
April 12: Expressiveness and 
Policy

•  Expressiveness
– Multiparent create

•  Policies
•  Trust
•  Nature of Security Mechanisms
•  Policy Expression Languages
•  Limits on Secure and Precise Mechanisms

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #1



Expressive Power

•  How do the sets of systems that models can 
describe compare?
–  If HRU equivalent to SPM, SPM provides more 

specific answer to safety question
–  If HRU describes more systems, SPM applies 

only to the systems it can describe
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HRU vs. SPM

•  SPM more abstract 
–  Analyses focus on limits of model, not details of 

representation
•  HRU allows revocation

–  SPM has no equivalent to delete, destroy
•  HRU allows multiparent creates

–  SPM cannot express multiparent creates easily, and not 
at all if the parents are of different types because 
can•create allows for only one type of creator
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Multiparent Create

•  Solves mutual suspicion problem
– Create proxy jointly, each gives it needed rights

•  In HRU:
command multicreate(s0, s1, o)
if r in a[s0, s1] and r in a[s1, s0]
then
create object o;
enter r into a[s0, o];
enter r into a[s1, o];

end
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SPM and Multiparent Create

•  cc extended in obvious way
–  cc ⊆ TS × … × TS × T

•  Symbols
–  X1, …, Xn parents, Y created
–  R1,i, R2,i, R3, R4,i ⊆ R

•  Rules
–  crP,i(τ(X1), …, τ(Xn)) = Y/R1,1 ∪ Xi/R2,i

–  crC(τ(X1), …, τ(Xn)) = Y/R3 ∪ X1/R4,1 ∪ … ∪ Xn/R4,n
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Example
•  Anna, Bill must do something cooperatively

–  But they don’t trust each other
•  Jointly create a proxy

–  Each gives proxy only necessary rights
•  In ESPM:

–  Anna, Bill type a; proxy type p; right x ∈ R
–  cc(a, a) = p
–  crAnna(a, a, p) = crBill(a, a, p) = ∅
–  crproxy(a, a, p) = { Anna/x, Bill//x }
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2-Parent Joint Create Suffices

•  Goal: emulate 3-parent joint create with 2-
parent joint create

•  Definition of 3-parent joint create (subjects 
P1, P2, P3; child C):
–  cc(τ(P1), τ(P2), τ(P3)) = Z ⊆ T
–  crP1(τ(P1), τ(P2), τ(P3)) = C/R1,1 ∪ P1/R2,1
–  crP2(τ(P1), τ(P2), τ(P3)) = C/R2,1 ∪ P2/R2,2
–  crP3(τ(P1), τ(P2), τ(P3)) = C/R3,1 ∪ P3/R2,3
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General Approach

•  Define agents for parents and child
– Agents act as surrogates for parents
–  If create fails, parents have no extra rights
–  If create succeeds, parents, child have exactly 

same rights as in 3-parent creates
•  Only extra rights are to agents (which are never used 

again, and so these rights are irrelevant)
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Entities and Types

•  Parents P1, P2, P3 have types p1, p2, p3

•  Child C of type c
•  Parent agents A1, A2, A3 of types a1, a2, a3

•  Child agent S of type s
•  Type t is parentage

–  if X/t ∈ dom(Y), X is Y’s parent
•  Types t, a1, a2, a3, s are new types
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can•create

•  Following added to can•create:
–  cc(p1) = a1

–  cc(p2, a1) = a2

–  cc(p3, a2) = a3
•  Parents creating their agents; note agents have maximum of 2 

parents
–  cc(a3) = s

•  Agent of all parents creates agent of child

–  cc(s) = c
•  Agent of child creates child
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Creation Rules

•  Following added to create rule:
–  crP(p1, a1) = ∅
–  crC(p1, a1) = p1/Rtc

•  Agent’s parent set to creating parent; agent has all rights over 
parent

–  crPfirst(p2, a1, a2) = ∅
–  crPsecond(p2, a1, a2) = ∅
–  crC(p2, a1, a2) = p2/Rtc ∪ a1/tc

•  Agent’s parent set to creating parent and agent; agent has all 
rights over parent (but not over agent)
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Creation Rules
–  crPfirst(p3, a2, a3) = ∅
–  crPsecond(p3, a2, a3) = ∅
–  crC(p3, a2, a3) = p3/Rtc ∪ a2/tc

•  Agent’s parent set to creating parent and agent; agent has all 
rights over parent (but not over agent)

–  crP(a3, s) = ∅
–  crC(a3, s) = a3/tc

•  Child’s agent has third agent as parent crP(a3, s) = ∅
–  crP(s, c) = C/Rtc
–  crC(s, c) = c/R3t

•  Child’s agent gets full rights over child; child gets R3 rights 
over agent
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Link Predicates
•  Idea: no tickets to parents until child created

–  Done by requiring each agent to have its own parent 
rights

–  link1(A2, A1) = A1/t ∈ dom(A2) ∧ A2/t ∈ dom(A2)
–  link1(A3, A2) = A2/t ∈ dom(A3) ∧ A3/t ∈ dom(A3)
–  link2(S, A3) = A3/t ∈ dom(S) ∧ C/t ∈ dom(C)
–  link3(A1, C) = C/t ∈ dom(A1)
–  link3(A2, C) = C/t ∈ dom(A2)
–  link3(A3, C) = C/t ∈ dom(A3)
–  link4(A1, P1) = P1/t ∈ dom(A1) ∧ A1/t ∈ dom(A1)
–  link4(A2, P2) = P2/t ∈ dom(A2) ∧ A2/t ∈ dom(A2)
–  link4(A3, P3) = P3/t ∈ dom(A3) ∧ A3/t ∈ dom(A3)
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Filter Functions
•  f1(a2, a1) = a1/t ∪ c/Rtc
•  f1(a3, a2) = a2/t ∪ c/Rtc
•  f2(s, a3) = a3/t ∪ c/Rtc
•  f3(a1, c) = p1/R4,1
•  f3(a2, c) = p2/R4,2
•  f3(a3, c) = p3/R4,3
•  f4(a1, p1) = c/R1,1 ∪ p1/R2,1
•  f4(a2, p2) = c/R1,2 ∪ p2/R2,2
•  f4(a3, p3) = c/R1,3 ∪ p3/R2,3
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Construction
Create A1, A2, A3, S, C; then
•  P1 has no relevant tickets
•  P2 has no relevant tickets
•  P3 has no relevant tickets
•  A1 has P1/Rtc
•  A2 has P2/Rtc ∪ A1/tc
•  A3 has P3/Rtc ∪ A2/tc
•  S has A3/tc ∪ C/Rtc
•  C has C/R3t
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Construction
•  Only link2(S, A3) true ⇒ apply f2

–  A3 has P3/Rtc ∪ A2/t ∪ A3/t ∪ C/Rtc
•  Now link1(A3, A2) true ⇒ apply f1

–  A2 has P2/Rtc ∪ A1/tc ∪ A2/t ∪ C/Rtc
•  Now link1(A2, A1) true ⇒ apply f1

–  A1 has P2/Rtc ∪ A1/t ∪ C/Rtc
•  Now all link3s true ⇒ apply f3

–  C has C/R3 ∪ P1/R4,1 ∪ P2/R4,2 ∪ P3/R4,3
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Finish Construction

•  Now link4 is true ⇒ apply f4
– P1 has C/R1,1 ∪ P1/R2,1
– P2 has C/R1,2 ∪ P2/R2,2
– P3 has C/R1,3 ∪ P3/R2,3

•  3-parent joint create gives same rights to P1, 
P2, P3, C

•  If create of C fails, link2 fails, so 
construction fails
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Theorem

•  The two-parent joint creation operation can 
implement an n-parent joint creation 
operation with a fixed number of additional 
types and rights, and augmentations to the 
link predicates and filter functions.

•  Proof: by construction, as above
– Difference is that the two systems need not start 

at the same initial state
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Theorems

•  Monotonic ESPM and the monotonic HRU 
model are equivalent.

•  Safety question in ESPM also decidable if 
acyclic attenuating scheme
– Proof similar to that for SPM
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Expressiveness

•  Graph-based representation to compare models
•  Graph

–  Vertex: represents entity, has static type
–  Edge: represents right, has static type

•  Graph rewriting rules:
–  Initial state operations create graph in a particular state
–  Node creation operations add nodes, incoming edges
–  Edge adding operations add new edges between 

existing vertices
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Example: 3-Parent Joint Creation

•  Simulate with 2-parent
– Nodes P1, P2, P3 parents
– Create node C with type c with edges of type e
– Add node A1 of type a and edge from P1 to A1 

of type e´

P2 P3P1

A1
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Next Step

•  A1, P2 create A2; A2, P3 create A3

•  Type of nodes, edges are a and e´

P2
P3P1

A1 A2

A3

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #22



Next Step

•  A3 creates S, of type a
•  S creates C, of type c

SC

P2
P3P1

A1 A2

A3

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #23



Last Step

•  Edge adding operations:
– P1→A1→A2→A3→S→C: P1 to C edge type e
– P2→A2→A3→S→C: P2 to C edge type e
– P3→A3→S→C: P3 to C edge type e

S

C

P2
P3P1

A1

A2
A3
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Definitions

•  Scheme: graph representation as above
•  Model: set of schemes
•  Schemes A, B correspond if graph for both 

is identical when all nodes with types not in 
A and edges with types in A are deleted
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Example

•  Above 2-parent joint creation simulation in 
scheme TWO

•  Equivalent to 3-parent joint creation scheme 
THREE in which P1, P2, P3, C are of same 
type as in TWO, and edges from P1, P2, P3 
to C are of type e, and no types a and e´ 
exist in TWO
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Simulation

Scheme A simulates scheme B iff
•  every state B can reach has a corresponding state 

in A that A can reach; and
•  every state that A can reach either corresponds to a 

state B can reach, or has a successor state that 
corresponds to a state B can reach
–  The last means that A can have intermediate states not 

corresponding to states in B, like the intermediate ones 
in TWO in the simulation of THREE
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Expressive Power

•  If there is a scheme in MA that no scheme in 
MB can simulate, MB less expressive than 
MA

•  If every scheme in MA can be simulated by 
a scheme in MB, MB as expressive as MA

•  If MA as expressive as MB and vice versa, 
MA and MB equivalent
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Example
•  Scheme A in model M

–  Nodes X1, X2, X3
–  2-parent joint create
–  1 node type, 1 edge type
–  No edge adding operations
–  Initial state: X1, X2, X3, no edges

•  Scheme B in model N
–  All same as A except no 2-parent joint create
–  1-parent create

•  Which is more expressive?
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Can A Simulate B?

•  Scheme A simulates 1-parent create: have 
both parents be same node
– Model M as expressive as model N
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Can B Simulate A?

•  Suppose X1, X2 jointly create Y in A
– Edges from X1, X2 to Y, no edge from X3 to Y

•  Can B simulate this?
– Without loss of generality, X1 creates Y
– Must have edge adding operation to add edge 

from X2 to Y
– One type of node, one type of edge, so 

operation can add edge between any 2 nodes
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No
•  All nodes in A have even number of incoming 

edges
–  2-parent create adds 2 incoming edges

•  Edge adding operation in B that can edge from X2 
to C can add one from X3 to C
–  A cannot enter this state
–  B cannot transition to a state in which Y has even 

number of incoming edges
•  No remove rule

•  So B cannot simulate A; N less expressive than M
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Theorem

•  Monotonic single-parent models are less 
expressive than monotonic multiparent models

•  Proof by contradiction
–  Scheme A is multiparent model
–  Scheme B is single parent create
–  Claim: B can simulate A, without assumption that they 

start in the same initial state
•  Note: example assumed same initial state
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Outline of Proof
•  X1, X2 nodes in A

–  They create Y1, Y2, Y3 using multiparent create rule
–  Y1, Y2 create Z, again using multiparent create rule
–  Note: no edge from Y3 to Z can be added, as A has no edge-adding 

operation

X1

X2

Y1

Y3

Y2 Z
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Outline of Proof
•  W, X1, X2 nodes in B

–  W creates Y1, Y2, Y3 using single parent create rule, and adds edges for X1, X2 to 
all using edge adding rule

–  Y1 creates Z, again using single parent create rule; now must add edge from X2 to Z 
to simulate A

–  Use same edge adding rule to add edge from Y3 to Z: cannot duplicate this in 
scheme A!

X1

X2

Y1

Y3

Y2 Z
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Meaning

•  Scheme B cannot simulate scheme A, 
contradicting hypothesis

•  ESPM more expressive than SPM
– ESPM multiparent and monotonic
– SPM monotonic but single parent
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Typed Access Matrix Model

•  Like ACM, but with set of types T
– All subjects, objects have types
– Set of types for subjects TS

•  Protection state is (S, O, τ, A)
–  τ:O→T specifies type of each object
–  If X subject, τ(X) in TS
–  If X object, τ(X) in T – TS
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Create Rules
•  Subject creation

–  create subject s of type ts
–  s must not exist as subject or object when operation 

executed
–  ts ∈ TS

•  Object creation
–  create object o of type to
–  o must not exist as subject or object when operation 

executed
–  to ∈ T – TS
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Create Subject

•  Precondition: s ∉ S
•  Primitive command: create subject s of 

type t
•  Postconditions:

–  S´ = S ∪{ s }, O´ = O ∪{ s }
–  (∀y ∈ O)[τ´(y) = τ (y)], τ´(s) = t
–  (∀y ∈ O´)[a´[s, y] = ∅], (∀x ∈ S´)[a´[x, s] = ∅]
–  (∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]
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Create Object

•  Precondition: o ∉ O
•  Primitive command: create object o of type 

t
•  Postconditions:

–  S´ = S, O´ = O ∪ { o }
–  (∀y ∈ O)[τ´(y) = τ (y)], τ´(o) = t
–  (∀x ∈ S´)[a´[x, o] = ∅]
–  (∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]
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Definitions

•  MTAM Model: TAM model without delete, 
destroy
– MTAM is Monotonic TAM

•  α(x1:t1, ..., xn:tn) create command
–  ti child type in α if any of create subject xi of 

type ti or create object xi of type ti occur in α
–  ti parent type otherwise
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Cyclic Creates

command cry•havoc(s1 : u, s2 : u, o1 : v, o2 : v, o3 : w, o4 : w)
create subject s1 of type u;
create object o1 of type v;
create object o3 of type w;
enter r into a[s2, s1];
enter r into a[s2, o2];
enter r into a[s2, o4]

end
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Creation Graph

•  u, v, w child types
•  u, v, w also parent 

types
•  Graph: lines from 

parent types to child 
types

•  This one has cycles

u

v w
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Acyclic Creates
command cry•havoc(s1 : u, s2 : u, o1 : v, o3 : w)

create object o1 of type v;
create object o3 of type w;
enter r into a[s2, s1];
enter r into a[s2, o1];
enter r into a[s2, o3]

end
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Creation Graph

•  v, w child types
•  u parent type
•  Graph: lines from 

parent types to child 
types

•  This one has no cycles

u

v w
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Theorems

•  Safety decidable for systems with acyclic MTAM 
schemes
–  In fact, it’s NP-hard

•  Safety for acyclic ternary MATM decidable in 
time polynomial in the size of initial ACM
–  “Ternary” means commands have no more than 3 

parameters
–  Equivalent in expressive power to MTAM
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Key Points

•  Safety problem undecidable
•  Limiting scope of systems can make 

problem decidable
•  Types critical to safety problem’s analysis
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Security Policy

•  Policy partitions system states into:
– Authorized (secure)

•  These are states the system can enter
– Unauthorized (nonsecure)

•  If the system enters any of these states, it’s a 
security violation

•  Secure system
– Starts in authorized state
– Never enters unauthorized state
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Confidentiality
•  X set of entities, I information
•  I has the confidentiality property with respect to X 

if no x ∈ X can obtain information from I
•  I can be disclosed to others
•  Example:

–  X set of students
–  I final exam answer key
–  I is confidential with respect to X if students cannot 

obtain final exam answer key
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Integrity

•  X set of entities, I information
•  I has the integrity property with respect to X if all 

x ∈ X trust information in I
•  Types of integrity:

–  Trust I, its conveyance and protection (data integrity)
–  I information about origin of something or an identity 

(origin integrity, authentication)
–  I resource: means resource functions as it should 

(assurance)
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Availability

•  X set of entities, I resource
•  I has the availability property with respect to X if 

all x ∈ X can access I
•  Types of availability:

–  Traditional: x gets access or not
–  Quality of service: promised a level of access (for 

example, a specific level of bandwidth) and not meet it, 
even though some access is achieved
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