April 7: Safety Question

- Protection State Transitions
 - Commands
 - Conditional Commands
- Special Rights
 - Principle of Attenuation of Privilege
- Harrison-Ruzzo-Ullman result
 - Corollaries

General Case

- Answer: *no*
- Sketch of proof:

Reduce halting problem to safety problem

Turing Machine review:

- Infinite tape in one direction
- States *K*, symbols *M*; distinguished blank *b*
- Transition function $\delta(k, m) = (k', m', L)$ means in state *k*, symbol *m* on tape location replaced by symbol *m'*, head moves to left one square, and enters state *k'*
- Halting state is q_f ; TM halts when it enters this state

April 7, 2017

Mapping

ECS 235B Spring Quarter 2017

Mapping

Command Mapping

 $\delta(k, C) = (k_1, X, R)$ at intermediate becomes command $C_{k,C}(s_3, s_4)$ if own in $A[s_3, s_4]$ and k in $A[s_3, s_3]$ and C in $A[s_3, s_3]$ then delete k from $A[s_3, s_3]$; delete C from $A[s_3, s_3]$; enter X into $A[s_3, s_3]$; enter k_1 into $A[s_4, s_4]$;

end

Mapping

Command Mapping

```
\delta(k_1, D) = (k_2, Y, R) at end becomes
command crightmost<sub>k,C</sub>(s_4,s_5)
if end in A[s_4, s_4] and k_1 in A[s_4, s_4]
       and D in A[s_4, s_4]
then
  delete end from A[s_4, s_4];
  delete k_1 from A[s_4, s_4];
   delete D from A[S_A, S_A];
  enter Y into A[s_4, s_4];
   create subject S_5;
  enter own into A[s_4, s_5];
   enter end into A[s_5, s_5];
   enter k_2 into A[s_5, s_5];
end
```

Rest of Proof

- Protection system exactly simulates a TM
 - Exactly 1 end right in ACM
 - 1 right in entries corresponds to state
 - Thus, at most 1 applicable command
- If TM enters state q_f , then right has leaked
- If safety question decidable, then represent TM as above and determine if q_f leaks
 Implies halting problem decidable
- Conclusion: safety question undecidable

Other Results

- Set of unsafe systems is recursively enumerable
- Delete **create** primitive; then safety question is complete in **P**-**SPACE**
- Delete **destroy**, **delete** primitives; then safety question is undecidable
 - Systems are monotonic
- Safety question for biconditional protection systems is decidable
- Safety question for monoconditional, monotonic protection systems is decidable
- Safety question for monoconditional protection systems with create, enter, delete (and no destroy) is decidable.

Take-Grant Protection Model

- A specific (not generic) system
 Set of rules for state transitions
- Safety decidable, and in time linear with the size of the system
- Goal: find conditions under which rights can be transferred from one entity to another in the system

System

- 0 objects (files, ...)
- subjects (users, processes, ...)
- \otimes don't care (either a subject or an object)
- $G \vdash_x G'$ apply a rewriting rule x (witness) to G to get G'
- $G \vdash^* G'$ apply a sequence of rewriting rules (witness) to G to get G'
- $R = \{ t, g, r, w, \dots \}$ set of rights

Rules

More Rules

These four rules are called the *de jure* rules

April 7, 2017

ECS 235B Spring Quarter 2017

Slide #13

Symmetry

- 1. x creates (*tg* to new) v
- 2. z takes (g to v) from x
- 3. z grants (α to y) to v
- 4. x takes (α to y) from v

Similar result for grant

Islands

• *tg*-path: path of distinct vertices connected by edges labeled *t* or *g*

- Call them "tg-connected"

- island: maximal *tg*-connected subject-only subgraph
 - Any right one vertex has can be shared with any other vertex

Initial, Terminal Spans

- *initial span* from **x** to **y**
 - x subject
 - *tg*-path between **x**, **y** with word in $\{\vec{t*g}\} \cup \{\nu\}$
 - Means x can give rights it has to y
- *terminal span* from **x** to **y**
 - x subject
 - *tg*-path between **x**, **y** with word in $\{\vec{t} \in V\}$
 - Means x can acquire any rights y has

Bridges

• bridge: *tg*-path between subjects **x**, **y**, with associated word in

$$\{\vec{t}^*, \vec{t}^*, \vec{t}^* \ \ \vec{t}^* \ \vec{t}^* \ \vec{t}^* \ \vec{t}^* \ \ \vec{t}^*$$

- rights can be transferred between the two endpoints
- *not* an island as intermediate vertices are objects

Example

- islands
- bridges
- initial span
- terminal span

April 7, 2017

 $\{p, u\} \{w\} \{y, s'\}$ u, v, w; w, x, y p (associated word v) s's (associated word \vec{t})

ECS 235B Spring Quarter 2017

can•share Predicate

Definition:

can•*share*(*r*, **x**, **y**, *G*₀) if, and only if, there is a sequence of protection graphs *G*₀, ..., *G_n* such that *G*₀ ⊢* *G_n* using only *de jure* rules and in *G_n* there is an edge from **x** to **y** labeled *r*.

can•share Theorem

- can•share(r, x, y, G₀) if, and only if, there is an edge from x to y labeled r in G₀, or the following hold simultaneously:
 - There is an **s** in G_0 with an **s**-to-**y** edge labeled r
 - There is a subject $\mathbf{x}' = \mathbf{x}$ or initially spans to \mathbf{x}
 - There is a subject s' = s or terminally spans to s
 - There are islands I_1, \ldots, I_k connected by bridges, and **x'** in I_1 and **s'** in I_k

Outline of Proof

- s has r rights over y
- s' acquires r rights over y from s
 Definition of terminal span
- x' acquires r rights over y from s'
 - Repeated application of sharing among vertices in islands, passing rights along bridges
- x' gives r rights over y to x
 - Definition of initial span

Example Interpretation

- ACM is generic
 - Can be applied in any situation
- Take-Grant has specific rules, rights
 - Can be applied in situations matching rules, rights
- Question: what states can evolve from a system that is modeled using the Take-Grant Model?

Take-Grant Generated Systems

- Theorem: G_0 protection graph with 1 vertex, no edges; R set of rights. Then $G_0 \vdash^* G$ iff:
 - G finite directed graph consisting of subjects, objects, edges
 - Edges labeled from nonempty subsets of R
 - At least one vertex in *G* has no incoming edges

Outline of Proof

- \Rightarrow : By construction; *G* final graph in theorem
 - Let $\mathbf{x}_1, \ldots, \mathbf{x}_n$ be subjects in G
 - Let \mathbf{x}_1 have no incoming edges
- Now construct *G* ′ as follows:
 - 1. Do " \mathbf{x}_1 creates ($\alpha \cup \{g\}$ to) new subject \mathbf{x}_i "
 - 2. For all $(\mathbf{x}_i, \mathbf{x}_j)$ where \mathbf{x}_i has a rights over \mathbf{x}_j , do " \mathbf{x}_1 grants (α to \mathbf{x}_j) to \mathbf{x}_i "
 - 3. Let β be rights \mathbf{x}_i has over \mathbf{x}_j in *G*. Do " \mathbf{x}_1 removes (($\alpha \cup \{g\} - \beta$ to) \mathbf{x}_i "
- Now G' is desired G

April 7, 2017

Outline of Proof

- $\Leftarrow: \text{Let } \mathbf{v} \text{ be initial subject, and } G_0 \vdash^* G$
- Inspection of rules gives:
 - *G* is finite
 - -G is a directed graph
 - Subjects and objects only
 - All edges labeled with nonempty subsets of R
- Limits of rules:
 - None allow vertices to be deleted so \mathbf{v} in G
 - None add incoming edges to vertices without incoming edges, so v has no incoming edges

Example: Shared Buffer

- Goal: **p**, **q** to communicate through shared buffer **b** controlled by trusted entity **s**
 - 1. **s** creates ($\{r, w\}$ to new object) **b**
 - 2. **s** grants $(\{r, w\} \text{ to } \mathbf{b})$ to **p**
 - 3. **s** grants $(\{r, w\} \text{ to } \mathbf{b})$ to **q**

Key Question

- Characterize class of models for which safety is decidable
 - Existence: Take-Grant Protection Model is a member of such a class
 - Universality: In general, question undecidable, so for some models it is not decidable
- What is the dividing line?

Schematic Protection Model

- Type-based model
 - Protection type: entity label determining how control rights affect the entity
 - Set at creation and cannot be changed
 - Ticket: description of a single right over an entity
 - Entity has sets of tickets (called a *domain*)
 - Ticket is \mathbf{X}/r , where \mathbf{X} is entity and r right
 - Functions determine rights transfer
 - Link: are source, target "connected"?
 - Filter: is transfer of ticket authorized?

Link Predicate

- Idea: *link_i*(**X**, **Y**) if **X** can assert some control right over **Y**
- Conjunction of disjunction of:
 - $-\mathbf{X}/z \in dom(\mathbf{X})$
 - $-\mathbf{X}/z \in dom(\mathbf{Y})$
 - $-\mathbf{Y}/z \in dom(\mathbf{X})$
 - $-\mathbf{Y}/z \in dom(\mathbf{Y})$
 - true

Examples

• Take-Grant:

 $link(\mathbf{X}, \mathbf{Y}) = \mathbf{Y}/g \in dom(\mathbf{X}) \vee \mathbf{X}/t \in dom(\mathbf{Y})$

• Broadcast:

 $link(\mathbf{X}, \mathbf{Y}) = \mathbf{X}/b \in dom(\mathbf{X})$

• Pull:

 $link(\mathbf{X}, \mathbf{Y}) = \mathbf{Y}/p \in dom(\mathbf{Y})$

Filter Function

- Range is set of copyable tickets

 Entity type, right
- Domain is subject pairs
- Copy a ticket $\mathbf{X}/r:c$ from $dom(\mathbf{Y})$ to $dom(\mathbf{Z})$
 - $-\mathbf{X}/rc \in dom(\mathbf{Y})$
 - $-link_i(\mathbf{Y}, \mathbf{Z})$
 - $-\tau(\mathbf{Y})/r:c\in f_i(\tau(\mathbf{Y}),\tau(\mathbf{Z}))$
- One filter function per link function

Example

- $f(\tau(\mathbf{Y}), \tau(\mathbf{Z})) = T \times R$
 - Any ticket can be transferred (if other conditions met)

•
$$f(\tau(\mathbf{Y}), \tau(\mathbf{Z})) = T \times RI$$

 Only tickets with inert rights can be transferred (if other conditions met)

•
$$f(\tau(\mathbf{Y}), \tau(\mathbf{Z})) = \emptyset$$

– No tickets can be transferred

Example

- Take-Grant Protection Model
 - $-TS = \{ \text{ subjects } \}, TO = \{ \text{ objects } \}$

$$-RC = \{ tc, gc \}, RI = \{ rc, wc \}$$

- $-link(\mathbf{p}, \mathbf{q}) = \mathbf{p}/t \in dom(\mathbf{q}) \lor \mathbf{q}/g \in dom(\mathbf{p})$
- f(subject, subject) = { subject, object } × { tc, gc, rc, wc }