
April 12: Expressiveness and 
Policy

•  Expressiveness
– Multiparent create

•  Policies
•  Trust
•  Nature of Security Mechanisms
•  Policy Expression Languages
•  Limits on Secure and Precise Mechanisms

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #1



Expressive Power

•  How do the sets of systems that models can 
describe compare?
–  If HRU equivalent to SPM, SPM provides more 

specific answer to safety question
–  If HRU describes more systems, SPM applies 

only to the systems it can describe

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #2



HRU vs. SPM

•  SPM more abstract 
–  Analyses focus on limits of model, not details of 

representation
•  HRU allows revocation

–  SPM has no equivalent to delete, destroy
•  HRU allows multiparent creates

–  SPM cannot express multiparent creates easily, and not 
at all if the parents are of different types because 
can•create allows for only one type of creator

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #3



Multiparent Create

•  Solves mutual suspicion problem
– Create proxy jointly, each gives it needed rights

•  In HRU:
command multicreate(s0, s1, o)
if r in a[s0, s1] and r in a[s1, s0]
then
create object o;
enter r into a[s0, o];
enter r into a[s1, o];

end

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #4



SPM and Multiparent Create

•  cc extended in obvious way
–  cc ⊆ TS × … × TS × T

•  Symbols
–  X1, …, Xn parents, Y created
–  R1,i, R2,i, R3, R4,i ⊆ R

•  Rules
–  crP,i(τ(X1), …, τ(Xn)) = Y/R1,1 ∪ Xi/R2,i

–  crC(τ(X1), …, τ(Xn)) = Y/R3 ∪ X1/R4,1 ∪ … ∪ Xn/R4,n

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #5



Example
•  Anna, Bill must do something cooperatively

–  But they don’t trust each other
•  Jointly create a proxy

–  Each gives proxy only necessary rights
•  In ESPM:

–  Anna, Bill type a; proxy type p; right x ∈ R
–  cc(a, a) = p
–  crAnna(a, a, p) = crBill(a, a, p) = ∅
–  crproxy(a, a, p) = { Anna/x, Bill//x }

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #6



2-Parent Joint Create Suffices

•  Goal: emulate 3-parent joint create with 2-
parent joint create

•  Definition of 3-parent joint create (subjects 
P1, P2, P3; child C):
–  cc(τ(P1), τ(P2), τ(P3)) = Z ⊆ T
–  crP1(τ(P1), τ(P2), τ(P3)) = C/R1,1 ∪ P1/R2,1
–  crP2(τ(P1), τ(P2), τ(P3)) = C/R2,1 ∪ P2/R2,2
–  crP3(τ(P1), τ(P2), τ(P3)) = C/R3,1 ∪ P3/R2,3

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #7



General Approach

•  Define agents for parents and child
– Agents act as surrogates for parents
–  If create fails, parents have no extra rights
–  If create succeeds, parents, child have exactly 

same rights as in 3-parent creates
•  Only extra rights are to agents (which are never used 

again, and so these rights are irrelevant)

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #8



Entities and Types

•  Parents P1, P2, P3 have types p1, p2, p3

•  Child C of type c
•  Parent agents A1, A2, A3 of types a1, a2, a3

•  Child agent S of type s
•  Type t is parentage

–  if X/t ∈ dom(Y), X is Y’s parent
•  Types t, a1, a2, a3, s are new types
April 12, 2017 ECS 235B Spring Quarter 2017 Slide #9



can•create

•  Following added to can•create:
–  cc(p1) = a1

–  cc(p2, a1) = a2

–  cc(p3, a2) = a3
•  Parents creating their agents; note agents have maximum of 2 

parents
–  cc(a3) = s

•  Agent of all parents creates agent of child

–  cc(s) = c
•  Agent of child creates child

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #10



Creation Rules

•  Following added to create rule:
–  crP(p1, a1) = ∅
–  crC(p1, a1) = p1/Rtc

•  Agent’s parent set to creating parent; agent has all rights over 
parent

–  crPfirst(p2, a1, a2) = ∅
–  crPsecond(p2, a1, a2) = ∅
–  crC(p2, a1, a2) = p2/Rtc ∪ a1/tc

•  Agent’s parent set to creating parent and agent; agent has all 
rights over parent (but not over agent)

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #11



Creation Rules
–  crPfirst(p3, a2, a3) = ∅
–  crPsecond(p3, a2, a3) = ∅
–  crC(p3, a2, a3) = p3/Rtc ∪ a2/tc

•  Agent’s parent set to creating parent and agent; agent has all 
rights over parent (but not over agent)

–  crP(a3, s) = ∅
–  crC(a3, s) = a3/tc

•  Child’s agent has third agent as parent crP(a3, s) = ∅
–  crP(s, c) = C/Rtc
–  crC(s, c) = c/R3t

•  Child’s agent gets full rights over child; child gets R3 rights 
over agent

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #12



Link Predicates
•  Idea: no tickets to parents until child created

–  Done by requiring each agent to have its own parent 
rights

–  link1(A2, A1) = A1/t ∈ dom(A2) ∧ A2/t ∈ dom(A2)
–  link1(A3, A2) = A2/t ∈ dom(A3) ∧ A3/t ∈ dom(A3)
–  link2(S, A3) = A3/t ∈ dom(S) ∧ C/t ∈ dom(C)
–  link3(A1, C) = C/t ∈ dom(A1)
–  link3(A2, C) = C/t ∈ dom(A2)
–  link3(A3, C) = C/t ∈ dom(A3)
–  link4(A1, P1) = P1/t ∈ dom(A1) ∧ A1/t ∈ dom(A1)
–  link4(A2, P2) = P2/t ∈ dom(A2) ∧ A2/t ∈ dom(A2)
–  link4(A3, P3) = P3/t ∈ dom(A3) ∧ A3/t ∈ dom(A3)

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #13



Filter Functions
•  f1(a2, a1) = a1/t ∪ c/Rtc
•  f1(a3, a2) = a2/t ∪ c/Rtc
•  f2(s, a3) = a3/t ∪ c/Rtc
•  f3(a1, c) = p1/R4,1
•  f3(a2, c) = p2/R4,2
•  f3(a3, c) = p3/R4,3
•  f4(a1, p1) = c/R1,1 ∪ p1/R2,1
•  f4(a2, p2) = c/R1,2 ∪ p2/R2,2
•  f4(a3, p3) = c/R1,3 ∪ p3/R2,3
April 12, 2017 ECS 235B Spring Quarter 2017 Slide #14



Construction
Create A1, A2, A3, S, C; then
•  P1 has no relevant tickets
•  P2 has no relevant tickets
•  P3 has no relevant tickets
•  A1 has P1/Rtc
•  A2 has P2/Rtc ∪ A1/tc
•  A3 has P3/Rtc ∪ A2/tc
•  S has A3/tc ∪ C/Rtc
•  C has C/R3t

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #15



Construction
•  Only link2(S, A3) true ⇒ apply f2

–  A3 has P3/Rtc ∪ A2/t ∪ A3/t ∪ C/Rtc
•  Now link1(A3, A2) true ⇒ apply f1

–  A2 has P2/Rtc ∪ A1/tc ∪ A2/t ∪ C/Rtc
•  Now link1(A2, A1) true ⇒ apply f1

–  A1 has P2/Rtc ∪ A1/t ∪ C/Rtc
•  Now all link3s true ⇒ apply f3

–  C has C/R3 ∪ P1/R4,1 ∪ P2/R4,2 ∪ P3/R4,3

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #16



Finish Construction

•  Now link4 is true ⇒ apply f4
– P1 has C/R1,1 ∪ P1/R2,1
– P2 has C/R1,2 ∪ P2/R2,2
– P3 has C/R1,3 ∪ P3/R2,3

•  3-parent joint create gives same rights to P1, 
P2, P3, C

•  If create of C fails, link2 fails, so 
construction fails

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #17



Theorem

•  The two-parent joint creation operation can 
implement an n-parent joint creation 
operation with a fixed number of additional 
types and rights, and augmentations to the 
link predicates and filter functions.

•  Proof: by construction, as above
– Difference is that the two systems need not start 

at the same initial state
April 12, 2017 ECS 235B Spring Quarter 2017 Slide #18



Theorems

•  Monotonic ESPM and the monotonic HRU 
model are equivalent.

•  Safety question in ESPM also decidable if 
acyclic attenuating scheme
– Proof similar to that for SPM

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #19



Expressiveness

•  Graph-based representation to compare models
•  Graph

–  Vertex: represents entity, has static type
–  Edge: represents right, has static type

•  Graph rewriting rules:
–  Initial state operations create graph in a particular state
–  Node creation operations add nodes, incoming edges
–  Edge adding operations add new edges between 

existing vertices
April 12, 2017 ECS 235B Spring Quarter 2017 Slide #20



Example: 3-Parent Joint Creation

•  Simulate with 2-parent
– Nodes P1, P2, P3 parents
– Create node C with type c with edges of type e
– Add node A1 of type a and edge from P1 to A1 

of type e´

P2 P3P1

A1

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #21



Next Step

•  A1, P2 create A2; A2, P3 create A3

•  Type of nodes, edges are a and e´

P2
P3P1

A1 A2

A3

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #22



Next Step

•  A3 creates S, of type a
•  S creates C, of type c

SC

P2
P3P1

A1 A2

A3

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #23



Last Step

•  Edge adding operations:
– P1→A1→A2→A3→S→C: P1 to C edge type e
– P2→A2→A3→S→C: P2 to C edge type e
– P3→A3→S→C: P3 to C edge type e

S

C

P2
P3P1

A1

A2
A3

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #24



Definitions

•  Scheme: graph representation as above
•  Model: set of schemes
•  Schemes A, B correspond if graph for both 

is identical when all nodes with types not in 
A and edges with types in A are deleted

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #25



Example

•  Above 2-parent joint creation simulation in 
scheme TWO

•  Equivalent to 3-parent joint creation scheme 
THREE in which P1, P2, P3, C are of same 
type as in TWO, and edges from P1, P2, P3 
to C are of type e, and no types a and e´ 
exist in TWO

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #26



Simulation

Scheme A simulates scheme B iff
•  every state B can reach has a corresponding state 

in A that A can reach; and
•  every state that A can reach either corresponds to a 

state B can reach, or has a successor state that 
corresponds to a state B can reach
–  The last means that A can have intermediate states not 

corresponding to states in B, like the intermediate ones 
in TWO in the simulation of THREE

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #27



Expressive Power

•  If there is a scheme in MA that no scheme in 
MB can simulate, MB less expressive than 
MA

•  If every scheme in MA can be simulated by 
a scheme in MB, MB as expressive as MA

•  If MA as expressive as MB and vice versa, 
MA and MB equivalent

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #28



Example
•  Scheme A in model M

–  Nodes X1, X2, X3
–  2-parent joint create
–  1 node type, 1 edge type
–  No edge adding operations
–  Initial state: X1, X2, X3, no edges

•  Scheme B in model N
–  All same as A except no 2-parent joint create
–  1-parent create

•  Which is more expressive?
April 12, 2017 ECS 235B Spring Quarter 2017 Slide #29



Can A Simulate B?

•  Scheme A simulates 1-parent create: have 
both parents be same node
– Model M as expressive as model N

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #30



Can B Simulate A?

•  Suppose X1, X2 jointly create Y in A
– Edges from X1, X2 to Y, no edge from X3 to Y

•  Can B simulate this?
– Without loss of generality, X1 creates Y
– Must have edge adding operation to add edge 

from X2 to Y
– One type of node, one type of edge, so 

operation can add edge between any 2 nodes
April 12, 2017 ECS 235B Spring Quarter 2017 Slide #31



No
•  All nodes in A have even number of incoming 

edges
–  2-parent create adds 2 incoming edges

•  Edge adding operation in B that can edge from X2 
to C can add one from X3 to C
–  A cannot enter this state
–  B cannot transition to a state in which Y has even 

number of incoming edges
•  No remove rule

•  So B cannot simulate A; N less expressive than M
April 12, 2017 ECS 235B Spring Quarter 2017 Slide #32



Theorem

•  Monotonic single-parent models are less 
expressive than monotonic multiparent models

•  Proof by contradiction
–  Scheme A is multiparent model
–  Scheme B is single parent create
–  Claim: B can simulate A, without assumption that they 

start in the same initial state
•  Note: example assumed same initial state

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #33



Outline of Proof
•  X1, X2 nodes in A

–  They create Y1, Y2, Y3 using multiparent create rule
–  Y1, Y2 create Z, again using multiparent create rule
–  Note: no edge from Y3 to Z can be added, as A has no edge-adding 

operation

X1

X2

Y1

Y3

Y2 Z

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #3-34



Outline of Proof
•  W, X1, X2 nodes in B

–  W creates Y1, Y2, Y3 using single parent create rule, and adds edges for X1, X2 to 
all using edge adding rule

–  Y1 creates Z, again using single parent create rule; now must add edge from X2 to Z 
to simulate A

–  Use same edge adding rule to add edge from Y3 to Z: cannot duplicate this in 
scheme A!

X1

X2

Y1

Y3

Y2 Z

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #3-35



Meaning

•  Scheme B cannot simulate scheme A, 
contradicting hypothesis

•  ESPM more expressive than SPM
– ESPM multiparent and monotonic
– SPM monotonic but single parent

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #36



Typed Access Matrix Model

•  Like ACM, but with set of types T
– All subjects, objects have types
– Set of types for subjects TS

•  Protection state is (S, O, τ, A)
–  τ:O→T specifies type of each object
–  If X subject, τ(X) in TS
–  If X object, τ(X) in T – TS

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #37



Create Rules
•  Subject creation

–  create subject s of type ts
–  s must not exist as subject or object when operation 

executed
–  ts ∈ TS

•  Object creation
–  create object o of type to
–  o must not exist as subject or object when operation 

executed
–  to ∈ T – TS

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #38



Create Subject

•  Precondition: s ∉ S
•  Primitive command: create subject s of 

type t
•  Postconditions:

–  S´ = S ∪{ s }, O´ = O ∪{ s }
–  (∀y ∈ O)[τ´(y) = τ (y)], τ´(s) = t
–  (∀y ∈ O´)[a´[s, y] = ∅], (∀x ∈ S´)[a´[x, s] = ∅]
–  (∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #39



Create Object

•  Precondition: o ∉ O
•  Primitive command: create object o of type 

t
•  Postconditions:

–  S´ = S, O´ = O ∪ { o }
–  (∀y ∈ O)[τ´(y) = τ (y)], τ´(o) = t
–  (∀x ∈ S´)[a´[x, o] = ∅]
–  (∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #40



Definitions

•  MTAM Model: TAM model without delete, 
destroy
– MTAM is Monotonic TAM

•  α(x1:t1, ..., xn:tn) create command
–  ti child type in α if any of create subject xi of 

type ti or create object xi of type ti occur in α
–  ti parent type otherwise

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #41



Cyclic Creates

command cry•havoc(s1 : u, s2 : u, o1 : v, o2 : v, o3 : w, o4 : w)
create subject s1 of type u;
create object o1 of type v;
create object o3 of type w;
enter r into a[s2, s1];
enter r into a[s2, o2];
enter r into a[s2, o4]

end

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #42



Creation Graph

•  u, v, w child types
•  u, v, w also parent 

types
•  Graph: lines from 

parent types to child 
types

•  This one has cycles

u

v w

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #3-43



Acyclic Creates
command cry•havoc(s1 : u, s2 : u, o1 : v, o3 : w)

create object o1 of type v;
create object o3 of type w;
enter r into a[s2, s1];
enter r into a[s2, o1];
enter r into a[s2, o3]

end

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #44



Creation Graph

•  v, w child types
•  u parent type
•  Graph: lines from 

parent types to child 
types

•  This one has no cycles

u

v w

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #3-45



Theorems

•  Safety decidable for systems with acyclic MTAM 
schemes
–  In fact, it’s NP-hard

•  Safety for acyclic ternary MATM decidable in 
time polynomial in the size of initial ACM
–  “Ternary” means commands have no more than 3 

parameters
–  Equivalent in expressive power to MTAM

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #46



Key Points

•  Safety problem undecidable
•  Limiting scope of systems can make 

problem decidable
•  Types critical to safety problem’s analysis

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #47



Security Policy

•  Policy partitions system states into:
– Authorized (secure)

•  These are states the system can enter
– Unauthorized (nonsecure)

•  If the system enters any of these states, it’s a 
security violation

•  Secure system
– Starts in authorized state
– Never enters unauthorized state

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #48



Confidentiality
•  X set of entities, I information
•  I has the confidentiality property with respect to X 

if no x ∈ X can obtain information from I
•  I can be disclosed to others
•  Example:

–  X set of students
–  I final exam answer key
–  I is confidential with respect to X if students cannot 

obtain final exam answer key

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #49



Integrity

•  X set of entities, I information
•  I has the integrity property with respect to X if all 

x ∈ X trust information in I
•  Types of integrity:

–  Trust I, its conveyance and protection (data integrity)
–  I information about origin of something or an identity 

(origin integrity, authentication)
–  I resource: means resource functions as it should 

(assurance)

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #50



Availability

•  X set of entities, I resource
•  I has the availability property with respect to X if 

all x ∈ X can access I
•  Types of availability:

–  Traditional: x gets access or not
–  Quality of service: promised a level of access (for 

example, a specific level of bandwidth) and not meet it, 
even though some access is achieved

April 12, 2017 ECS 235B Spring Quarter 2017 Slide #51


