Outline for January 30, 2012

Reading: §5.2.3–5.2.4

- 1. Bell-LaPadula: formal model
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space V = B × M × F × H where:
 B set of current accesses (i.e., access modes each subject has currently to each object);
 M access permission matrix;
 F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject;
 H hierarchy of system objects, functions h : O → P(O) with two properties:
 i. If o_i ≠ o_j, then h(o_i) ∩ h(o_j) = Ø
 ii. There is no set {o₁,..., o_k} ⊆ O such that for each i, o_{i+1} ∈ h(o_i) and o_{k+1} = o₁.
 - c. Set of requests is R
 - d. Set of decisions is D
 - e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.
 - f. System $\Sigma(R, D, W, z_0) \subseteq X \times Y \times Z$ such that $(x, y, z) \in \Sigma(R, D, W, z_0)$ iff $(x_t, y_t, z_t, z_{t-1}) \in W$ for each $t \in T$; latter is an action of system
 - g. Theorem: $\Sigma(R, D, W, z_0)$ satisfies the simple security condition for any initial state z_0 that satisfies the simple security condition iff W satisfies the following conditions for each action $(r_i, d_i, (b', m', f', h'), (b, m, f, h))$:
 - i. each $(s, o, x) \in b' b$ satisfies the simple security condition relative to f' (i.e., x is not read, or x is read and $f_s(s) \text{ dom } f_o(o)$); and
 - ii. if $(s, o, x) \in b$ does not satisfy the simple security condition relative to f', then $(s, o, x) \notin b'$
 - h. Theorem: $\Sigma(R, D, W, z_0)$ satisfies the *-property relative to $S' \subseteq S$ for any initial state z_0 that satisfies the *-property relative to S' iff W satisfies the following conditions for each $(r_i, d_i, (b', m', f', h'), (b, m, f, h))$:
 - i. for each $s \in S'$, any $(s, o, x) \in b' b$ satisfies the *-property with respect to f'; and
 - ii. for each $s \in S'$, if $(s, o, x) \in b$ does not satisfy the *-property with respect to f', then $(s, o, x) \notin b'$
 - i. Theorem: $\Sigma(R, D, W, z_0)$ satisfies the ds-property iff the initial state z_0 satisfies the ds-property and W satisfies the following conditions for each $(r_i, d_i, (b', m', f', h'), (b, m, f, h))$:
 - i. if $(s, o, x) \in b' b$, then $x \in m'[s, o]$; and
 - ii. if $(s, o, x) \in b$ and $x \in m'[s, o]$, then $(s, o, x) \notin b'$
 - j. Basic Security Theorem: A system $\Sigma(R, D, W, z_0)$ is secure iff z_0 is a secure state and W satisfies the conditions of the above three theorems for each action.