
Lecture 15: Covert Channels,
Assurance	

•  Covert channels	

– Detection	

– Mitigation	

•  The pump	

•  Why assurance?	

•  Trust and assurance	

•  Life cycle and assurance	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-1	

SRMM	

•  Shared Resource Matrix Methodology	

•  Goal: identify shared channels, how they are

shared	

•  Steps:	

–  Identify all shared resources, their visible attributes
[rows]	

–  Determine operations that reference (read), modify
(write) resource [columns]	

–  Contents of matrix show how operation accesses the
resource	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-2	

Example	

•  Multilevel security model	

•  File attributes:	

–  existence, owner, label, size	

•  File manipulation operations:	

–  read, write, delete, create	

–  create succeeds if file does not exist; gets creator as owner,

creator’s label	

–  others require file exists, appropriate labels	

•  Subjects:	

–  High, Low	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-3	

Shared Resource Matrix	

read	
 write	
 delete	
 create	

existence	
 R	
 R	
 R, M	
 R, M	

owner	
 R	
 M	

label	
 R	
 R	
 R	
 M	

size	
 R	
 M	
 M	
 M	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-4	

Covert Storage Channel	

•  Properties that must hold for covert storage
channel:	

1.  Sending, receiving processes have access to

same attribute of shared object;	

2.  Sender can modify that attribute;	

3.  Receiver can reference that attribute; and	

4.  Mechanism for starting processes, properly

sequencing their accesses to resource	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-5	

Example	

•  Consider attributes with both R, M in rows	

•  Let High be sender, Low receiver	

•  create operation both references, modifies existence

attribute	

–  Low can use this due to semantics of create	

•  Need to arrange for proper sequencing accesses to
existence attribute of file (shared resource)	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-6	

Use of Channel	

–  3 files: ready, done, 1bit	

–  Low creates ready at High level	

–  High checks that file exists	

–  If so, to send 1, it creates 1bit; to send 0, skip	

–  Delete ready, create done at High level	

–  Low tries to create done at High level	

–  On failure, High is done	

–  Low tries to create 1bit at level High	

–  Low deletes done, creates ready at High level	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-7	

Covert Timing Channel	

•  Properties that must hold for covert timing

channel:	

1. Sending, receiving processes have access to same

attribute of shared object;	

2. Sender, receiver have access to a time reference (wall

clock, timer, event ordering, …);	

3. Sender can control timing of detection of change to that

attribute by receiver; and	

4. Mechanism for starting processes, properly sequencing

their accesses to resource	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-8	

Example	

•  Revisit variant of KVM/370 channel	

–  Sender, receiver can access ordering of requests by disk
arm scheduler (attribute)	

–  Sender, receiver have access to the ordering of the
requests (time reference)	

–  High can control ordering of requests of Low process
by issuing cylinder numbers to position arm
appropriately (timing of detection of change)	

–  So whether channel can be exploited depends on
whether there is a mechanism to (1) start sender,
receiver and (2) sequence requests as desired	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-9	

Uses of SRM Methodology	

•  Applicable at many stages of software life cycle

model	

–  Flexbility is its strength	

•  Used to analyze Secure Ada Target	

–  Participants manually constructed SRM from flow

analysis of SAT model	

–  Took transitive closure	

–  Found 2 covert channels	

•  One used assigned level attribute, another assigned type
attribute	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-10	

Summary	

•  Methodology comprehensive but incomplete	

–  How to identify shared resources?	

–  What operations access them and how?	

•  Incompleteness a benefit	

–  Allows use at different stages of software engineering life cycle	

•  Incompleteness a problem	

–  Makes use of methodology sensitive to particular stage of software

development	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-11	

Measuring Capacity	

•  Intuitively, difference between
unmodulated, modulated channel	

– Normal uncertainty in channel is 8 bits	

– Attacker modulates channel to send

information, reducing uncertainty to 5 bits	

– Covert channel capacity is 3 bits	

•  Modulation in effect fixes those bits	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-12	

Formally	

•  Inputs:	

–  A input from Alice (sender)	

–  V input from everyone else	

–  X output of channel	

•  Capacity measures uncertainty in X given A	

•  In other terms: maximize	

I(A; X) = H(X) – H(X | A)	

	
with respect to A	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-13	

Example (continued)	

•  If A, V independent, p=p(A=0), q=p(V=0):	

–  p(A=0, V=0) = pq	

–  p(A=1, V=0) = (1–p)q	

–  p(A=0, V=1) = p(1–q)	

–  p(A=1, V=1) = (1–p)(1–q)	

•  So	

–  p(X=0) = p(A=0, V=0)+p(A=1, V=1) = pq + (1–p)(1–q)	

–  p(X=1) = p(A=0, V=1)+p(A=1, V=0) = (1–p)q + p(1–q)	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-14	

More Example	

•  Also:	

–  p(X=0|A=0) = q	

–  p(X=0|A=1) = 1–q	

–  p(X=1|A=0) = 1–q	

–  p(X=1|A=1) = q	

•  So you can compute:	

–  H(X) = –[(1–p)q + p(1–q)] lg [(1–p)q + p(1–q)]	

–  H(X|A) = –q lg q – (1–q) lg (1–q)	

–  I(A;X) = H(X)–H(X|A)	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-15	

I(A;X)	

I(A; X) = – [pq + (1 – p)(1 – q)] lg [pq + (1 – p)(1 – q)] –	

	
 	
[(1 – p)q + p(1 – q)] lg [(1 – p)q + p(1 – q)] +	

	
 	
q lg q + (1 – q) lg (1 – q)	

•  Maximum when p = 0.5; then	

I(A;X) = 1 + q lg q + (1–q) lg (1–q) = 1–H(V)	

•  So, if V constant, q = 0, and I(A;X) = 1	

•  Also, if q = p = 0.5, I(A;X) = 0	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-16	

Analyzing Capacity	

•  Assume a noisy channel	

•  Examine covert channel in MLS database

that uses replication to ensure availability	

–  2-phase commit protocol ensures atomicity	

– Coordinator process manages global execution	

– Participant processes do everything else	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-17	

How It Works	

•  Coordinator sends message to each participant

asking whether to abort or commit transaction	

–  If any says “abort”, coordinator stops	

•  Coordinator gathers replies	

–  If all say “commit”, sends commit messages back to

participants	

–  If any says “abort”, sends abort messages back to

participants	

–  Each participant that sent commit waits for reply; on

receipt, acts accordingly	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-18	

Exceptions	

•  Protocol times out, causing party to act as if
transaction aborted, when:	

– Coordinator doesn’t receive reply from

participant	

– Participant who sends a commit doesn’t receive

reply from coordinator	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-19	

Covert Channel Here	

•  Two types of components	

–  One at Low security level, other at High	

•  Low component begins 2-phase commit	

–  Both High, Low components must cooperate in the 2-phase

commit protocol	

•  High sends information to Low by selectively aborting

transactions	

–  Can send abort messages	

–  Can just not do anything	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-20	

Note	

•  If transaction always succeeded except
when High component sending information,
channel not noisy	

– Capacity would be 1 bit per trial	

– But channel noisy as transactions may abort for

reasons other than the sending of information	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-21	

Analysis	

•  X random variable: what High user wants to send	

–  Assume abort is 1, commit is 0	

–  p = p(X = 0) probability High sends 0	

•  A random variable: what Low receives	

–  For noiseless channel X = A	

•  n + 2 users	

–  Sender, receiver, n others	

–  q probability of transaction aborting at any of these n

users	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-22	

Basic Probabilities	

•  Probabilities of receiving given sending	

–  p(A=0 | X=0) = (1–q)n	

–  p(A=1 | X=0) = 1–(1–q)n	

–  p(A=0 | X=1) = 0	

–  p(A=1 | X=1) = 1	

•  So probabilities of receiving values:	

–  p(A=0) = p(1–q)n	

–  p(A=1) = 1–p(1–q)n	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-23	

More Probabilities	

•  Given sending, what is receiving?	

–  p(X=0 | A=0) = 1	

–  p(X=1 | A=0) = 0	

–  p(X=0 | A=1) = p[1–(1–q)n] / [1–p(1–q)n]	

–  p(X=1 | A=1) = (1–p) / [1–p(1–q)n]	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-24	

Entropies	

•  H(X) = –p lg p – (1–p) lg (1–p) 	

•  H(X | A) = –p[1–(1–q)n] lg p	

	
 	
– p[1–(1–q)n] lg [1–(1–q)n]	

	
 	
+ [1–p(1–q)n] lg [1–p(1–q)n] 	

	
 	
– (1–p) lg (1–p)	

•  I(A;X) = 	
–p(1–q)n lg p	

	
 	
+ p[1–(1–q)n] lg [1–(1–q)n]	

	
 	
– [1–p(1–q)n] lg [1–p(1–q)n]	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-25	

Capacity	

•  Maximize this with respect to p (probability
that High sends 0)	

– Notation: m = (1–q)n, M = (1–m)(1–m)	

– Maximum when p = M / (Mm+1)	

•  Capacity is:	

	
I(A;X) = Mm lg p + M(1–m) lg (1–m) + lg (Mm+1)	

(Mm+1)	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-26	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	

Noninterference and Capacity	

•  Alice sends information to Bob	

•  Random variables:	

– W represents inputs to machine	

– A represents inputs from Alice	

– V represents inputs not from Alice	

– B represents all possible outputs to Bob	

•  I(A;B) amount of information transmitted
over covert channel	

Slide #15-27	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	

When Is Capacity 0?	

Theorem: If A, V independent and A noninterfering
with B, then I(A;B) = 0	

Proof: Sufficient to show A, B independent, or	

p(A=a, B=b) = p(A=a)p(B=b)	

In general,	

p(A=a, B=b) = ΣVp(A=a, B=b, V=v)	

A noninterfering with B: deleting that part of input
making up a will not change output b.	

Slide #15-28	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	

Proof	

So only need to consider values of B that
could result from values of V; so	

p(A=a, B=b) = ΣV p(A=a, V=v)p(B=b | V=v)	

As V and A are independent,	

p(A=a, B=b) = ΣV p(A=a, V=V)p(B=b | V=v)	

	
= p(A=a)(ΣVp(B=b | V=v)p(V=v))	

	
= p(A=a)p(B=b)	

Slide #15-29	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	

Is Noninterference Needed?	

•  System has:	

–  1 state bit; initially 0	

–  3 inputs, IA, IB, IC	

–  1 output OX	

•  Each input bit flips state bit	

–  Value of state output	

•  Let w be sequence of inputs corresponding to
output x(w)	

–  x(w) = length(w) mod 2	

Slide #15-30	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	

IA and OX	

•  IA not noninterfering with OX	

–  Delete inputs from IA, changes length of output and
hence value of x(w)	

•  Let:	

–  W represents length of input sequences	

–  A represents length of components of input

subsequence contributed by IA	

–  V represents length of components of input

subsequence not contributed by IA	

•  A, V independent	

–  X represents output state	

Slide #15-31	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	

Case 1	

•  If V = 0, then:	

W = (A + V) mod 2 = A mod 2	

•  So W, I dependent	

•  So are A, X	

•  Hence I(A; X) ≠ 0	

Slide #15-32	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	

Case 2	

Let IB, IC produce inputs such that 	

p(V=0) = p(V=1) = 0.5	

Then:	

p(X=x) = p(V=x, A=0)+p(V=1–x, A=1)	

By independence of A, I:	

p(X=x) = p(V=x)p(A=0)+p(V=1–x)p(A=1)	

So p(X=x) = 0.25+0.25 = 0.5	

p(X=x | A=a) = p(X=(a+x) mod 2) = 0.5	

So A and X independent, giving I(A;X) = 0	

Slide #15-33	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	

Meaning	

•  Covert channel capacity will be 0 if:	

–  Input noninterfering with output, or	

–  Input sequence comes from independent

sources and all possible values from at least 1
source equiprobable	

•  In effect, distribution “hides” interference	

Slide #15-34	

Mitigation of Covert Channels	

•  Problem: these work by varying use of shared

resources	

•  One solution	

–  Require processes to say what resources they need
before running	

–  Provide access to them in a way that no other process
can access them	

•  Cumbersome	

–  Includes running (CPU covert channel)	

–  Resources stay allocated for lifetime of process	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-35	

Alternate Approach	

•  Obscure amount of resources being used	

– Receiver cannot distinguish between what the

sender is using and what is added	

•  How? Two ways:	

– Devote uniform resources to each process	

–  Inject randomness into allocation, use of

resources	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-36	

Uniformity	

•  Variation of isolation	

– Process can’t tell if second process using

resource	

•  Example: KVM/370 covert channel via

CPU usage	

– Give each VM a time slice of fixed duration	

– Do not allow VM to surrender its CPU time	

•  Can no longer send 0 or 1 by modulating CPU usage	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-37	

Randomness	

•  Make noise dominate channel	

–  Does not close it, but makes it useless	

•  Example: MLS database	

–  Probability of transaction being aborted by user other
than sender, receiver approaches 1	

•  q → 1	

–  I(A; X) → 0	

–  How to do this: resolve conflicts by aborting increases

q, or have participants abort transactions randomly	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-38	

Problem: Loss of Efficiency	

•  Fixed allocation, constraining use	

– Wastes resources	

•  Increasing probability of aborts	

– Some transactions that will normally commit

now fail, requiring more retries	

•  Policy: is the inefficiency preferable to the

covert channel?	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-39	

Example	

•  Goal: limit covert timing channels on VAX/VMM	

•  “Fuzzy time” reduces accuracy of system clocks

by generating random clock ticks	

–  Random interrupts take any desired distribution	

–  System clock updates only after each timer interrupt	

–  Kernel rounds time to nearest 0.1 sec before giving it to

VM	

•  Means it cannot be more accurate than timing of interrupts	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-40	

Example	

•  I/O operations have random delays	

•  Kernel distinguishes 2 kinds of time:	

–  Event time (when I/O event occurs)	

–  Notification time (when VM told I/O event occurred)	

•  Random delay between these prevents VM from figuring out
when event actually occurred)	

•  Delay can be randomly distributed as desired (in security
kernel, it’s 1–19ms)	

–  Added enough noise to make covert timing channels
hard to exploit	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-41	

Improvement	

•  Modify scheduler to run processes in
increasing order of security level	

– Now we’re worried about “reads up”, so …	

•  Countermeasures needed only when
transition from dominating VM to
dominated VM	

– Add random intervals between quanta for these

transitions	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-42	

The Pump	

•  Tool for controlling communications path between
High and Low	

communications buffer

Low process High process

High
buffer

Low
buffer

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-43	

Details	

•  Communications buffer of length n	

–  Means it can hold up to n messages	

•  Messages numbered	

•  Pump ACKs each message as it is moved from

High (Low) buffer to communications buffer	

•  If pump crashes, communications buffer preserves

messages	

–  Processes using pump can recover from crash	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-44	

Covert Channel	

•  Low fills communications buffer	

–  Send messages to pump until no ACK	

–  If High wants to send 1, it accepts 1 message from

pump; if High wants to send 0, it does not	

–  If Low gets ACK, message moved from Low buffer to

communications buffer ⇒ High sent 1	

–  If Low doesn’t get ACK, no message moved ⇒ High

sent 0	

•  Meaning: if High can control rate at which pump

passes messages to it, a covert timing channel	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-45	

Performance vs. Capacity	

•  Assume Low process, pump can process
messages more quickly than High process	

•  Li random variable: time from Low sending
message to pump to Low receiving ACK	

•  Hi random variable: average time for High
to ACK each of last n messages	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-46	

Case1: E(Li) > Hi	

•  High can process messages more quickly than Low can get

ACKs	

•  Contradicts above assumption	

–  Pump must be delaying ACKs	

–  Low waits for ACK whether or not communications buffer is full	

•  Covert channel closed	

•  Not optimal	

–  Process may wait to send message even when there is room	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-47	

Case 2: E(Li) < Hi	

•  Low sending messages faster than High can
remove them	

•  Covert channel open	

•  Optimal performance	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-48	

Case 3: E(Li) = Hi	

•  Pump, processes handle messages at same
rate	

•  Covert channel open	

– Bandwidth decreased from optimal case (can’t

send messages over covert channel as fast)	

•  Performance not optimal	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-49	

Adding Noise	

•  Shown: adding noise to approximate case 3	

–  Covert channel capacity reduced to 1/nr where r time from Low
sending message to pump to Low receiving ACK when
communications buffer not full	

–  Conclusion: use of pump substantially reduces capacity of covert
channel between High, Low processes when compared to direct
connection	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	
 Slide #15-50	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	

Assurance	

•  Trust	

•  Problems from lack of assurance	

•  Types of assurance	

•  Life cycle and assurance	

•  Waterfall life cycle model	

•  Other life cycle models	

Slide #15-51	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	

Trust	

•  Trustworthy entity has sufficient credible
evidence leading one to believe that the
system will meet a set of requirements	

•  Trust is a measure of trustworthiness relying
on the evidence	

•  Assurance is confidence that an entity meets
its security requirements based on evidence
provided by applying assurance techniques	

Slide #15-52	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	

Relationships	

Policy

Mechanisms

Assurance

Statement of requirements that explicitly defines
the security expectations of the mechanism(s)

Provides justification that the mechanism meets policy
through assurance evidence and approvals based on
evidence

Executable entities that are designed and implemented
to meet the requirements of the policy

Slide #15-53	

March 1, 2011	
 ECS 235B, Winter Quarter 2011	

Problem Sources	

1.  Requirements definitions, omissions, and mistakes	

2.  System design flaws	

3.  Hardware implementation flaws, such as wiring and chip flaws	

4.  Software implementation errors, program bugs, and compiler bugs	

5.  System use and operation errors and inadvertent mistakes	

6.  Willful system misuse	

7.  Hardware, communication, or other equipment malfunction	

8.  Environmental problems, natural causes, and acts of God	

9.  Evolution, maintenance, faulty upgrades, and decommissions	

Slide #15-54	

