April 12: Expressiveness and Policy

- Expressiveness
 - Multiparent create
- Policies
- Trust
- Nature of Security Mechanisms
- Policy Expression Languages
- Limits on Secure and Precise Mechanisms

Expressive Power

- How do the sets of systems that models can describe compare?
 - If HRU equivalent to SPM, SPM provides more specific answer to safety question
 - If HRU describes more systems, SPM applies only to the systems it can describe

HRU vs. SPM

- SPM more abstract
 - Analyses focus on limits of model, not details of representation
- HRU allows revocation
 - SPM has no equivalent to delete, destroy
- HRU allows multiparent creates
 - SPM cannot express multiparent creates easily, and not at all if the parents are of different types because can•create allows for only one type of creator

Multiparent Create

- Solves mutual suspicion problem
 - Create proxy jointly, each gives it needed rights
- In HRU:

```
command multicreate(s_0, s_1, o)
if r in a[s_0, s1] and r in a[s_1, s_0]
then
create object o;
enter r into a[s_0, o];
enter r into a[s_1, o];
end
```

SPM and Multiparent Create

- cc extended in obvious way
 - $-cc \subseteq TS \times ... \times TS \times T$
- Symbols
 - $-\mathbf{X}_1, \dots, \mathbf{X}_n$ parents, Y created
 - $-R_{1,i}, R_{2,i}, R_3, R_{4,i} \subseteq R$
- Rules
 - $cr_{P,i}(\tau(\mathbf{X}_1), ..., \tau(\mathbf{X}_n)) = \mathbf{Y}/R_{1,1} \cup \mathbf{X}_i/R_{2,i}$
 - $cr_{\mathbf{C}}(\tau(\mathbf{X}_1), \dots, \tau(\mathbf{X}_n)) = \mathbf{Y}/R_3 \cup \mathbf{X}_1/R_{4,1} \cup \dots \cup \mathbf{X}_n/R_{4,n}$

Example

- Anna, Bill must do something cooperatively
 - But they don't trust each other
- Jointly create a proxy
 - Each gives proxy only necessary rights
- In ESPM:
 - Anna, Bill type a; proxy type p; right $x \in R$
 - -cc(a,a) = p
 - $-cr_{Anna}(a, a, p) = cr_{Bill}(a, a, p) = \emptyset$
 - $-cr_{\text{proxy}}(a, a, p) = \{ \text{Anna/}x, \text{Bill//}x \}$

2-Parent Joint Create Suffices

- Goal: emulate 3-parent joint create with 2-parent joint create
- Definition of 3-parent joint create (subjects P₁, P₂, P₃; child C):
 - $-cc(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = Z \subseteq T$
 - $-cr_{\mathbf{P}_1}(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = \mathbf{C}/R_{1,1} \cup \mathbf{P}_1/R_{2,1}$
 - $-cr_{\mathbf{P}2}(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = \mathbf{C}/R_{2.1} \cup \mathbf{P}_2/R_{2.2}$
 - $-cr_{\mathbf{P}3}(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = \mathbf{C}/R_{3,1} \cup \mathbf{P}_3/R_{2,3}$

General Approach

- Define agents for parents and child
 - Agents act as surrogates for parents
 - If create fails, parents have no extra rights
 - If create succeeds, parents, child have exactly same rights as in 3-parent creates
 - Only extra rights are to agents (which are never used again, and so these rights are irrelevant)

Entities and Types

- Parents P_1 , P_2 , P_3 have types p_1 , p_2 , p_3
- Child C of type c
- Parent agents A_1 , A_2 , A_3 of types a_1 , a_2 , a_3
- Child agent **S** of type s
- Type *t* is parentage
 - $\text{ if } \mathbf{X}/t \in dom(\mathbf{Y}), \mathbf{X} \text{ is } \mathbf{Y}\text{'s parent}$
- Types t, a_1, a_2, a_3, s are new types

can•create

- Following added to *can*•*create*:
 - $-\operatorname{cc}(p_1) = a_1$
 - $-\operatorname{cc}(p_2, a_1) = a_2$
 - $-\operatorname{cc}(p_3, a_2) = a_3$
 - Parents creating their agents; note agents have maximum of 2 parents
 - $-\operatorname{cc}(a_3) = s$
 - Agent of all parents creates agent of child
 - cc(s) = c
 - Agent of child creates child

Creation Rules

- Following added to create rule:
 - $-cr_P(p_1, a_1) = \emptyset$
 - $cr_C(p_1, a_1) = p_1/Rtc$
 - Agent's parent set to creating parent; agent has all rights over parent
 - $cr_{Pfirst}(p_2, a_1, a_2) = \emptyset$
 - $cr_{Psecond}(p_2, a_1, a_2) = \emptyset$
 - $cr_C(p_2, a_1, a_2) = p_2/Rtc \cup a_1/tc$
 - Agent's parent set to creating parent and agent; agent has all rights over parent (but not over agent)

Creation Rules

- $-cr_{Pfirst}(p_3, a_2, a_3) = \emptyset$
- $-cr_{Psecond}(p_3, a_2, a_3) = \emptyset$
- $-cr_C(p_3, a_2, a_3) = p_3/Rtc \cup a_2/tc$
 - Agent's parent set to creating parent and agent; agent has all rights over parent (but not over agent)
- $-cr_P(a_3, s) = \emptyset$
- $-cr_{C}(a_{3}, s) = a_{3}/tc$
 - Child's agent has third agent as parent $cr_P(a_3, s) = \emptyset$
- $-cr_P(s,c) = \mathbb{C}/Rtc$
- $-cr_C(s,c) = c/R_3t$
 - Child's agent gets full rights over child; child gets R_3 rights over agent

Link Predicates

- Idea: no tickets to parents until child created
 - Done by requiring each agent to have its own parent rights
 - $link_1(\mathbf{A}_2, \mathbf{A}_1) = \mathbf{A}_1/t \in dom(\mathbf{A}_2) \land \mathbf{A}_2/t \in dom(\mathbf{A}_2)$
 - $link_1(\mathbf{A}_3, \mathbf{A}_2) = \mathbf{A}_2/t \in dom(\mathbf{A}_3) \land \mathbf{A}_3/t \in dom(\mathbf{A}_3)$
 - $link_2(\mathbf{S}, \mathbf{A}_3) = \mathbf{A}_3/t \in dom(\mathbf{S}) \wedge \mathbf{C}/t \in dom(\mathbf{C})$
 - $link_3(\mathbf{A}_1, \mathbf{C}) = \mathbf{C}/t \in dom(\mathbf{A}_1)$
 - $link_3(\mathbf{A}_2, \mathbf{C}) = \mathbf{C}/t \in dom(\mathbf{A}_2)$
 - $link_3(\mathbf{A}_3, \mathbf{C}) = \mathbf{C}/t \in dom(\mathbf{A}_3)$
 - $link_4(\mathbf{A}_1, \mathbf{P}_1) = \mathbf{P}_1/t \in dom(\mathbf{A}_1) \land \mathbf{A}_1/t \in dom(\mathbf{A}_1)$
 - $link_4(\mathbf{A}_2, \mathbf{P}_2) = \mathbf{P}_2/t \in dom(\mathbf{A}_2) \land \mathbf{A}_2/t \in dom(\mathbf{A}_2)$
 - $link_4(\mathbf{A}_3, \mathbf{P}_3) = \mathbf{P}_3/t \in dom(\mathbf{A}_3) \land \mathbf{A}_3/t \in dom(\mathbf{A}_3)$

Filter Functions

- $f_1(a_2, a_1) = a_1/t \cup c/Rtc$
- $f_1(a_3, a_2) = a_2/t \cup c/Rtc$
- $f_2(s, a_3) = a_3/t \cup c/Rtc$
- $f_3(a_1, c) = p_1/R_{4,1}$
- $f_3(a_2, c) = p_2/R_{4.2}$
- $f_3(a_3, c) = p_3/R_{4,3}$
- $f_4(a_1, p_1) = c/R_{1,1} \cup p_1/R_{2,1}$
- $f_4(a_2, p_2) = c/R_{1,2} \cup p_2/R_{2,2}$
- $f_4(a_3, p_3) = c/R_{1,3} \cup p_3/R_{2,3}$

Construction

Create A_1, A_2, A_3, S, C ; then

- P_1 has no relevant tickets
- P_2 has no relevant tickets
- P_3 has no relevant tickets
- \mathbf{A}_1 has \mathbf{P}_1/Rtc
- \mathbf{A}_2 has $\mathbf{P}_2/Rtc \cup \mathbf{A}_1/tc$
- \mathbf{A}_3 has $\mathbf{P}_3/Rtc \cup \mathbf{A}_2/tc$
- S has $A_3/tc \cup C/Rtc$
- C has \mathbb{C}/R_3t

Construction

- Only $link_2(\mathbf{S}, \mathbf{A}_3)$ true \Rightarrow apply f_2
 - $\mathbf{A}_3 \text{ has } \mathbf{P}_3/Rtc \cup \mathbf{A}_2/t \cup \mathbf{A}_3/t \cup \mathbf{C}/Rtc$
- Now $link_1(\mathbf{A}_3, \mathbf{A}_2)$ true \Rightarrow apply f_1
 - $\mathbf{A}_2 \operatorname{has} \mathbf{P}_2 / Rtc \cup \mathbf{A}_1 / tc \cup \mathbf{A}_2 / t \cup \mathbf{C} / Rtc$
- Now $link_1(\mathbf{A}_2, \mathbf{A}_1)$ true \Rightarrow apply f_1
 - $\mathbf{A}_1 \text{ has } \mathbf{P}_2 / Rtc \cup \mathbf{A}_1 / t \cup \mathbf{C} / Rtc$
- Now all $link_3$ s true \Rightarrow apply f_3
 - C has $\mathbb{C}/R_3 \cup \mathbb{P}_1/R_{4,1} \cup \mathbb{P}_2/R_{4,2} \cup \mathbb{P}_3/R_{4,3}$

Finish Construction

- Now $link_4$ is true \Rightarrow apply f_4
 - $\mathbf{P}_1 \text{ has } \mathbf{C}/R_{1,1} \cup \mathbf{P}_1/R_{2,1}$
 - $P_2 \text{ has } C/R_{1,2} \cup P_2/R_{2,2}$
 - $P_3 \text{ has } C/R_{1,3} \cup P_3/R_{2,3}$
- 3-parent joint create gives same rights to P₁,
 P₂, P₃, C
- If create of **C** fails, *link*₂ fails, so construction fails

Theorem

- The two-parent joint creation operation can implement an *n*-parent joint creation operation with a fixed number of additional types and rights, and augmentations to the link predicates and filter functions.
- **Proof**: by construction, as above
 - Difference is that the two systems need not start at the same initial state

Theorems

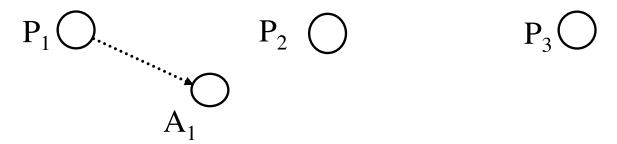
- Monotonic ESPM and the monotonic HRU model are equivalent.
- Safety question in ESPM also decidable if acyclic attenuating scheme
 - Proof similar to that for SPM

Expressiveness

- Graph-based representation to compare models
- Graph
 - Vertex: represents entity, has static type
 - Edge: represents right, has static type
- Graph rewriting rules:
 - Initial state operations create graph in a particular state
 - Node creation operations add nodes, incoming edges
 - Edge adding operations add new edges between existing vertices

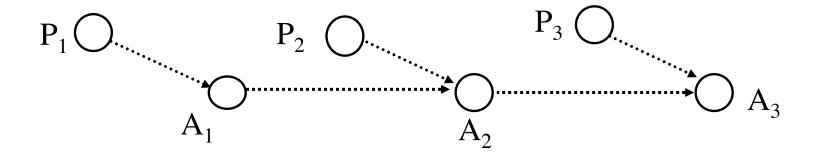
Example: 3-Parent Joint Creation

- Simulate with 2-parent
 - Nodes P_1 , P_2 , P_3 parents
 - Create node C with type c with edges of type e
 - Add node \mathbf{A}_1 of type a and edge from \mathbf{P}_1 to \mathbf{A}_1 of type e'



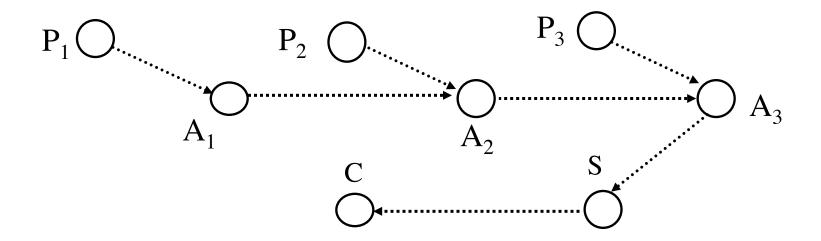
Next Step

- A_1 , P_2 create A_2 ; A_2 , P_3 create A_3
- Type of nodes, edges are a and e'



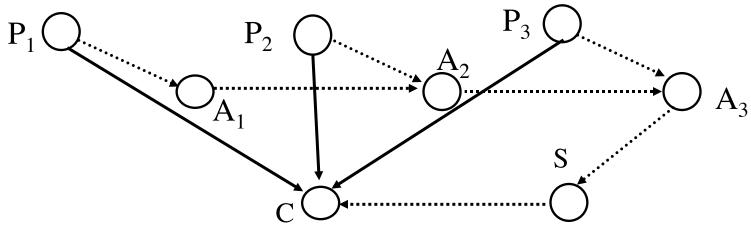
Next Step

- A_3 creates S, of type a
- S creates C, of type c



Last Step

- Edge adding operations:
 - $-\mathbf{P}_1 \rightarrow \mathbf{A}_1 \rightarrow \mathbf{A}_2 \rightarrow \mathbf{A}_3 \rightarrow \mathbf{S} \rightarrow \mathbf{C}$: \mathbf{P}_1 to \mathbf{C} edge type e
 - $-\mathbf{P}_2 \rightarrow \mathbf{A}_2 \rightarrow \mathbf{A}_3 \rightarrow \mathbf{S} \rightarrow \mathbf{C}$: \mathbf{P}_2 to \mathbf{C} edge type e
 - $-\mathbf{P}_3 \rightarrow \mathbf{A}_3 \rightarrow \mathbf{S} \rightarrow \mathbf{C}$: \mathbf{P}_3 to \mathbf{C} edge type e



April 12, 2017

ECS 235B Spring Quarter 2017

Slide #24

Definitions

- Scheme: graph representation as above
- *Model*: set of schemes
- Schemes A, B correspond if graph for both is identical when all nodes with types not in A and edges with types in A are deleted

Example

- Above 2-parent joint creation simulation in scheme *TWO*
- Equivalent to 3-parent joint creation scheme THREE in which \mathbf{P}_1 , \mathbf{P}_2 , \mathbf{P}_3 , \mathbf{C} are of same type as in TWO, and edges from \mathbf{P}_1 , \mathbf{P}_2 , \mathbf{P}_3 to \mathbf{C} are of type e, and no types a and e' exist in TWO

Simulation

Scheme A simulates scheme B iff

- every state B can reach has a corresponding state in A that A can reach; and
- every state that A can reach either corresponds to a state B can reach, or has a successor state that corresponds to a state B can reach
 - The last means that A can have intermediate states not corresponding to states in B, like the intermediate ones in TWO in the simulation of THREE

Expressive Power

- If there is a scheme in MA that no scheme in MB can simulate, MB less expressive than MA
- If every scheme in MA can be simulated by a scheme in MB, MB as expressive as MA
- If MA as expressive as MB and vice versa, MA and MB equivalent

Example

- Scheme A in model M
 - Nodes $\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3$
 - 2-parent joint create
 - 1 node type, 1 edge type
 - No edge adding operations
 - Initial state: X_1, X_2, X_3 , no edges
- Scheme B in model N
 - All same as A except no 2-parent joint create
 - 1-parent create
- Which is more expressive?

Can A Simulate B?

- Scheme *A* simulates 1-parent create: have both parents be same node
 - Model M as expressive as model N

Can B Simulate A?

- Suppose X_1 , X_2 jointly create Y in A
 - Edges from X_1 , X_2 to Y, no edge from X_3 to Y
- Can B simulate this?
 - Without loss of generality, X_1 creates Y
 - Must have edge adding operation to add edge from X₂ to Y
 - One type of node, one type of edge, so
 operation can add edge between any 2 nodes

No

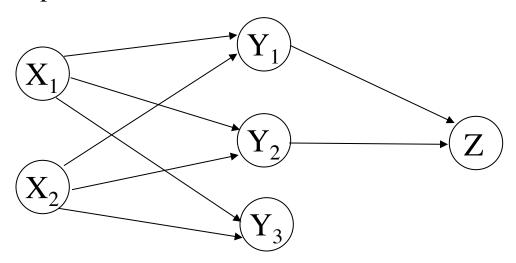
- All nodes in A have even number of incoming edges
 - 2-parent create adds 2 incoming edges
- Edge adding operation in B that can edge from X_2 to C can add one from X_3 to C
 - A cannot enter this state
 - -B cannot transition to a state in which \mathbf{Y} has even number of incoming edges
 - No remove rule
- So B cannot simulate A; N less expressive than M

Theorem

- Monotonic single-parent models are less expressive than monotonic multiparent models
- Proof by contradiction
 - Scheme A is multiparent model
 - Scheme *B* is single parent create
 - Claim: B can simulate A, without assumption that they start in the same initial state
 - Note: example assumed same initial state

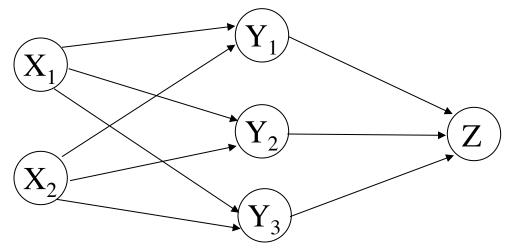
Outline of Proof

- X_1, X_2 nodes in A
 - They create Y_1, Y_2, Y_3 using multiparent create rule
 - $-\mathbf{Y}_1, \mathbf{Y}_2$ create \mathbf{Z} , again using multiparent create rule
 - *Note*: no edge from \mathbf{Y}_3 to \mathbf{Z} can be added, as A has no edge-adding operation



Outline of Proof

- $\mathbf{W}, \mathbf{X}_1, \mathbf{X}_2 \text{ nodes in } B$
 - W creates \mathbf{Y}_1 , \mathbf{Y}_2 , \mathbf{Y}_3 using single parent create rule, and adds edges for \mathbf{X}_1 , \mathbf{X}_2 to all using edge adding rule
 - \mathbf{Y}_1 creates \mathbf{Z} , again using single parent create rule; now must add edge from \mathbf{X}_2 to \mathbf{Z} to simulate A
 - Use same edge adding rule to add edge from \mathbf{Y}_3 to \mathbf{Z} : cannot duplicate this in scheme A!



Meaning

- Scheme *B* cannot simulate scheme *A*, contradicting hypothesis
- ESPM more expressive than SPM
 - ESPM multiparent and monotonic
 - SPM monotonic but single parent

Typed Access Matrix Model

- Like ACM, but with set of types T
 - All subjects, objects have types
 - Set of types for subjects TS
- Protection state is (S, O, τ, A)
 - $-\tau: O \rightarrow T$ specifies type of each object
 - If **X** subject, $\tau(\mathbf{X})$ in TS
 - If **X** object, $\tau(\mathbf{X})$ in T TS

Create Rules

- Subject creation
 - create subject s of type ts
 - s must not exist as subject or object when operation executed
 - $ts \in TS$
- Object creation
 - create object o of type to
 - o must not exist as subject or object when operation executed
 - $to \in T TS$

Create Subject

- Precondition: $s \notin S$
- Primitive command: create subject s of type t
- Postconditions:

$$-S' = S \cup \{ s \}, O' = O \cup \{ s \}$$

$$-(\forall y \in O)[\tau'(y) = \tau(y)], \tau'(s) = t$$

$$-(\forall y \in O')[a'[s,y] = \varnothing], (\forall x \in S')[a'[x,s] = \varnothing]$$

$$-(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]$$

Create Object

- Precondition: $o \notin O$
- Primitive command: create object o of type
- Postconditions:

$$-S' = S, O' = O \cup \{ o \}$$

$$-(\forall y \in O)[\tau'(y) = \tau(y)], \tau'(o) = t$$

$$-(\forall x \in S')[a'[x, o] = \varnothing]$$

$$-(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]$$

Definitions

- MTAM Model: TAM model without delete, destroy
 - MTAM is Monotonic TAM
- $\alpha(x_1:t_1,...,x_n:t_n)$ create command
 - t_i child type in α if any of create subject x_i of type t_i or create object x_i of type t_i occur in α
 - $-t_i$ parent type otherwise

Cyclic Creates

```
command cry•havoc(s_1:u,s_2:u,o_1:v,o_2:v,o_3:w,o_4:w)

create subject s_1 of type u;

create object o_1 of type v;

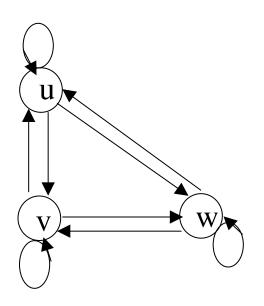
create object o_3 of type w;

enter r into a[s_2,s_1];

enter r into a[s_2,o_2];

enter r into a[s_2,o_4]
```

Creation Graph



- *u*, *v*, *w* child types
- u, v, w also parent types
- Graph: lines from parent types to child types
- This one has cycles

Acyclic Creates

```
command cry \cdot havoc(s_1 : u, s_2 : u, o_1 : v, o_3 : w)

create object o_1 of type v;

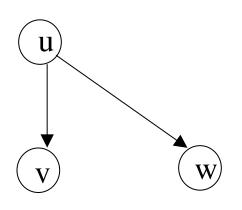
create object o_3 of type w;

enter r into a[s_2, s_1];

enter r into a[s_2, o_1];

enter r into a[s_2, o_3]
```

Creation Graph



- v, w child types
- *u* parent type
- Graph: lines from parent types to child types
- This one has no cycles

Theorems

- Safety decidable for systems with acyclic MTAM schemes
 - In fact, it's NP-hard
- Safety for acyclic ternary MATM decidable in time polynomial in the size of initial ACM
 - "Ternary" means commands have no more than 3 parameters
 - Equivalent in expressive power to MTAM

Key Points

- Safety problem undecidable
- Limiting scope of systems can make problem decidable
- Types critical to safety problem's analysis

Security Policy

- Policy partitions system states into:
 - Authorized (secure)
 - These are states the system can enter
 - Unauthorized (nonsecure)
 - If the system enters any of these states, it's a security violation
- Secure system
 - Starts in authorized state
 - Never enters unauthorized state

Confidentiality

- X set of entities, I information
- *I* has the *confidentiality* property with respect to X if no $x \in X$ can obtain information from I
- I can be disclosed to others
- Example:
 - X set of students
 - *I* final exam answer key
 - I is confidential with respect to X if students cannot obtain final exam answer key

Integrity

- X set of entities, I information
- *I* has the *integrity* property with respect to *X* if all $x \in X$ trust information in *I*
- Types of integrity:
 - Trust *I*, its conveyance and protection (data integrity)
 - I information about origin of something or an identity (origin integrity, authentication)
 - I resource: means resource functions as it should (assurance)

Availability

- X set of entities, I resource
- *I* has the *availability* property with respect to *X* if all $x \in X$ can access *I*
- Types of availability:
 - Traditional: x gets access or not
 - Quality of service: promised a level of access (for example, a specific level of bandwidth) and not meet it, even though some access is achieved