	


March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-25	




Capacity	


•  Maximize this with respect to p (probability 
that High sends 0)	

– Notation: m = (1–q)n, M = (1–m)(1–m)	


– Maximum when p = M / (Mm+1)	

•  Capacity is:	

	
I(A;X) = Mm lg p + M(1–m) lg (1–m) + lg (Mm+1)	


(Mm+1)	
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Noninterference and Capacity	


•  Alice sends information to Bob	

•  Random variables:	


– W represents inputs to machine	

– A represents inputs from Alice	

– V represents inputs not from Alice	

– B represents all possible outputs to Bob	


•  I(A;B) amount of information transmitted 
over covert channel	
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When Is Capacity 0?	


Theorem: If A, V independent and A noninterfering 
with B, then I(A;B) = 0	

Proof: Sufficient to show A, B independent, or	


p(A=a, B=b) = p(A=a)p(B=b)	

In general,	


p(A=a, B=b) = ΣVp(A=a, B=b, V=v)	

A noninterfering with B: deleting that part of input 
making up a will not change output b.	
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Proof	


So only need to consider values of B that 
could result from values of V; so	

p(A=a, B=b) = ΣV p(A=a, V=v)p(B=b | V=v)	

As V and A are independent,	

p(A=a, B=b) = ΣV p(A=a, V=V)p(B=b | V=v)	


	
= p(A=a)(ΣVp(B=b | V=v)p(V=v))	

	
= p(A=a)p(B=b)	
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Is Noninterference Needed?	

•  System has:	


–  1 state bit; initially 0	

–  3 inputs, IA, IB, IC	

–  1 output OX	


•  Each input bit flips state bit	

–  Value of state output	


•  Let w be sequence of inputs corresponding to 
output x(w)	

–  x(w) = length(w) mod 2	
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IA and OX	

•  IA not noninterfering with OX	


–  Delete inputs from IA, changes length of output and 
hence value of x(w)	


•  Let:	

–  W represents length of input sequences	

–  A represents length of components of input 

subsequence contributed by IA	

–  V represents length of components of input 

subsequence not contributed by IA	

•  A, V independent	


–  X represents output state	
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Case 1	


•  If V = 0, then:	

W = (A + V) mod 2 = A mod 2	


•  So W, I dependent	

•  So are A, X	

•  Hence I(A; X) ≠ 0	
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Case 2	

Let IB, IC produce inputs such that 	


p(V=0) = p(V=1) = 0.5	

Then:	


p(X=x) = p(V=x, A=0)+p(V=1–x, A=1)	

By independence of A, I:	


p(X=x) = p(V=x)p(A=0)+p(V=1–x)p(A=1)	

So p(X=x) = 0.25+0.25 = 0.5	

p(X=x | A=a) = p(X=(a+x) mod 2) = 0.5	

So A and X independent, giving I(A;X) = 0	
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Meaning	


•  Covert channel capacity will be 0 if:	

–  Input noninterfering with output, or	

–  Input sequence comes from independent 

sources and all possible values from at least 1 
source equiprobable	


•  In effect, distribution “hides” interference	
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Mitigation of Covert Channels	

•  Problem: these work by varying use of shared 

resources	

•  One solution	


–  Require processes to say what resources they need 
before running	


–  Provide access to them in a way that no other process 
can access them	


•  Cumbersome	

–  Includes running (CPU covert channel)	

–  Resources stay allocated for lifetime of process	
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Alternate Approach	


•  Obscure amount of resources being used	

– Receiver cannot distinguish between what the 

sender is using and what is added	

•  How? Two ways:	


– Devote uniform resources to each process	

–  Inject randomness into allocation, use of 

resources	
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Uniformity	


•  Variation of isolation	

– Process can’t tell if second process using 

resource	

•  Example: KVM/370 covert channel via 

CPU usage	

– Give each VM a time slice of fixed duration	

– Do not allow VM to surrender its CPU time	


•  Can no longer send 0 or 1 by modulating CPU usage	
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Randomness	

•  Make noise dominate channel	


–  Does not close it, but makes it useless	

•  Example: MLS database	


–  Probability of transaction being aborted by user other 
than sender, receiver approaches 1	


•  q → 1	

–  I(A; X) → 0	

–  How to do this: resolve conflicts by aborting increases 

q, or have participants abort transactions randomly	
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Problem: Loss of Efficiency	


•  Fixed allocation, constraining use	

– Wastes resources	


•  Increasing probability of aborts	

– Some transactions that will normally commit 

now fail, requiring more retries	

•  Policy: is the inefficiency preferable to the 

covert channel?	
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Example	

•  Goal: limit covert timing channels on VAX/VMM	

•  “Fuzzy time” reduces accuracy of system clocks 

by generating random clock ticks	

–  Random interrupts take any desired distribution	

–  System clock updates only after each timer interrupt	

–  Kernel rounds time to nearest 0.1 sec before giving it to 

VM	

•  Means it cannot be more accurate than timing of interrupts	
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Example	

•  I/O operations have random delays	

•  Kernel distinguishes 2 kinds of time:	


–  Event time (when I/O event occurs)	

–  Notification time (when VM told I/O event occurred)	


•  Random delay between these prevents VM from figuring out 
when event actually occurred)	


•  Delay can be randomly distributed as desired (in security 
kernel, it’s 1–19ms)	


–  Added enough noise to make covert timing channels 
hard to exploit	
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Improvement	


•  Modify scheduler to run processes in 
increasing order of security level	

– Now we’re worried about “reads up”, so …	


•  Countermeasures needed only when 
transition from dominating VM to 
dominated VM	

– Add random intervals between quanta for these 

transitions	
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The Pump	


•  Tool for controlling communications path between 
High and Low	


communications buffer

Low process High process

High
buffer

Low
buffer
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Details	

•  Communications buffer of length n	


–  Means it can hold up to n messages	

•  Messages numbered	

•  Pump ACKs each message as it is moved from 

High (Low) buffer to communications buffer	

•  If pump crashes, communications buffer preserves 

messages	

–  Processes using pump can recover from crash	
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Covert Channel	

•  Low fills communications buffer	


–  Send messages to pump until no ACK	

–  If High wants to send 1, it accepts 1 message from 

pump; if High wants to send 0, it does not	

–  If Low gets ACK, message moved from Low buffer to 

communications buffer ⇒ High sent 1	

–  If Low doesn’t get ACK, no message moved ⇒ High 

sent 0	

•  Meaning: if High can control rate at which pump 

passes messages to it, a covert timing channel	
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Performance vs. Capacity	


•  Assume Low process, pump can process 
messages more quickly than High process	


•  Li random variable: time from Low sending 
message to pump to Low receiving ACK	


•  Hi random variable: average time for High 
to ACK each of last n messages	
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Case1: E(Li) > Hi	

•  High can process messages more quickly than Low can get 

ACKs	

•  Contradicts above assumption	


–  Pump must be delaying ACKs	

–  Low waits for ACK whether or not communications buffer is full	


•  Covert channel closed	

•  Not optimal	


–  Process may wait to send message even when there is room	
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Case 2: E(Li) < Hi	


•  Low sending messages faster than High can 
remove them	


•  Covert channel open	

•  Optimal performance	
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Case 3: E(Li) = Hi	


•  Pump, processes handle messages at same 
rate	


•  Covert channel open	

– Bandwidth decreased from optimal case (can’t 

send messages over covert channel as fast)	

•  Performance not optimal	


March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-49	




Adding Noise	

•  Shown: adding noise to approximate case 3	


–  Covert channel capacity reduced to 1/nr where r time from Low 
sending message to pump to Low receiving ACK when 
communications buffer not full	


–  Conclusion: use of pump substantially reduces capacity of covert 
channel between High, Low processes when compared to direct 
connection	
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Assurance	


•  Trust	

•  Problems from lack of assurance	

•  Types of assurance	

•  Life cycle and assurance	

•  Waterfall life cycle model	

•  Other life cycle models	
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Trust	


•  Trustworthy entity has sufficient credible 
evidence leading one to believe that the 
system will meet a set of requirements	


•  Trust is a measure of trustworthiness relying 
on the evidence	


•  Assurance is confidence that an entity meets 
its security requirements based on evidence 
provided by applying assurance techniques	
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Relationships	


Policy

Mechanisms

Assurance

Statement of requirements that explicitly defines
the security expectations of the mechanism(s)

Provides justification that the mechanism meets policy
through assurance evidence and approvals based on
evidence

Executable entities that are designed and implemented
to meet the requirements of the policy
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Problem Sources	

1.  Requirements definitions, omissions, and mistakes	

2.  System design flaws	

3.  Hardware implementation flaws, such as wiring and chip flaws	

4.  Software implementation errors, program bugs, and compiler bugs	

5.  System use and operation errors and inadvertent mistakes	

6.  Willful system misuse	

7.  Hardware, communication, or other equipment malfunction	

8.  Environmental problems, natural causes, and acts of God	

9.  Evolution, maintenance, faulty upgrades, and decommissions	
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