
June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Lecture 18: More Assurance	

•  Reviews of assurance evidence	

•  Security testing	

•  Penetration testing	

Slide #18-1	

June 1, 2004	

Reviews of Assurance Evidence	

•  Reviewers given guidelines for review	

•  Other roles:	

–  Scribe: takes notes	

–  Moderator: controls review process	

–  Reviewer: examines assurance evidence	

–  Author: author of assurance evidence	

–  Observer: observe process silently	

•  Important: managers may only be reviewers, and
only then if their technical expertise warrants it	

ECS 235B, Winter Quarter 2011	

 Slide #18-2	

June 1, 2004	

Setting Review Up	

•  Moderator manages review process	

–  If not ready, moderator and author’s manager discuss
how to make it ready with author	

–  May split it up into several reviews	

–  Chooses team, defines ground rules	

•  Technical Review	

–  Reviewers follow rules, commenting on any issues they

uncover	

•  May request moderator to stop review, send back to author	

–  General and specific comments to author	

ECS 235B, Winter Quarter 2011	

 Slide #18-3	

June 1, 2004	

Review Meeting	

•  Moderator is master of ceremonies	

– Grammatical issues presented first	

– General and specific comments next	

– Goal is to collect comments on entity, not to

resolve differences	

– Scribes write down comments and who made it

(anyone can see it, help scribe, verify comment
made)	

ECS 235B, Winter Quarter 2011	

 Slide #18-4	

June 1, 2004	

Conflict Resolution	

•  After meeting, scribe creates Master Comment

List	

–  Reviewers mark “Agree” or “Challenge”	

–  All comments that everyone “Agree”s are put on

Official Comment List	

–  Rest must be resolved by reviewers	

•  Moderator, reviewers then:	

–  Accept as is	

–  Accept with changes on OCL	

–  Reject	

ECS 235B, Winter Quarter 2011	

 Slide #18-5	

June 1, 2004	

Conflict Resolution	

•  Author takes OCL, makes changes as sees
fit	

•  Author then meets with reviewers	

– Explains how each comment made by reviewer

was handled	

– All must be resolved to satisfaction of author,

reviewer	

•  Review completed	

ECS 235B, Winter Quarter 2011	

 Slide #18-6	

Implementation Assurance	

Considerations that support assurance	

•  Modular, with minimum of well-defined

interfaces	

–  Remove non-security functionality from modules

enforcing security functionality	

•  Good choice of programming language	

–  Especially those providing built-in features to help
avoid common problems	

•  Follow good coding standards	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

 Slide #18-7	

Implementation Management	

•  Configuration management: control of
changes made throughout development,
operational life cycle	

– Hardware, software, firmware	

– Documentation, test documentation	

– Testing, test fixtures	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

 Slide #18-8	

Tools and Processes	

•  Version control and tracking	

–  Enable rolling back to earlier versions, comparison of
changes among versions	

•  Change authorization	

–  Prevent conflicts, ensure specific people check things in	

•  Integration procedures	

–  Define steps to select appropriate versions to generate

system	

•  Tools for product generation	

–  Generate system from proper versions provided by
integration procedures	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

 Slide #18-9	

Justification	

•  How do you show implementation meets
design?	

– Code reviews	

– Requirements tracing	

–  Informal correspondence	

– Security testing	

– Formal proof techniques	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

 Slide #18-10	

Security Testing	

•  Functional testing: tests how well an entity
meets its specification	

– Called black box testing 	

•  Structural testing: tests based on analysis of
code in order to develop test cases	

– Called white box testing	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

 Slide #18-11	

Components	

3 components to security testing	

•  Security functional testing	

–  Functional testing specific to security issues
described in relevant specification	

•  Security structural testing	

–  Structural testing specific to security

implementation found in relevant code	

•  Security requirements testing	

–  Security functional testing specific to security
requirements found in requirements specification	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

 Slide #18-12	

When Testing Occurs	

•  Unit testing	

–  Testing on code module before integration	

–  Done by developer	

•  System testing	

–  Functional testing of integrated modules	

–  Done by integration team	

•  Third-party testing (independent testing)	

–  Testing performed by a group outside development

organization	

•  Security Testing	

–  Testing addressing the product security	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

 Slide #18-13	

Security Functional Testing	

•  Differs from ordinary functional testing	

– Ordinary functional testing focuses on most

commonly used functions	

– Security functional testing focuses on functions

that invoke security mechanisms	

•  Especially the least used aspects	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

 Slide #18-14	

Test Coverage	

•  Describes how completely entity has been
tested against its functional specification	

– Security testing needs broader coverage	

– Completed test coverage analysis provides

evidence that external interfaces have been
tested	

–  Interim test coverage analysis shows what else
needs to be tested	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

 Slide #18-15	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Penetration Testing	

•  Testing to verify that a system satisfies certain
constraints	

•  Hypothesis stating system characteristics,
environment, and state relevant to vulnerability	

•  Result is compromised system state	

•  Apply tests to try to move system from state in

hypothesis to compromised system state	

Slide #18-16	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Notes	

•  Penetration testing is a testing technique, not a

verification technique	

–  It can prove the presence of vulnerabilities, but not the

absence of vulnerabilities	

•  For formal verification to prove absence, proof

and preconditions must include all external factors	

–  Realistically, formal verification proves absence of

flaws within a particular program, design, or
environment and not the absence of flaws in a computer
system (think incorrect configurations, etc.)	

Slide #18-17	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Penetration Studies	

•  Test for evaluating the strengths and effectiveness
of all security controls on system	

–  Also called tiger team attack or red team attack	

–  Goal: violate site security policy	

–  Not a replacement for careful design, implementation,

and structured testing	

–  Tests system in toto, once it is in place	

•  Includes procedural, operational controls as well as
technological ones	

Slide #18-18	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Goals	

•  Attempt to violate specific constraints in security

and/or integrity policy	

–  Implies metric for determining success	

–  Must be well-defined	

•  Example: subsystem designed to allow owner to
require others to give password before accessing
file (i.e., password protect files)	

–  Goal: test this control	

–  Metric: did testers get access either without a password

or by gaining unauthorized access to a password?	

Slide #18-19	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Goals	

•  Find some number of vulnerabilities, or

vulnerabilities within a period of time	

–  If vulnerabilities categorized and studied, can draw

conclusions about care taken in design, implementation,
and operation	

–  Otherwise, list helpful in closing holes but not more	

•  Example: vendor gets confidential documents, 30

days later publishes them on web	

–  Goal: obtain access to such a file; you have 30 days	

–  Alternate goal: gain access to files; no time limit (a

Trojan horse would give access for over 30 days)	

Slide #18-20	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Layering of Tests	

1.  External attacker with no knowledge of system	

•  Locate system, learn enough to be able to access it	

2.  External attacker with access to system	

•  Can log in, or access network servers	

•  Often try to expand level of access	

3.  Internal attacker with access to system	

•  Testers are authorized users with restricted accounts

(like ordinary users)	

•  Typical goal is to gain unauthorized privileges or

information	

Slide #18-21	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Layering of Tests (con’t)	

•  Studies conducted from attacker’s point of view	

•  Environment is that in which attacker would

function	

•  If information about a particular layer irrelevant,

layer can be skipped	

–  Example: penetration testing during design,

development skips layer 1	

–  Example: penetration test on system with guest account

usually skips layer 2	

Slide #18-22	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Methodology	

•  Usefulness of penetration study comes from
documentation, conclusions	

–  Indicates whether flaws are endemic or not	

–  It does not come from success or failure of

attempted penetration	

•  Degree of penetration’s success also a

factor	

–  In some situations, obtaining access to

unprivileged account may be less successful
than obtaining access to privileged account	

Slide #18-23	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Flaw Hypothesis Methodology	

1.  Information gathering	

•  Become familiar with system’s functioning	

2.  Flaw hypothesis	

•  Draw on knowledge to hypothesize vulnerabilities	

3.  Flaw testing	

•  Test them out	

4.  Flaw generalization	

•  Generalize vulnerability to find others like it	

5.  (maybe) Flaw elimination	

•  Testers eliminate the flaw (usually not included)	

Slide #18-24	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Information Gathering	

•  Devise model of system and/or components	

– Look for discrepancies in components	

– Consider interfaces among components	

•  Need to know system well (or learn
quickly!)	

– Design documents, manuals help	

•  Unclear specifications often misinterpreted, or
interpreted differently by different people	

– Look at how system manages privileged users	

Slide #18-25	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Flaw Hypothesizing	

•  Examine policies, procedures	

–  May be inconsistencies to exploit	

–  May be consistent, but inconsistent with design or

implementation	

–  May not be followed	

•  Examine implementations	

–  Use models of vulnerabilities to help locate potential

problems	

–  Use manuals; try exceeding limits and restrictions; try

omitting steps in procedures	

Slide #18-26	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Flaw Hypothesizing (con’t)	

•  Identify structures, mechanisms controlling
system	

–  These are what attackers will use	

–  Environment in which they work, and were built, may

have introduced errors	

•  Throughout, draw on knowledge of other systems

with similarities	

–  Which means they may have similar vulnerabilities	

•  Result is list of possible flaws	

Slide #18-27	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Flaw Testing	

•  Figure out order to test potential flaws	

–  Priority is function of goals	

•  Example: to find major design or implementation problems,

focus on potential system critical flaws	

•  Example: to find vulnerability to outside attackers, focus on

external access protocols and programs	

•  Figure out how to test potential flaws	

–  Best way: demonstrate from the analysis	

•  Common when flaw arises from faulty spec, design, or
operation	

–  Otherwise, must try to exploit it	

Slide #18-28	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Flaw Testing (con’t)	

•  Design test to be least intrusive as possible	

–  Must understand exactly why flaw might arise	

•  Procedure	

–  Back up system	

–  Verify system configured to allow exploit	

•  Take notes of requirements for detecting flaw	

–  Verify existence of flaw	

•  May or may not require exploiting the flaw	

•  Make test as simple as possible, but success must be

convincing	

–  Must be able to repeat test successfully	

Slide #18-29	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Flaw Generalization	

•  As tests succeed, classes of flaws emerge	

–  Example: programs read input into buffer on stack,
leading to buffer overflow attack; others copy command
line arguments into buffer on stack ⇒ these are
vulnerable too	

•  Sometimes two different flaws may combine for
devastating attack	

–  Example: flaw 1 gives external attacker access to

unprivileged account on system; second flaw allows
any user on that system to gain full privileges ⇒ any
external attacker can get full privileges	

Slide #18-30	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Flaw Elimination	

•  Usually not included as testers are not best folks to

fix this	

–  Designers and implementers are	

•  Requires understanding of context, details of flaw
including environment, and possibly exploit	

–  Design flaw uncovered during development can be

corrected and parts of implementation redone	

•  Don’t need to know how exploit works	

–  Design flaw uncovered at production site may not be
corrected fast enough to prevent exploitation	

•  So need to know how exploit works	

Slide #18-31	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Michigan Terminal System	

•  General-purpose OS running on IBM 360,
370 systems	

•  Class exercise: gain access to terminal
control structures	

– Had approval and support of center staff	

– Began with authorized account (level 3)	

Slide #18-32	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Step 1: Information Gathering	

•  Learn details of system’s control flow and

supervisor	

–  When program ran, memory split into segments	

–  0-4: supervisor, system programs, system state	

•  Protected by hardware mechanisms	

–  5: system work area, process-specific information

including privilege level	

•  Process should not be able to alter this	

–  6 on: user process information	

•  Process can alter these	

•  Focus on segment 5	

Slide #18-33	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Step 2: Information Gathering	

•  Segment 5 protected by virtual memory protection
system	

–  System mode: process can access, alter data in segment

5, and issue calls to supervisor	

–  User mode: segment 5 not present in process address

space (and so can’t be modified)	

•  Run in user mode when user code being executed	

•  User code issues system call, which in turn issues

supervisor call	

Slide #18-34	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

How to Make a Supervisor Call	

•  System code checks parameters to ensure supervisor

accesses authorized locations only	

–  Parameters passed as list of addresses (X, X+1, X+2) constructed in

user segment	

–  Address of list (X) passed via register 	

X

X X + 1X + 2

X + 2 …

Slide #18-35	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Step 3: Flaw Hypothesis	

•  Consider switch from user to system mode	

–  System mode requires supervisor privileges	

•  Found: a parameter could point to another element in

parameter list	

–  Below: address in location X+1 is that of parameter at X+2	

–  Means: system or supervisor procedure could alter parameter’s

address after checking validity of old address	

X

X X + 1X + 2

X + 2 …

Slide #18-36	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Step 4: Flaw Testing	

•  Find a system routine that:	

–  Used this calling convention;	

–  Took at least 2 parameters and altered 1	

–  Could be made to change parameter to any value (such

as an address in segment 5)	

•  Chose line input routine	

–  Returns line number, length of line, line read	

•  Setup:	

–  Set address for storing line number to be address of line
length	

Slide #18-37	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Step 5: Execution	

•  System routine validated all parameter addresses	

–  All were indeed in user segment	

•  Supervisor read input line	

–  Line length set to value to be written into segment 5	

•  Line number stored in parameter list	

–  Line number was set to be address in segment 5	

•  When line read, line length written into location

address of which was in parameter list	

–  So it overwrote value in segment 5	

Slide #18-38	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Step 6: Flaw Generalization	

•  Could not overwrite anything in segments 0-4	

–  Protected by hardware	

•  Testers realized that privilege level in segment 5

controlled ability to issue supervisor calls (as
opposed to system calls)	

–  And one such call turned off hardware protection for

segments 0-4 …	

•  Effect: this flaw allowed attackers to alter

anything in memory, thereby completely
controlling computer	

Slide #18-39	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Burroughs B6700	

•  System architecture: based on strict file typing	

–  Entities: ordinary users, privileged users, privileged
programs, OS tasks	

•  Ordinary users tightly restricted	

•  Other 3 can access file data without restriction but constrained

from compromising integrity of system	

–  No assemblers; compilers output executable code	

–  Data files, executable files have different types	

•  Only compilers can produce executables	

•  Writing to executable or its attributes changes its type to data	

•  Class exercise: obtain status of privileged user	

Slide #18-40	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Step 1: Information Gathering	

•  System had tape drives	

– Writing file to tape preserved file contents	

– Header record indicates file attributes including

type	

•  Data could be copied from one tape to

another	

–  If you change data, it’s still data	

Slide #18-41	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Step 2: Flaw Hypothesis	

•  System cannot detect change to executable
file if that file is altered off-line	

Slide #18-42	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Step 3: Flaw Testing	

•  Write small program to change type of any file

from data to executable	

–  Compiled, but could not be used yet as it would alter

file attributes, making target a data file	

–  Write this to tape	

•  Write a small utility to copy contents of tape 1 to
tape 2	

–  Utility also changes header record of contents to

indicate file was a compiler (and so could output
executables)	

Slide #18-43	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Creating the Compiler	

•  Run copy program	

–  As header record copied, type becomes “compiler”	

•  Reinstall program as a new compiler	

•  Write new subroutine, compile it normally, and

change machine code to give privileges to anyone
calling it (this makes it data, of course)	

–  Now use new compiler to change its type from data to

executable	

•  Write third program to call this	

–  Now you have privileges	

Slide #18-44	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Corporate Computer System	

•  Goal: determine whether corporate security
measures were effective in keeping external
attackers from accessing system	

•  Testers focused on policies and procedures	

– Both technical and non-technical	

Slide #18-45	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Step 1: Information Gathering	

•  Searched Internet	

– Got names of employees, officials	

– Got telephone number of local branch, and

from them got copy of annual report	

•  Constructed much of the company’s

organization from this data	

–  Including list of some projects on which

individuals were working	

Slide #18-46	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Step 2: Get Telephone Directory	

•  Corporate directory would give more needed

information about structure	

–  Tester impersonated new employee	

•  Learned two numbers needed to have something delivered off-
site: employee number of person requesting shipment, and
employee’s Cost Center number	

–  Testers called secretary of executive they knew most
about	

•  One impersonated an employee, got executive’s employee
number	

•  Another impersonated auditor, got Cost Center number	

–  Had corporate directory sent to off-site “subcontractor”	

Slide #18-47	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Step 3: Flaw Hypothesis	

•  Controls blocking people giving passwords
away not fully communicated to new
employees	

– Testers impersonated secretary of senior

executive	

•  Called appropriate office	

•  Claimed senior executive upset he had not been

given names of employees hired that week	

•  Got the names	

Slide #18-48	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Step 4: Flaw Testing	

•  Testers called newly hired people	

–  Claimed to be with computer center	

–  Provided “Computer Security Awareness Briefing”

over phone	

–  During this, learned:	

•  Types of computer systems used	

•  Employees’ numbers, logins, and passwords	

•  Called computer center to get modem numbers	

–  These bypassed corporate firewalls	

•  Success	

Slide #18-49	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Penetrating a System	

•  Goal: gain access to system	

•  We know its network address and nothing else	

•  First step: scan network ports of system	

–  Protocols on ports 79, 111, 512, 513, 514, and 540 are
typically run on UNIX systems	

•  Assume UNIX system; SMTP agent probably
sendmail	

–  This program has had lots of security problems	

–  Maybe system running one such version …	

•  Next step: connect to sendmail on port 25	

Slide #18-50	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Output of Network Scan	

ftp 21/tcp File Transfer!
telnet 23/tcp Telnet!
smtp 25/tcp Simple Mail Transfer!
finger 79/tcp Finger!
sunrpc 111/tcp SUN Remote Procedure Call!
exec 512/tcp remote process execution (rexecd)!
login 513/tcp remote login (rlogind)!
shell 514/tcp rlogin style exec (rshd)!
printer 515/tcp spooler (lpd)!
uucp 540/tcp uucpd!
nfs 2049/tcp networked file system!
xterm 6000/tcp x-windows server!

Slide #18-51	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Output of sendmail	

220 zzz.com sendmail 3.1/zzz.3.9, Dallas, Texas, ready

at Wed, 2 Apr 97 22:07:31 CST!
	

 	

 	

Version 3.1 has the “wiz” vulnerability that recognizes	

	

 	

 	

the “shell” command … so let’s try it!
	

 	

 	

Start off by identifying yourself!

helo xxx.org!
250 zzz.com Hello xxx.org, pleased to meet you!

	

 	

 	

Now see if the “wiz” command works … if it says “command	

	

 	

 	

unrecognized”, we’re out of luck!

wiz!
250 Enter, O mighty wizard!!

	

 	

 	

It does! And we didn’t need a password … so get a shell!
shell!
#!

	

 	

 	

And we have full privileges as the superuser, root!
Slide #18-52	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Penetrating a System (Revisited)	

•  Goal: from an unprivileged account on system,

gain privileged access	

•  First step: examine system	

–  See it has dynamically loaded kernel	

–  Program used to add modules is loadmodule and must

be privileged	

–  So an unprivileged user can run a privileged program

… this suggests an interface that controls this	

–  Question: how does loadmodule work?	

Slide #18-53	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

loadmodule	

•  Validates module ad being a dynamic load module	

•  Invokes dynamic loader ld.so to do actual load;

also calls arch to determine system architecture
(chip set)	

–  Check, but only privileged user can call ld.so 	

•  How does loadmodule execute these programs?	

–  Easiest way: invoke them directly using system(3),

which does not reset environment when it spawns
subprogram	

Slide #18-54	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

First Try	

•  Set environment to look in local directory, write
own version of ld.so, and put it in local directory	

–  This version will print effective UID, to demonstrate

we succeeded	

•  Set search path to look in current working

directory before system directories	

•  Then run loadmodule	

–  Nothing is printed—darn!	

–  Somehow changing environment did not affect

execution of subprograms—why not?	

Slide #18-55	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

What Happened	

•  Look in executable to see how ld.so, arch invoked	

–  Invocations are “/bin/ld.so”, “/bin/arch”	

–  Changing search path didn’t matter as never used	

•  Reread system(3) manual page	

–  It invokes command interpreter sh to run subcommands	

•  Read sh(1) manual page	

–  Uses IFS environment variable to separate words	

–  These are by default blanks … can we make it include a
“/”?	

•  If so, sh would see “/bin/ld.so” as “bin” followed by “ld.so”,
so it would look for command “bin”	

Slide #18-56	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Second Try	

•  Change value of IFS to include “/”	

•  Change name of our version of ld.so to bin	

– Search path still has current directory as first
place to look for commands	

•  Run loadmodule	

– Prints that its effective UID is 0 (root)	

•  Success!	

Slide #18-57	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Generalization	

•  Process did not clean out environment
before invoking subprocess, which inherited
environment	

– So, trusted program working with untrusted

environment (input) … result should be
untrusted, but is trusted!	

•  Look for other privileged programs that
spawn subcommands	

– Especially if they do so by calling system(3) …	

Slide #18-58	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Penetrating a System redux	

•  Goal: gain access to system	

•  We know its network address and nothing

else	

•  First step: scan network ports of system	

– Protocols on ports 17, 135, and 139 are
typically run on Windows NT server systems	

Slide #18-59	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Output of Network Scan	

qotd 17/tcp Quote of the Day!
ftp 21/tcp File Transfer [Control]!
loc-srv 135/tcp Location Service!
netbios-ssn 139/tcp NETBIOS Session Service [JBP] !

Slide #18-60	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

First Try	

•  Probe for easy-to-guess passwords	

– Find system administrator has password
“Admin”	

– Now have administrator (full) privileges on
local system	

•  Now, go for rights to other systems in
domain	

Slide #18-61	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Next Step	

•  Domain administrator installed service
running with domain admin privileges on
local system	

•  Get program that dumps local security
authority database	

– This gives us service account password	

– We use it to get domain admin privileges, and

can access any system in domain	

Slide #18-62	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Generalization	

•  Sensitive account had an easy-to-guess
password	

– Possible procedural problem	

•  Look for weak passwords on other systems,
accounts	

•  Review company security policies, as well
as education of system administrators and
mechanisms for publicizing the policies	

Slide #18-63	

June 1, 2004	

 ECS 235B, Winter Quarter 2011	

Debate	

•  How valid are these tests?	

–  Not a substitute for good, thorough specification,
rigorous design, careful and correct implementation,
meticulous testing	

–  Very valuable a posteriori testing technique	

•  Ideally unnecessary, but in practice very necessary	

•  Finds errors introduced due to interactions with
users, environment	

–  Especially errors from incorrect maintenance and

operation	

–  Examines system, site through eyes of attacker	

Slide #18-64	

