
January 28, 2014	

 ECS 235B Winter Quarter 2014	

January 28, 2014	

•  Bell-LaPadula	

–  Informally	

– Formally	

– Example Instantiation	

Slide #1	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Confidentiality Policy	

•  Goal: prevent the unauthorized disclosure of
information	

– Deals with information flow	

–  Integrity incidental	

•  Multi-level security models are best-known
examples	

– Bell-LaPadula Model basis for many, or most,

of these	

Slide #2	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Bell-LaPadula Model, Step 1	

•  Security levels arranged in linear ordering	

– Top Secret: highest	

– Secret	

– Confidential	

– Unclassified: lowest	

•  Levels consist of security clearance L(s)	

– Objects have security classification L(o)	

Slide #3	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Example	

security level	

 subject	

 object	

Top Secret	

 Tamara	

 Personnel Files	

Secret	

 Samuel	

 E-Mail Files	

Confidential	

 Claire	

 Activity Logs	

Unclassified	

 Ulaley	

 Telephone Lists	

•  Tamara can read all files	

•  Claire cannot read Personnel or E-Mail Files	

•  Ulaley can only read Telephone Lists	

Slide #4	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Reading Information	

•  Information flows up, not down	

–  “Reads up” disallowed, “reads down” allowed	

•  Simple Security Condition (Step 1)	

– Subject s can read object o iff, L(o) ≤ L(s) and s

has permission to read o	

•  Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)	

– Sometimes called “no reads up” rule	

Slide #5	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Writing Information	

•  Information flows up, not down	

–  “Writes up” allowed, “writes down” disallowed	

•  *-Property (Step 1)	

– Subject s can write object o iff L(s) ≤ L(o) and s

has permission to write o	

•  Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)	

– Sometimes called “no writes down” rule	

Slide #6	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Basic Security Theorem, Step 1	

•  If a system is initially in a secure state, and
every transition of the system satisfies the
simple security condition, step 1, and the *-
property, step 1, then every state of the
system is secure	

– Proof: induct on the number of transitions	

Slide #7	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Bell-LaPadula Model, Step 2	

•  Expand notion of security level to include
categories	

•  Security level is (clearance, category set)	

•  Examples	

–  (Top Secret, { NUC, EUR, ASI })	

–  (Confidential, { EUR, ASI })	

–  (Secret, { NUC, ASI })	

Slide #8	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Levels and Lattices	

•  (A, C) dom (Aʹ′, Cʹ′) iff Aʹ′ ≤ A and Cʹ′ ⊆ C	

•  Examples	

–  (Top Secret, {NUC, ASI}) dom (Secret, {NUC})	

–  (Secret, {NUC, EUR}) dom (Confidential,{NUC, EUR})	

–  (Top Secret, {NUC}) ¬dom (Confidential, {EUR})	

•  Let C be set of classifications, K set of categories.
Set of security levels L = C × K, dom form lattice	

–  lub(L) = (max(A), C)	

–  glb(L) = (min(A), ∅)	

Slide #9	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Levels and Ordering	

•  Security levels partially ordered	

– Any pair of security levels may (or may not) be

related by dom	

•  “dominates” serves the role of “greater

than” in step 1	

–  “greater than” is a total ordering, though	

Slide #10	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Reading Information	

•  Information flows up, not down	

–  “Reads up” disallowed, “reads down” allowed	

•  Simple Security Condition (Step 2)	

– Subject s can read object o iff L(s) dom L(o)

and s has permission to read o	

•  Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)	

– Sometimes called “no reads up” rule	

Slide #11	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Writing Information	

•  Information flows up, not down	

–  “Writes up” allowed, “writes down” disallowed	

•  *-Property (Step 2)	

– Subject s can write object o iff L(o) dom L(s)

and s has permission to write o	

•  Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)	

– Sometimes called “no writes down” rule	

Slide #12	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Basic Security Theorem, Step 2	

•  If a system is initially in a secure state, and every

transition of the system satisfies the simple
security condition, step 2, and the *-property, step
2, then every state of the system is secure	

–  Proof: induct on the number of transitions	

–  In actual Basic Security Theorem, discretionary access

control treated as third property, and simple security
property and *-property phrased to eliminate
discretionary part of the definitions — but simpler to
express the way done here.	

Slide #13	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Problem	

•  Colonel has (Secret, {NUC, EUR})
clearance	

•  Major has (Secret, {EUR}) clearance	

– Major can talk to colonel (“write up” or “read

down”)	

– Colonel cannot talk to major (“read up” or

“write down”)	

•  Clearly absurd!	

Slide #14	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Solution	

•  Define maximum, current levels for subjects	

–  maxlevel(s) dom curlevel(s)	

•  Example	

–  Treat Major as an object (Colonel is writing to him/her)	

–  Colonel has maxlevel (Secret, { NUC, EUR })	

–  Colonel sets curlevel to (Secret, { EUR })	

–  Now L(Major) dom curlevel(Colonel)	

•  Colonel can write to Major without violating “no writes down”	

–  Does L(s) mean curlevel(s) or maxlevel(s)?	

•  Formally, we need a more precise notation	

Slide #15	

Formal Model	

•  Allows us to reason precisely about the
model	

•  Provides a formalism to validate systems
against	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #16	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Formal Model Definitions	

•  S subjects, O objects, P rights	

–  Defined rights: r read, a write, w read/write, e empty	

•  M set of possible access control matrices	

•  C set of clearances/classifications, K set of

categories, L = C × K set of security levels	

•  F = { (fs, fo, fc) }	

–  fs(s) maximum security level of subject s	

–  fc(s) current security level of subject s	

–  fo(o) security level of object o	

Slide #17	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

More Definitions	

•  Hierarchy functions H: O→P(O)	

•  Requirements	

1.  oi ≠ oj ⇒ h(oi) ∩ h(oj) = ∅	

2.  There is no set { o1, …, ok } ⊆ O such that, for i = 1,

…, k, oi+1 ∈ h(oi) and ok+1 = o1.	

•  Example	

–  Tree hierarchy; take h(o) to be the set of children of o	

–  No two objects have any common children (#1)	

–  There are no loops in the tree (#2)	

Slide #18	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

States and Requests	

•  V set of states	

– Each state is (b, m, f, h)	

•  b is like m, but excludes rights not allowed by f	

•  R set of requests for access	

•  D set of outcomes	

–  y allowed, n not allowed, i illegal, o error	

•  W set of actions of the system	

– W ⊆ R × D × V × V	

Slide #19	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

History	

•  X = RN set of sequences of requests	

•  Y = DN set of sequences of decisions	

•  Z = VN set of sequences of states	

•  Interpretation	

–  At time t ∈ N, system is in state zt–1 ∈ V; request xt ∈ R
causes system to make decision yt ∈ D, transitioning the
system into a (possibly new) state zt ∈ V	

•  System representation: Σ(R, D, W, z0) ∈ X × Y × Z	

–  (x, y, z) ∈ Σ(R, D, W, z0) iff (xt, yt, zt–1, zt) ∈ W for all t	

–  (x, y, z) called an appearance of Σ(R, D, W, z0)	

Slide #20	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Example	

•  S = { s }, O = { o }, P = { r, w }	

•  C = { High, Low }, K = { All }	

•  For every f ∈ F, either fc(s) = (High, { All }) or

fc(s) = (Low, { All })	

•  Initial State:	

–  b1 = { (s, o, r) }, m1 ∈ M gives s read access over o, and
for f1 ∈ F, fc,1(s) = (High, {All}), fo,1(o) = (Low, {All})	

–  Call this state v0 = (b1, m1, f1, h1) ∈ V.	

Slide #21	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

First Transition	

•  Now suppose in state v0: S = { s, sʹ′ }	

•  Suppose fc,1(sʹ′) = (Low, {All})	

•  m1 ∈ M gives s and sʹ′ read access over o	

•  As sʹ′ not written to o, b1 = { (s, o, r) }	

•  z0 = v0; if sʹ′ requests r1 to write to o:	

–  System decides d1 = y	

–  New state v1 = (b2, m1, f1, h1) ∈ V	

–  b2 = { (s, o, r), (sʹ′, o, w) }	

–  Here, x = (r1), y = (y), z = (v0, v1)	

Slide #22	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Second Transition	

•  Current state v1 = (b2, m1, f1, h1) ∈ V	

–  b2 = { (s, o, r), (sʹ′, o, w) }	

–  fc,1(s) = (High, { All }), fo,1(o) = (Low, { All })	

•  s requests r2 to write to o:	

–  System decides d2 = n (as fc,1(s) dom fo,1(o))	

–  New state v2 = (b2, m1, f1, h1) ∈ V	

–  b2 = { (s, o, r), (sʹ′, o, w) }	

–  So, x = (r1, r2), y = (y, n), z = (v0, v1, v2), where v2 = v1	

Slide #23	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Basic Security Theorem	

•  Define action, secure formally	

– Using a bit of foreshadowing for “secure”	

•  Restate properties formally	

– Simple security condition	

–  *-property	

– Discretionary security property	

•  State conditions for properties to hold	

•  State Basic Security Theorem	

Slide #24	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Action	

•  A request and decision that causes the system to

move from one state to another	

–  Final state may be the same as initial state	

•  (r, d, v, vʹ′) ∈ R × D × V × V is an action of Σ(R, D,
W, z0) iff there is an (x, y, z) ∈ Σ(R, D, W, z0) and a
t ∈ N such that (r, d, v, vʹ′) = (xt, yt, zt–1, zt)	

–  Request r made when system in state v; decision d

moves system into (possibly the same) state vʹ′	

–  Correspondence with (xt, yt, zt–1, zt) makes states,

requests, part of a sequence	

Slide #25	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Simple Security Condition	

•  (s, o, p) ∈ S × O × P satisfies the simple security

condition relative to f (written ssc rel f) iff one of
the following holds:	

1.  p = e or p = a	

2.  p = r or p = w and fs(s) dom fo(o)	

•  Holds vacuously if rights do not involve reading	

•  If all elements of b satisfy ssc rel f, then state

satisfies simple security condition	

•  If all states satisfy simple security condition,

system satisfies simple security condition	

Slide #26	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Necessary and Sufficient	

•  Σ(R, D, W, z0) satisfies the simple security

condition for any secure state z0 iff for every
action (r, d, (b, m, f, h), (bʹ′, mʹ′, fʹ′, hʹ′)), W satisfies	

–  Every (s, o, p) ∈ bʹ′ – b satisfies ssc rel f	

–  Every (s, o, p) ∈ b that does not satisfy ssc rel f is not in

bʹ′	

•  Note: “secure” means z0 satisfies ssc rel f	

•  First says every (s, o, p) added satisfies ssc rel f;

second says any (s, o, p) in b that does not satisfy
ssc rel f is deleted	

Slide #27	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

*-Property	

•  b(s: p1, …, pn) set of all objects that s has p1, …, pn

access to	

•  State (b, m, f, h) satisfies the *-property iff for each s ∈ S

the following hold:	

1.  b(s: a) ≠ ∅ ⇒ [∀o ∈ b(s: a) [fo(o) dom fc(s)]]	

2.  b(s: w) ≠ ∅ ⇒ [∀o ∈ b(s: w) [fo(o) = fc(s)]]	

3.  b(s: r) ≠ ∅ ⇒ [∀o ∈ b(s: r) [fc(s) dom fo(o)]]	

•  Idea: for writing, object dominates subject; for reading,
subject dominates object	

Slide #28	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

*-Property	

•  If all states satisfy simple security condition,
system satisfies simple security condition	

•  If a subset Sʹ′ of subjects satisfy *-property, then
*-property satisfied relative to Sʹ′ ⊆ S 	

•  Note: tempting to conclude that *-property
includes simple security condition, but this is false	

–  See condition placed on w right for each	

Slide #29	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Necessary and Sufficient	

•  Σ(R, D, W, z0) satisfies the *-property relative to Sʹ′ ⊆ S for
any secure state z0 iff for every action (r, d, (b, m, f, h), (bʹ′,
mʹ′, fʹ′, hʹ′)), W satisfies the following for every s ∈ Sʹ′	

–  Every (s, o, p) ∈ b´ – b satisfies the *-property relative to Sʹ′	

–  Every (s, o, p) ∈ b that does not satisfy the *-property relative to S
ʹ′ is not in b´	

•  Note: “secure” means z0 satisfies *-property relative to Sʹ′	

•  First says every (s, o, p) added satisfies the *-property

relative to Sʹ′; second says any (s, o, p) in b that does not
satisfy the *-property relative to Sʹ′ is deleted	

Slide #30	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Discretionary Security Property	

•  State (b, m, f, h) satisfies the discretionary

security property iff, for each (s, o, p) ∈ b, then
p ∈ m[s, o]	

•  Idea: if s can read o, then it must have rights to
do so in the access control matrix m	

•  This is the discretionary access control part of
the model	

–  The other two properties are the mandatory access

control parts of the model	

Slide #31	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Necessary and Sufficient	

•  Σ(R, D, W, z0) satisfies the ds-property for any

secure state z0 iff, for every action (r, d, (b, m, f,
h), (bʹ′, mʹ′, fʹ′, hʹ′)), W satisfies:	

–  Every (s, o, p) ∈ b´ – b satisfies the ds-property	

–  Every (s, o, p) ∈ b that does not satisfy the ds-property

is not in b	

•  Note: “secure” means z0 satisfies ds-property	

•  First says every (s, o, p) added satisfies the ds-

property; second says any (s, o, p) in b that does
not satisfy the *-property is deleted	

Slide #32	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Secure	

•  A system is secure iff it satisfies:	

– Simple security condition	

–  *-property	

– Discretionary security property	

•  A state meeting these three properties is
also said to be secure	

Slide #33	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

Basic Security Theorem	

•  Σ(R, D, W, z0) is a secure system if z0 is a
secure state and W satisfies the conditions
for the preceding three theorems	

– The theorems are on the slides titled

“Necessary and Sufficient”	

Slide #34	

Rule	

•  ρ: R × V → D × V	

•  Takes a state and a request, returns a decision and

a (possibly new) state	

•  Rule ρ ssc-preserving if for all (r, v) ∈ R × V and

v satisfying ssc rel f, ρ(r, v) = (d, vʹ′) means that vʹ′
satisfies ssc rel fʹ′.	

–  Similar definitions for *-property, ds-property	

–  If rule meets all 3 conditions, it is security-preserving	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #35	

Unambiguous Rule Selection	

•  Problem: multiple rules may apply to a request in

a state	

–  if two rules act on a read request in state v …	

•  Solution: define relation W(ω) for a set of rules ω
= { ρ1, …, ρm } such that a state (r, d, v, vʹ′) ∈W(ω)
iff either	

–  d = i; or 	

–  for exactly one integer j, ρj(r, v) = (d, vʹ′)	

•  Either request is illegal, or only one rule applies 	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #36	

Rules Preserving SSC	

•  Let ω be set of ssc-preserving rules. Let state z0

satisfy simple security condition. Then Σ(R, D,
W(ω), z0) satisfies simple security condition	

–  Proof: by contradiction.	

•  Choose (x, y, z) ∈ Σ(R, D, W(ω), z0) as state not satisfying
simple security condition; then choose t ∈ N such that (xt, yt, zt)
is first appearance not meeting simple security condition	

•  As (xt, yt, zt, zt–1) ∈ W(ω), there is unique rule ρ ∈ ω such that
ρ(xt, zt–1) = (yt, zt) and yt ≠ i.	

•  As ρ ssc-preserving, and zt–1 satisfies simple security condition,
then zt meets simple security condition, contradiction.	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #37	

Adding States Preserving SSC	

•  Let v = (b, m, f, h) satisfy simple security condition. Let

(s, o, p) ∉ b, bʹ′ = b ∪ { (s, o, p) }, and vʹ′ = (bʹ′, m, f, h).
Then vʹ′ satisfies simple security condition iff:	

1.  Either p = e or p = a; or	

2.  Either p = r or p = w, and fc(s) dom fo(o)	

–  Proof	

1.  Immediate from definition of simple security condition and vʹ′
satisfying ssc rel f	

2.  vʹ′ satisfies simple security condition means fs(s) dom fo(o), and for
converse, (s, o, p) ∈ bʹ′ satisfies ssc rel f, so vʹ′ satisfies simple
security condition	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #38	

Rules, States Preserving *-
Property	

•  Let ω be set of *-property-preserving rules, state
z0 satisfies *-property. Then Σ(R, D, W(ω), z0)
satisfies *-property	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #39	

Rules, States Preserving ds-
Property	

•  Let ω be set of ds-property-preserving rules, state
z0 satisfies ds-property. Then Σ(R, D, W(ω), z0)
satisfies ds-property	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #40	

Combining	

•  Let ρ be a rule and ρ(r, v) = (d, vʹ′), where v = (b, m, f, h)

and vʹ′ = (bʹ′, mʹ′, fʹ′, hʹ′). Then:	

1.  If bʹ′ ⊆ b, fʹ′ = f, and v satisfies the simple security condition,

then vʹ′ satisfies the simple security condition	

2.  If bʹ′ ⊆ b, fʹ′ = f, and v satisfies the *-property, then vʹ′ satisfies

the *-property	

3.  If bʹ′ ⊆ b, m[s, o] ⊆ mʹ′ [s, o] for all s ∈ S and o ∈ O, and v

satisfies the ds-property, then vʹ′ satisfies the ds-property	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #41	

Proof	

1.  Suppose v satisfies simple security property.	

a)  b´ ⊆ b and (s, o, r) ∈ bʹ′ implies (s, o, r) ∈ b	

b)  b´ ⊆ b and (s, o, w) ∈ bʹ′ implies (s, o, w) ∈ b	

c)  So fc(s) dom fo(o)	

d)  But fʹ′ = f	

e)  Hence fʹ′c(s) dom fʹ′o(o)	

f)  So vʹ′ satisfies simple security condition	

2, 3 proved similarly	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #42	

Example Instantiation: Multics	

•  11 rules affect rights:	

–  set to request, release access	

–  set to give, remove access to different subject	

–  set to create, reclassify objects	

–  set to remove objects	

–  set to change subject security level	

•  Set of “trusted” subjects ST ⊆ S	

–  *-property not enforced; subjects trusted not to violate	

•  Δ(ρ) domain	

–  determines if components of request are valid	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #43	

get-read Rule	

•  Request r = (get, s, o, r)	

–  s gets (requests) the right to read o	

•  Rule is ρ1(r, v):	

if (r ≠ Δ(ρ1)) then ρ1(r, v) = (i, v);	

else if (fs(s) dom fo(o) and [s ∈ ST or fc(s) dom fo(o)]	

	

and r ∈ m[s, o])	

	

 	

 	

then ρ1(r, v) = (y, (b ∪ { (s, o, r) }, m, f, h));	

else ρ1(r, v) = (n, v);	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #44	

Security of Rule	

•  The get-read rule preserves the simple
security condition, the *-property, and the
ds-property	

– Proof	

•  Let v satisfy all conditions. Let ρ1(r, v) = (d, vʹ′). If
vʹ′ = v, result is trivial. So let vʹ′ = (b ∪ { (s2, o, r) },
m, f, h).	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #45	

Proof	

•  Consider the simple security condition.	

–  From the choice of vʹ′, either bʹ′ – b = ∅ or { (s2, o, r) }	

–  If bʹ′ – b = ∅, then { (s2, o, r) } ∈ b, so v = vʹ′, proving

that vʹ′ satisfies the simple security condition.	

–  If bʹ′ – b = { (s2, o, r) }, because the get-read rule

requires that fs(s) dom fo(o), an earlier result says that v ́
satisfies the simple security condition.	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #46	

Proof	

•  Consider the *-property.	

–  Either s2 ∈ ST or fc(s) dom fo(o) from the definition of

get-read 	

–  If s2 ∈ ST, then s2 is trusted, so *-property holds by

definition of trusted and ST.	

–  If fc(s) dom fo(o), an earlier result says that vʹ′ satisfies

the simple security condition.	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #47	

Proof	

•  Consider the discretionary security property.	

–  Conditions in the get-read rule require r ∈ m[s, o] and

either bʹ′ – b = ∅ or { (s2, o, r) }	

–  If bʹ′ – b = ∅, then { (s2, o, r) } ∈ b, so v = vʹ′, proving

that v´ satisfies the simple security condition.	

–  If bʹ′ – b = { (s2, o, r) }, then { (s2, o, r) } ∉ b, an earlier

result says that vʹ′ satisfies the ds-property.	

January 28, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #48	

