
March 4, 2014	

•  Compiler-based mechanisms	

•  Execution-based mechanisms	

•  The confinement problem	

•  Isolation: virtual machines, sandboxes	

•  Covert channels	

– Detection	

– Mitigation	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #1	

Exceptions	

proc copy(x: int class { x };!
 var y: int class Low)!
var sum: int class { x };!
 z: int class Low;!
begin!
 y := z := sum := 0;!
 while z = 0 do begin!
 sum := sum + x;!
 y := y + 1;!
 end!
end!

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #2	

Exceptions (cont)	

•  When sum overflows, integer overflow trap	

–  Procedure exits	

–  Value of x is MAXINT/y	

–  Info flows from y to x, but x ≤ y never checked	

•  Need to handle exceptions explicitly	

–  Idea: on integer overflow, terminate loop	

on integer_overflow_exception sum do z := 1;!

–  Now info flows from sum to z, meaning sum ≤ z	

–  This is false (sum = { x } dominates z = Low)	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #3	

Infinite Loops	

proc copy(x: int 0..1 class { x };!
 var y: int 0..1 class Low)!
begin!
 y := 0;!
 while x = 0 do!
 (* nothing *);!
 y := 1;!
end!
•  If x = 0 initially, infinite loop	

•  If x = 1 initially, terminates with y set to 1	

•  No explicit flows, but implicit flow from x to y	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #4	

Semaphores	

Use these constructs:	

wait(x): if x = 0 then block until x > 0; x := x – 1;!
signal(x): x := x + 1;	

–  x is semaphore, a shared variable	

– Both executed atomically	

Consider statement	

wait(sem); x := x + 1;!

•  Implicit flow from sem to x	

– Certification must take this into account!	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #5	

Flow Requirements	

•  Semaphores in signal irrelevant	

–  Don’t affect information flow in that process	

•  Statement S is a wait	

–  shared(S): set of shared variables read	

•  Idea: information flows out of variables in shared(S)	

–  fglb(S): glb of assignment targets following S	

–  So, requirement is shared(S) ≤ fglb(S)	

•  begin S1; . . . Sn end	

–  All Si must be secure	

–  For all i, shared(Si) ≤ fglb(Si)	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #6	

Example	

begin!
 x := y + z; (* S1 *)!
 wait(sem); (* S2 *)!
 a := b * c – x; (* S3 *)!
end!

•  Requirements:	

–  lub(y, z) ≤ x	

–  lub(b, c, x) ≤ a	

–  sem ≤ a	

•  Because fglb(S2) = a and shared(S2) = sem	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #7	

Concurrent Loops	

•  Similar, but wait in loop affects all statements in
loop	

–  Because if flow of control loops, statements in loop

before wait may be executed after wait	

•  Requirements	

–  Loop terminates	

–  All statements S1, …, Sn in loop secure	

–  lub(shared(S1), …, shared(Sn) } ≤ glb(t1, …, tm)	

•  Where t1, …, tm are variables assigned to in loop	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #8	

Loop Example	

while i < n do begin!
 a[i] := item; (* S1 *)!
 wait(sem); (* S2 *)!
 i := i + 1; (* S3 *)!
end!

•  Conditions for this to be secure:	

–  Loop terminates, so this condition met	

–  S1 secure if lub(i, item) ≤ a[i]	

–  S2 secure if sem ≤ i and sem ≤ a[i]	

–  S3 trivially secure	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #9	

cobegin/coend	

cobegin!
 x := y + z; (* S1 *)!
 a := b * c – y; (* S2 *)!
coend	

•  No information flow among statements	

–  For S1, lub(y, z) ≤ x	

–  For S2, lub(b, c, y) ≤ a	

•  Security requirement is both must hold	

–  So this is secure if lub(y, z) ≤ x ∧ lub(b, c, y) ≤ a	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #10	

Soundness	

•  Above exposition intuitive	

•  Can be made rigorous:	

– Express flows as types	

– Equate certification to correct use of types	

– Checking for valid information flows same as

checking types conform to semantics imposed
by security policy	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #11	

Execution-Based Mechanisms	

•  Detect and stop flows of information that violate
policy	

–  Done at run time, not compile time	

•  Obvious approach: check explicit flows	

–  Problem: assume for security, x ≤ y	

if x = 1 then y := a;	

–  When x ≠ 1, x = High, y = Low, a = Low, appears okay

—but implicit flow violates condition!	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #12	

Fenton’s Data Mark Machine	

•  Each variable has an associated class	

•  Program counter (PC) has one too	

•  Idea: branches are assignments to PC, so

you can treat implicit flows as explicit flows	

•  Stack-based machine, so everything done in

terms of pushing onto and popping from a
program stack	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #13	

Instruction Description	

•  skip means instruction not executed	

•  push(x, x) means push variable x and its

security class x onto program stack	

•  pop(x, x) means pop top value and security

class from program stack, assign them to
variable x and its security class x
respectively	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #14	

Instructions	

•  x := x + 1 (increment)	

–  Same as:	

!if PC ≤ x then x := x + 1 else skip!

•  if x = 0 then goto n else x := x – 1 (branch
and save PC on stack)	

–  Same as:	

!if x = 0 then begin!
!!push(PC, PC); PC := lub{PC, x}; PC := n;!
 end else if PC ≤ x then!
!!x := x - 1!
!else!
!!skip;!

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #15	

More Instructions	

•  if’ x = 0 then goto n else x := x – 1

(branch without saving PC on stack)	

–  Same as:	

!if x = 0 then!
!!if x ≤ PC then PC := n else skip!
!else!
!!if PC ≤ x then x := x - 1 else skip!

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #16	

More Instructions	

•  return (go to just after last if)	

–  Same as:	

!pop(PC, PC);!

•  halt (stop)	

–  Same as:	

!if program stack empty then halt!

–  Note stack empty to prevent user obtaining information
from it after halting	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #17	

Example Program	

1  if x = 0 then goto 4 else x := x - 1!
2  if z = 0 then goto 6 else z := z - 1!
3  halt!
4  z := z + 1!
5  return!
6  y := y + 1!
7  return!
•  Initially x = 0 or x = 1, y = 0, z = 0	

•  Program copies value of x to y	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #18	

Example Execution!
x 	

y 	

z 	

PC 	

PC 	

stack 	

check	

1 	

0 	

0 	

1 	

Low 	

—	

0 	

0 	

0 	

2 	

Low 	

— 	

 	

Low ≤ x	

0 	

0 	

0 	

6 	

z 	

(3, Low)	

0 	

1 	

0 	

7 	

z 	

(3, Low) 	

PC ≤ y	

0 	

1 	

0 	

3 	

Low 	

—	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #19	

Handling Errors	

•  Ignore statement that causes error, but
continue execution	

–  If aborted or a visible exception taken, user

could deduce information	

– Means errors cannot be reported unless user has

clearance at least equal to that of the
information causing the error	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #20	

Variable Classes	

•  Up to now, classes fixed	

– Check relationships on assignment, etc.	

•  Consider variable classes	

– Fenton’s Data Mark Machine does this for PC	

– On assignment of form y := f(x1, …, xn), y

changed to lub(x1, …, xn)	

– Need to consider implicit flows, also	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #21	

Example Program	

// Copy value from x to y; initially, x is 0 or 1!
proc copy(x: int class { x };!
 var y: int class { y })!
var z: int class variable { Low };!
begin!
!y := 0;!
!z := 0;!
!if x = 0 then z := 1;!
!if z = 0 then y := 1;!

end;!

•  z changes when z assigned to	

•  Assume y < x!

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #22	

Analysis of Example	

•  x = 0	

–  z := 0 sets z to Low	

–  if x = 0 then z := 1 sets z to 1 and z to x	

–  So on exit, y = 0	

•  x = 1	

–  z := 0 sets z to Low	

–  if z = 0 then y := 1 sets y to 1 and checks that

lub{Low, z} ≤ y	

–  So on exit, y = 1	

•  Information flowed from x to y even though y < x	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #23	

Handling This (1)	

•  Fenton’s Data Mark Machine detects
implicit flows violating certification rules	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #24	

Handling This (2)	

•  Raise class of variables assigned to in conditionals
even when branch not taken	

•  Also, verify information flow requirements even
when branch not taken	

•  Example:	

–  In if x = 0 then z := 1, z raised to x whether or not

x = 0	

–  Certification check in next statement, that z ≤ y, fails, as

z = x from previous statement, and y ≤ x	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #25	

Handling This (3)	

•  Change classes only when explicit flows occur,
but all flows (implicit as well as explicit) force
certification checks	

•  Example	

–  When x = 0, first “if” sets z to Low then checks x ≤ z	

–  When x = 1, first “if” checks that x ≤ z	

–  This holds if and only if x = Low	

•  Not possible as y < x = Low and there is no such class	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #26	

Examples	

•  Use access controls of various types to
inhibit information flows	

•  Security Pipeline Interface	

– Analyzes data moving from host to destination	

•  Secure Network Server Mail Guard	

– Controls flow of data between networks that

have different security classifications	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #27	

Security Pipeline Interface	

•  SPI analyzes data going to, from host	

–  No access to host main memory	

–  Host has no control over SPI	

host	

second disk	

first disk	

SPI	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #28	

Use	

•  Store files on first disk	

•  Store corresponding crypto checksums on second

disk	

•  Host requests file from first disk	

–  SPI retrieves file, computes crypto checksum	

–  SPI retrieves file’s crypto checksum from second disk	

–  If a match, file is fine and forwarded to host	

–  If discrepancy, file is compromised and host notified	

•  Integrity information flow restricted here	

–  Corrupt file can be seen but will not be trusted	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #29	

Secure Network Server Mail
Guard (SNSMG)	

•  Filters analyze outgoing messages	

–  Check authorization of sender	

–  Sanitize message if needed (words and viruses, etc.)	

•  Uses type checking to enforce this	

–  Incoming, outgoing messages of different type	

–  Only appropriate type can be moved in or out	

MTA	

 MTA	

out	

 in	

filters	

SECRET
computer	

UNCLASSIFIED
computer	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #30	

Confinement	

•  What is the problem?	

•  Isolation: virtual machines, sandboxes	

•  Detecting covert channels	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #31	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

Example Problem	

•  Server balances bank accounts for clients	

•  Server security issues:	

– Record correctly who used it	

– Send only balancing info to client	

•  Client security issues:	

– Log use correctly	

– Do not save or retransmit data client sends	

Slide #32	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

Generalization	

•  Client sends request, data to server	

•  Server performs some function on data	

•  Server returns result to client	

•  Access controls:	

–  Server must ensure the resources it accesses on behalf
of client include only resources client is authorized to
access	

–  Server must ensure it does not reveal client’s data to
any entity not authorized to see the client’s data	

Slide #33	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

Confinement Problem	

•  Problem of preventing a server from leaking
information that the user of the service
considers confidential	

Slide #34	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

Total Isolation	

•  Process cannot communicate with any other
process	

•  Process cannot be observed	

	

Impossible for this process to leak information	

– Not practical as process uses observable
resources such as CPU, secondary storage,
networks, etc.	

Slide #35	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

Example	

•  Processes p, q not allowed to communicate	

–  But they share a file system!	

•  Communications protocol:	

–  p sends a bit by creating a file called 0 or 1, then a
second file called send	

•  p waits until send is deleted before repeating to send another
bit	

–  q waits until file send exists, then looks for file 0 or 1;
whichever exists is the bit	

•  q then deletes 0, 1, and send and waits until send is recreated
before repeating to read another bit	

Slide #36	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

Covert Channel	

•  A path of communication not designed to be
used for communication	

•  In example, file system is a (storage) covert
channel	

Slide #37	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

Rule of Transitive Confinement	

•  If p is confined to prevent leaking, and it
invokes q, then q must be similarly confined
to prevent leaking	

•  Rule: if a confined process invokes a second
process, the second process must be as
confined as the first	

Slide #38	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

Lipner’s Notes	

•  All processes can obtain rough idea of time	

– Read system clock or wall clock time	

– Determine number of instructions executed	

•  All processes can manipulate time	

– Wait some interval of wall clock time	

– Execute a set number of instructions, then

block	

Slide #39	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

Kocher’s Attack	

•  This computes x = az mod n, where z = z0 … zk–1	

	

x := 1; atmp := a;!
for i := 0 to k–1 do begin!
!if zi = 1 then!
! !x := (x * atmp) mod n;!
!atmp := (atmp * atmp) mod n;!
end!
result := x;!

•  Length of run time related to number of 1 bits in z	

Slide #40	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

Isolation	

•  Present process with environment that appears to

be a computer running only those processes being
isolated	

–  Process cannot access underlying computer system, any

process(es) or resource(s) not part of that environment	

–  A virtual machine	

•  Run process in environment that analyzes actions
to determine if they leak information	

–  Alters the interface between process(es) and computer	

Slide #41	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

Virtual Machine	

•  Program that simulates hardware of a
machine	

– Machine may be an existing, physical one or an

abstract one	

•  Why?	

– Existing OSes do not need to be modified	

•  Run under VMM, which enforces security policy	

•  Effectively, VMM is a security kernel	

Slide #42	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

VMM as Security Kernel	

•  VMM deals with subjects (the VMs)	

–  Knows nothing about the processes within the VM	

•  VMM applies security checks to subjects	

–  By transitivity, these controls apply to processes on VMs	

•  Thus, satisfies rule of transitive confinement	

Slide #43	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

Example 1: KVM/370	

•  KVM/370 is security-enhanced version of
VM/370 VMM	

– Goal: prevent communications between VMs of

different security classes	

– Like VM/370, provides VMs with minidisks,

sharing some portions of those disks	

– Unlike VM/370, mediates access to shared

areas to limit communication in accordance
with security policy	

Slide #44	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

Example 2: VAX/VMM	

•  Can run either VMS or Ultrix	

•  4 privilege levels for VM system	

– VM user, VM supervisor, VM executive, VM
kernel (both physical executive)	

•  VMM runs in physical kernel mode	

– Only it can access certain resources	

•  VMM subjects: users and VMs	

Slide #45	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

Example 2	

•  VMM has flat file system for itself	

– Rest of disk partitioned among VMs	

– VMs can use any file system structure	

•  Each VM has its own set of file systems	

– Subjects, objects have security, integrity classes	

•  Called access classes	

– VMM has sophisticated auditing mechanism	

Slide #46	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

Problem	

•  Physical resources shared	

– System CPU, disks, etc.	

•  May share logical resources	

– Depends on how system is implemented	

•  Allows covert channels	

Slide #47	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

Sandboxes	

•  An environment in which actions are
restricted in accordance with security policy	

– Limit execution environment as needed	

•  Program not modified	

•  Libraries, kernel modified to restrict actions	

– Modify program to check, restrict actions	

•  Like dynamic debuggers, profilers	

Slide #48	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

Examples Limiting Environment	

•  Java virtual machine	

–  Security manager limits access of downloaded
programs as policy dictates	

•  Sidewinder firewall	

–  Type enforcement limits access	

–  Policy fixed in kernel by vendor	

•  Domain Type Enforcement	

–  Enforcement mechanism for DTEL	

–  Kernel enforces sandbox defined by system

administrator	

Slide #49	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

Modifying Programs	

•  Add breakpoints or special instructions to
source, binary code	

– On trap or execution of special instructions,

analyze state of process	

•  Variant: software fault isolation 	

– Add instructions checking memory accesses,
other security issues	

– Any attempt to violate policy causes trap	

Slide #50	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

Example: Janus	

•  Implements sandbox in which system calls
checked	

– Framework does runtime checking	

– Modules determine which accesses allowed	

•  Configuration file	

–  Instructs loading of modules	

– Also lists constraints	

Slide #51	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

Configuration File	

basic module!
basic!
!
define subprocess environment variables!
putenv IFS=“\t\n “ PATH=/sbin:/bin:/usr/bin TZ=PST8PDT!
!
deny access to everything except files under /usr!
path deny read,write *!
path allow read,write /usr/*!
allow subprocess to read files in library directories!
needed for dynamic loading!
path allow read /lib/* /usr/lib/* /usr/local/lib/*!
needed so child can execute programs!
path allow read,exec /sbin/* /bin/* /usr/bin/*!

Slide #52	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

How It Works	

•  Framework builds list of relevant system calls	

–  Then marks each with allowed, disallowed actions	

•  When monitored system call executed	

–  Framework checks arguments, validates that call is allowed for

those arguments	

•  If not, returns failure	

•  Otherwise, give control back to child, so normal system call proceeds	

Slide #53	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

Use	

•  Reading MIME Mail: fear is user sets mail reader to

display attachment using Postscript engine	

–  Has mechanism to execute system-level commands	

–  Embed a file deletion command in attachment …	

•  Janus configured to disallow execution of any
subcommands by Postscript engine	

–  Above attempt fails	

Slide #54	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

Sandboxes, VMs, and TCB	

•  Sandboxes, VMs part of trusted computing
bases	

– Failure: less protection than security officers,

users believe	

–  “False sense of security”	

•  Must ensure confinement mechanism
correctly implements desired security policy	

Slide #55	

Covert Channels	

•  Shared resources as communication paths	

•  Covert storage channel uses attribute of

shared resource	

–  Disk space, message size, etc.	

•  Covert timing channel uses temporal or
ordering relationship among accesses to
shared resource	

–  Regulating CPU usage, order of reads on disk	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #56	

Example Storage Channel	

•  Processes p, q not allowed to communicate	

–  But they share a file system!	

•  Communications protocol:	

–  p sends a bit by creating a file called 0 or 1, then a
second file called send	

•  p waits until send is deleted before repeating to send another
bit	

–  q waits until file send exists, then looks for file 0 or 1;
whichever exists is the bit	

•  q then deletes 0, 1, and send and waits until send is recreated
before repeating to read another bit	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #57	

Example Timing Channel	

•  System has two VMs	

–  Sending machine S, receiving machine R	

•  To send:	

–  For 0, S immediately relinquishes CPU	

•  For example, run a process that instantly blocks	

–  For 1, S uses full quantum	

•  For example, run a CPU-intensive process	

•  R measures how quickly it gets CPU	

–  Uses real-time clock to measure intervals between access to shared

resource (CPU)	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #58	

Example Covert Channel	

•  Uses ordering of events; does not use clock	

•  Two VMs sharing disk cylinders 100 to 200	

–  SCAN algorithm schedules disk accesses	

–  One VM is High (H), other is Low (L)	

•  Idea: L will issue requests for blocks on cylinders 139 and
161 to be read	

–  If read as 139, then 161, it’s a 1 bit	

–  If read as 161, then 139, it’s a 0 bit	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #59	

How It Works	

•  L issues read for data on cylinder 150	

–  Relinquishes CPU when done; arm now at 150	

•  H runs, issues read for data on cylinder 140	

–  Relinquishes CPU when done; arm now at 140	

•  L runs, issues read for data on cylinders 139 and 161	

–  Due to SCAN, reads 139 first, then 161	

–  This corresponds to a 1	

•  To send a 0, H would have issued read for data on cylinder
160	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #60	

Analysis	

•  Timing or storage?	

–  Usual definition ⇒ storage (no timer, clock)	

•  Modify example to include timer	

–  L uses this to determine how long requests take to
complete	

–  Time to seek to 139 < time to seek to 161 ⇒ 1;
otherwise, 0	

•  Channel works same way	

–  Suggests it’s a timing channel; hence our definition	

March 4, 2014	

 ECS 235B Winter Quarter 2014	

 Slide #61	

