April 12: Expressiveness and **Policy**

- Expressiveness – Multiparent create
- Policies
- Trust
- Nature of Security Mechanisms
- Policy Expression Languages
- Limits on Secure and Precise Mechanisms

Expressive Power

- How do the sets of systems that models can describe compare?
	- If HRU equivalent to SPM, SPM provides more specific answer to safety question
	- If HRU describes more systems, SPM applies only to the systems it can describe

HRU *vs*. SPM

- **SPM** more abstract
	- Analyses focus on limits of model, not details of representation
- HRU allows revocation
	- SPM has no equivalent to delete, destroy
- HRU allows multiparent creates
	- SPM cannot express multiparent creates easily, and not at all if the parents are of different types because *can*•*create* allows for only one type of creator

Multiparent Create

- Solves mutual suspicion problem – Create proxy jointly, each gives it needed rights
- In HRU:

```
command multicreate(s_0, s_1, o)if r in a[s_0, s_1] and r in a[s_1, s_0]then
  create object o;
```

```
enter r into a[s_0, o];
enter r into a[s_1, o];
```

```
end
```
SPM and Multiparent Create

- *cc* extended in obvious way $-cc \subseteq TS \times ... \times TS \times T$
- Symbols
	- $\mathbf{X}_1, \ldots, \mathbf{X}_n$ parents, **Y** created
	- $-R_{1,i}, R_{2,i}, R_{3}, R_{4,i} \subseteq R$
- Rules

$$
- cr_{P,i}(\tau(\mathbf{X}_1), ..., \tau(\mathbf{X}_n)) = \mathbf{Y}/R_{1,1} \cup \mathbf{X}/R_{2,i}
$$

- cr_C($\tau(\mathbf{X}_1), ..., \tau(\mathbf{X}_n)$) = \mathbf{Y}/R_3 \cup \mathbf{X}_1/R_{4,1} \cup ... \cup \mathbf{X}_n/R_{4,n}

Example

- Anna, Bill must do something cooperatively – But they don't trust each other
- Jointly create a proxy
	- Each gives proxy only necessary rights
- In ESPM:
	- $-$ Anna, Bill type *a*; proxy type *p*; right $x \in R$

$$
- cc(a, a) = p
$$

- cr_{Anna}(a, a, p) = cr_{Bill}(a, a, p) = Ø
- cr_{proxy}(a, a, p) = { Anna/x, Bill//x }

2-Parent Joint Create Suffices

- Goal: emulate 3-parent joint create with 2parent joint create
- Definition of 3-parent joint create (subjects $\mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3$; child **C**):

 $- cc(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = Z \subseteq T$

- $c r_{\mathbf{p}_1}(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = C/R_{1,1} \cup \mathbf{P}_1/R_{2,1}$
- $cr_{\mathbf{P}2}(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = \mathbf{C}/R_{2,1} \cup \mathbf{P}_2/R_{2,2}$
- $cr_{\mathbf{P}3}(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = \mathbf{C}/R_{3,1} \cup \mathbf{P}_3/R_{2,3}$

General Approach

- Define agents for parents and child
	- Agents act as surrogates for parents
	- If create fails, parents have no extra rights
	- If create succeeds, parents, child have exactly same rights as in 3-parent creates
		- Only extra rights are to agents (which are never used again, and so these rights are irrelevant)

Entities and Types

- Parents P_1 , P_2 , P_3 have types p_1 , p_2 , p_3
- Child **C** of type *c*
- Parent agents A_1 , A_2 , A_3 of types a_1 , a_2 , a_3
- Child agent **S** of type *s*
- Type *t* is parentage $-$ if $X/t \in dom(Y)$, X is Y's parent
- Types t, a_1, a_2, a_3 , *s* are new types

can•*create*

- Following added to *can*•*create*:
	- $-$ cc(p_1) = a_1
	- $-$ cc(p_2 , a_1) = a_2
	- $-$ cc(p_3, a_2) = a_3
		- Parents creating their agents; note agents have maximum of 2 parents
	- $-$ cc(a_3) = *s*
		- Agent of all parents creates agent of child

$$
-\ \mathrm{cc}(s) = c
$$

• Agent of child creates child

Creation Rules

• Following added to create rule:

$$
- cr_P(p_1, a_1) = \emptyset
$$

$$
- cr_C(p_1, a_1) = p_1/Rtc
$$

• Agent's parent set to creating parent; agent has all rights over parent

$$
- cr_{Pfirst}(p_2, a_1, a_2) = \varnothing
$$

$$
- cr_{Psecond}(p_2, a_1, a_2) = \varnothing
$$

$$
- cr_C(p_2, a_1, a_2) = p_2/Rtc \cup a_1/tc
$$

• Agent's parent set to creating parent and agent; agent has all rights over parent (but not over agent)

Creation Rules

$$
- cr_{Pfirst}(p_3, a_2, a_3) = \varnothing
$$

$$
- cr_{Psecond}(p_3, a_2, a_3) = \varnothing
$$

$$
-cr_C(p_3, a_2, a_3) = p_3/Rtc \cup a_2/tc
$$

• Agent's parent set to creating parent and agent; agent has all rights over parent (but not over agent)

$$
-cr_P(a_3, s) = \varnothing
$$

$$
-cr_C(a_3, s) = a_3/tc
$$

• Child's agent has third agent as parent $cr_P(a_3, s) = \emptyset$

$$
- crP(s, c) = \mathbf{C}/Rtc
$$

$$
-cr_C(s,c)=c/R_3t
$$

• Child's agent gets full rights over child; child gets R_3 rights over agent

Link Predicates

- Idea: no tickets to parents until child created
	- Done by requiring each agent to have its own parent rights

$$
- \quad link_1(\mathbf{A}_2, \mathbf{A}_1) = \mathbf{A}_1 / t \in dom(\mathbf{A}_2) \land \mathbf{A}_2 / t \in dom(\mathbf{A}_2)
$$

– *link*1(**A**3, **A**2) = **A**2/*t* ∈ *dom*(**A**3) ∧ **A**3/*t* ∈ *dom*(**A**3)

$$
- \quad link_2(\mathbf{S}, \mathbf{A}_3) = \mathbf{A}_3 / t \in dom(\mathbf{S}) \land \mathbf{C} / t \in dom(\mathbf{C})
$$

$$
- \quad link_3(\mathbf{A}_1, \mathbf{C}) = \mathbf{C}/t \in dom(\mathbf{A}_1)
$$

- $-$ *link*₃(\mathbf{A}_2 , **C**) = **C**/*t* \in *dom*(\mathbf{A}_2)
- $-$ *link*₃(\mathbf{A}_3 , \mathbf{C}) = $\mathbf{C}/t \in dom(\mathbf{A}_3)$
- $-$ *link*₄(\bf{A} ₁, \bf{P} ₁) = \bf{P} ₁/*t* ∈ *dom*(\bf{A} ₁) ∧ \bf{A} ₁/*t* ∈ *dom*(\bf{A} ₁)
- $-$ *link*₄(\mathbf{A}_2 , \mathbf{P}_2) = \mathbf{P}_2 /t ∈ *dom*(\mathbf{A}_2) ∧ \mathbf{A}_2 /t ∈ *dom*(\mathbf{A}_2)
- *link*4(**A**3, **P**3) = **P**3/*t* ∈ *dom*(**A**3) ∧ **A**3/*t* ∈ *dom*(**A**3)

Filter Functions

- $f_1(a_2, a_1) = a_1/t \cup c/Rtc$
- $f_1(a_3, a_2) = a_2/t \cup c/Rtc$
- $f_2(s, a_3) = a_3/t \cup c/Rtc$
- $f_3(a_1, c) = p_1/R_{4,1}$
- $f_3(a_2, c) = p_2/R_{42}$
- $f_3(a_3, c) = p_3/R_{4,3}$
- $f_4(a_1, p_1) = c/R_{1,1} \cup p_1/R_{2,1}$
- $f_4(a_2, p_2) = c/R_{12} \cup p_2/R_{22}$
- $f_4(a_3, p_3) = c/R_{1,3} \cup p_3/R_{2,3}$

Construction

Create A_1 , A_2 , A_3 , S , C ; then

- P_1 has no relevant tickets
- P_2 has no relevant tickets
- P_3 has no relevant tickets
- A_1 has P_1/Rtc
- **A**₂ has $P_2/Rtc \cup A_1/tc$
- **A**₃ has $P_3/Rtc \cup A_2/tc$
- **S** has A_3 /*tc* ∪ **C**/*Rtc*
- **C** has C/R_3t

Construction

- Only $link_2(S, A_3)$ true \Rightarrow apply f_2 $-$ **A**₃ has $P_3/Rtc \cup A_2/t \cup A_3/t \cup C/Rtc$
- Now $link_1(\mathbf{A}_3, \mathbf{A}_2)$ true \Rightarrow apply f_1 $-$ **A**₂ has \mathbf{P}_{2}/R *tc* ∪ **A**₁/*tc* ∪ **A**₂/*t* ∪ **C**/*Rtc*
- Now $link_1(\mathbf{A}_2, \mathbf{A}_1)$ true \Rightarrow apply f_1 $-$ **A**₁ has \mathbf{P}_{2}/R *tc* ∪ **A**₁/*t* ∪ **C**/*Rtc*
- Now all *link*₃s true \Rightarrow apply f_3 $-$ **C** has $C/R_3 \cup P_1/R_{4,1} \cup P_2/R_{4,2} \cup P_3/R_{4,3}$

Finish Construction

- Now *link*₄ is true \Rightarrow apply f_4
	- $-$ **P**₁ has $C/R_{1,1} \cup P_1/R_{2,1}$
	- $-$ **P**₂ has $C/R_{1,2} \cup P_{2}/R_{2,2}$
	- $-$ **P**₃ has $C/R_{1,3} \cup P_{3}/R_{2,3}$
- 3-parent joint create gives same rights to P_1 , ${\bf P}_2, {\bf P}_3, {\bf C}$
- If create of **C** fails, *link*, fails, so construction fails

Theorem

- The two-parent joint creation operation can implement an *n*-parent joint creation operation with a fixed number of additional types and rights, and augmentations to the link predicates and filter functions.
- **Proof**: by construction, as above
	- Difference is that the two systems need not start at the same initial state

Theorems

- Monotonic ESPM and the monotonic HRU model are equivalent.
- Safety question in ESPM also decidable if acyclic attenuating scheme
	- Proof similar to that for SPM

Expressiveness

- Graph-based representation to compare models
- Graph
	- Vertex: represents entity, has static type
	- Edge: represents right, has static type
- Graph rewriting rules:
	- *Initial state operations* create graph in a particular state
	- *Node creation operations* add nodes, incoming edges
	- *Edge adding operations* add new edges between existing vertices

Example: 3-Parent Joint Creation

- Simulate with 2-parent
	- $-$ Nodes P_1 , P_2 , P_3 parents
	- Create node **C** with type *c* with edges of type *e*
	- $-$ Add node A_1 of type *a* and edge from P_1 to A_1 of type *e* ´

P2 P3 P1 A1

Next Step

- A_1 , P_2 create A_2 ; A_2 , P_3 create A_3
- Type of nodes, edges are *a* and *e* ´

Next Step

- **A**₃ creates **S**, of type *a*
- **S** creates **C**, of type *c*

Last Step

• Edge adding operations: $P_1 \rightarrow A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow S \rightarrow C$: **P**₁ to **C** edge type *e* $P_2 \rightarrow A_2 \rightarrow A_3 \rightarrow S \rightarrow C$: **P**₂ to **C** edge type *e* $P_3 \rightarrow A_3 \rightarrow S \rightarrow C$: P_3 to C edge type *e* S C $P_1 Q_{\ddots}$ $P_2 Q_{\ddots}$ P_3 A_1 \overline{A}_2 $\rm A_{3}$ April 12, 2017 *ECS 235B Spring Quarter 2017* Slide #24

Definitions

- *Scheme*: graph representation as above
- *Model*: set of schemes
- Schemes *A*, *B correspond* if graph for both is identical when all nodes with types not in *A* and edges with types in *A* are deleted

Example

- Above 2-parent joint creation simulation in scheme *TWO*
- Equivalent to 3-parent joint creation scheme *THREE* in which P_1 , P_2 , P_3 , C are of same type as in *TWO*, and edges from P_1 , P_2 , P_3 to **C** are of type *e*, and no types *a* and *e*´ exist in *TWO*

Simulation

Scheme *A* simulates scheme *B* iff

- every state *B* can reach has a corresponding state in *A* that *A* can reach; and
- every state that *A* can reach either corresponds to a state *B* can reach, or has a successor state that corresponds to a state *B* can reach
	- The last means that *A* can have intermediate states not corresponding to states in *B*, like the intermediate ones in *TWO* in the simulation of *THREE*

Expressive Power

- If there is a scheme in *MA* that no scheme in *MB* can simulate, *MB less expressive than MA*
- If every scheme in *MA* can be simulated by a scheme in *MB*, *MB as expressive as MA*
- If *MA* as expressive as *MB* and *vice versa*, *MA* and *MB equivalent*

Example

- Scheme *A* in model *M*
	- $-$ Nodes X_1, X_2, X_3
	- 2-parent joint create
	- 1 node type, 1 edge type
	- No edge adding operations
	- $-$ Initial state: X_1, X_2, X_3 , no edges
- Scheme *B* in model *N*
	- All same as *A* except no 2-parent joint create
	- 1-parent create
- Which is more expressive?

Can *A* Simulate *B*?

• Scheme *A* simulates 1-parent create: have both parents be same node

– Model *M* as expressive as model *N*

Can *B* Simulate *A*?

- Suppose X_1, X_2 jointly create Y in A $-$ Edges from X_1 , X_2 to Y , no edge from X_3 to Y
- Can *B* simulate this?
	- Without loss of generality, **X**1 creates **Y**
	- Must have edge adding operation to add edge from X_2 to Y
	- One type of node, one type of edge, so operation can add edge between any 2 nodes

No

- All nodes in *A* have even number of incoming edges
	- 2-parent create adds 2 incoming edges
- Edge adding operation in B that can edge from \mathbf{X}_2 to C can add one from X_3 to C
	- *A* cannot enter this state
	- *B* cannot transition to a state in which **Y** has even number of incoming edges
		- No remove rule
- So *B* cannot simulate *A*; *N* less expressive than *M*

Theorem

- Monotonic single-parent models are less expressive than monotonic multiparent models
- Proof by contradiction
	- Scheme *A* is multiparent model
	- Scheme *B* is single parent create
	- Claim: *B* can simulate *A*, without assumption that they start in the same initial state
		- Note: example assumed same initial state

Outline of Proof

- X_1, X_2 nodes in *A*
	- They create Y_1, Y_2, Y_3 using multiparent create rule
	- \mathbf{Y}_1 , \mathbf{Y}_2 create **Z**, again using multiparent create rule
	- *Note*: no edge from Y_3 to **Z** can be added, as *A* has no edge-adding operation

Outline of Proof

- $\mathbf{W}, \mathbf{X}_1, \mathbf{X}_2$ nodes in *B*
	- **W** creates Y_1, Y_2, Y_3 using single parent create rule, and adds edges for X_1, X_2 to all using edge adding rule
	- \textbf{Y}_1 creates **Z**, again using single parent create rule; now must add edge from \textbf{X}_2 to **Z** to simulate *A*
	- Use same edge adding rule to add edge from Y_3 to Z : cannot duplicate this in scheme *A*!

April 12, 2017 *ECS 235B Spring Quarter 2017* Slide #3-35

Meaning

- Scheme *B* cannot simulate scheme *A*, contradicting hypothesis
- ESPM more expressive than SPM
	- ESPM multiparent and monotonic
	- SPM monotonic but single parent

Typed Access Matrix Model

- Like ACM, but with set of types *T*
	- All subjects, objects have types
	- Set of types for subjects *TS*
- Protection state is (*S*, *O*, τ, *A*)
	- $-\tau$: $O \rightarrow T$ specifies type of each object
	- $-If X$ subject, $\tau(X)$ in *TS*
	- $-If X object, \tau(X)$ in $T TS$

Create Rules

- Subject creation
	- **create subject** *s* **of type** *ts*
	- *s* must not exist as subject or object when operation executed
	- $-ts \in TS$
- Object creation
	- **create object** *o* **of type** *to*
	- *o* must not exist as subject or object when operation executed
	- $-$ *to* ∈ *T* − *TS*

Create Subject

- Precondition: $s \notin S$
- Primitive command: **create subject** *s* **of type** *t*
- Postconditions:

$$
-S' = S \cup \{s\}, O' = O \cup \{s\}
$$

$$
- (\forall y \in O)[\tau'(y) = \tau(y)], \tau'(s) = t
$$

$$
- (\forall y \in O')[a'[s, y] = \emptyset], (\forall x \in S')[a'[x, s] = \emptyset]
$$

$$
- (\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]
$$

Create Object

- Precondition: $o \notin O$
- Primitive command: **create object** *o* **of type** *t*
- Postconditions:

$$
-S' = S, O' = O \cup \{o\}
$$

$$
-(\forall y \in O)[\tau'(y) = \tau(y)], \tau'(o) = t
$$

$$
-(\forall x \in S')[a'[x, o] = \emptyset]
$$

$$
-(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]
$$

Definitions

• MTAM Model: TAM model without **delete**, **destroy**

– MTAM is Monotonic TAM

- $\alpha(x_1:t_1, ..., x_n:t_n)$ create command
	- $-t_i$ child type in α if any of **create subject** x_i of **type** t_i or **create object** x_i **of type** t_i occur in α
	- t_i parent type otherwise

Cyclic Creates

command $cry \cdot \textit{havoc}(s_1 : u, s_2 : u, o_1 : v, o_2 : v, o_3 : w, o_4 : w)$ **create subject** s_1 of type u ; **create object** o_1 of type *v*; **create object** o_3 of type *w*; **enter** *r* **into** $a[s_2, s_1]$; **enter** *r* **into** $a[s_2, o_2];$ **enter** *r* **into** $a[s_2, o_4]$ **end**

Creation Graph

- *u*, *v*, *w* child types
- *u*, *v*, *w* also parent types
- Graph: lines from parent types to child types
- This one has cycles

Acyclic Creates

```
command cry•havoc(s_1 : u, s_2 : u, o_1 : v, o_3 : w)
   create object o_1 of type v;
   create object o_3 of type w;
   enter r into a[s_2, s_1];
   enter r into a[s_2, o_1];
   enter r into a[s_2, o_3]end
```
Creation Graph

- *v*, *w* child types
- *u* parent type
- Graph: lines from parent types to child types
- This one has no cycles

Theorems

- Safety decidable for systems with acyclic MTAM schemes
	- In fact, it's *NP-hard*
- Safety for acyclic ternary MATM decidable in time polynomial in the size of initial ACM
	- "Ternary" means commands have no more than 3 parameters
	- Equivalent in expressive power to MTAM

Key Points

- Safety problem undecidable
- Limiting scope of systems can make problem decidable
- Types critical to safety problem's analysis

Security Policy

- Policy partitions system states into:
	- Authorized (secure)
		- These are states the system can enter
	- Unauthorized (nonsecure)
		- If the system enters any of these states, it's a security violation
- Secure system
	- Starts in authorized state
	- Never enters unauthorized state

Confidentiality

- *X* set of entities, *I* information
- *I* has the *confidentiality* property with respect to *X* if no $x \in X$ can obtain information from *I*
- *I* can be disclosed to others
- Example:
	- *X* set of students
	- *I* final exam answer key
	- *I* is confidential with respect to *X* if students cannot obtain final exam answer key

Integrity

- *X* set of entities, *I* information
- *I* has the *integrity* property with respect to *X* if all $x \in X$ trust information in *I*
- Types of integrity:
	- Trust *I*, its conveyance and protection (data integrity)
	- *I* information about origin of something or an identity (origin integrity, authentication)
	- *I* resource: means resource functions as it should (assurance)

Availability

- *X* set of entities, *I* resource
- *I* has the *availability* property with respect to *X* if all $x \in X$ can access *I*
- Types of availability:
	- Traditional: *x* gets access or not
	- Quality of service: promised a level of access (for example, a specific level of bandwidth) and not meet it, even though some access is achieved