
April 14: Policy

•  Policies
•  Trust
•  Nature of Security Mechanisms
•  Policy Expression Languages
•  Limits on Secure and Precise Mechanisms
•  Bell-LaPadula Confidentiality Model

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #1

Policy Models

•  Abstract description of a policy or class of
policies

•  Focus on points of interest in policies
– Security levels in multilevel security models
– Separation of duty in Clark-Wilson model
– Conflict of interest in Chinese Wall model

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #2

Mechanisms

•  Entity or procedure that enforces some part
of the security policy
– Access controls (like bits to prevent someone

from reading a homework file)
– Disallowing people from bringing CDs and

floppy disks into a computer facility to control
what is placed on systems

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #3

Question

•  Policy disallows cheating
–  Includes copying homework, with or without

permission
•  CS class has students do homework on computer
•  Anne forgets to read-protect her homework file
•  Bill copies it
•  Who cheated?

–  Anne, Bill, or both?

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #4

Answer Part 1
•  Bill cheated

–  Policy forbids copying homework assignment
–  Bill did it
–  System entered unauthorized state (Bill having a copy

of Anne’s assignment)
•  If not explicit in computer security policy,

certainly implicit
–  Not credible that a unit of the university allows

something that the university as a whole forbids, unless
the unit explicitly says so

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #5

Answer Part #2

•  Anne didn’t protect her homework
– Not required by security policy

•  She didn’t breach security
•  If policy said students had to read-protect

homework files, then Anne did breach
security
– She didn’t do this

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #6

Types of Security Policies

•  Military (governmental) security policy
– Policy primarily protecting confidentiality

•  Commercial security policy
– Policy primarily protecting integrity

•  Confidentiality policy
– Policy protecting only confidentiality

•  Integrity policy
– Policy protecting only integrity

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #7

Integrity and Transactions

•  Begin in consistent state
–  “Consistent” defined by specification

•  Perform series of actions (transaction)
– Actions cannot be interrupted
–  If actions complete, system in consistent state
–  If actions do not complete, system reverts to

beginning (consistent) state

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #8

Trust

Administrator installs patch
1.  Trusts patch came from vendor, not

tampered with in transit
2.  Trusts vendor tested patch thoroughly
3.  Trusts vendor’s test environment

corresponds to local environment
4.  Trusts patch is installed correctly

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #9

Trust in Formal Verification

•  Gives formal mathematical proof that given
input i, program P produces output o as
specified

•  Suppose a security-related program S
formally verified to work with operating
system O

•  What are the assumptions?

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #10

Trust in Formal Methods
1.  Proof has no errors

•  Bugs in automated theorem provers
2.  Preconditions hold in environment in which S is

to be used
3. S transformed into executable Sʹ whose actions

follow source code
•  Compiler bugs, linker/loader/library problems

4.  Hardware executes Sʹ as intended
•  Hardware bugs (Pentium f00f bug, for example)

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #11

Types of Access Control

•  Discretionary Access Control (DAC, IBAC)
–  Individual user sets access control mechanism to allow

or deny access to an object
•  Mandatory Access Control (MAC)

–  System mechanism controls access to object, and
individual cannot alter that access

•  Originator Controlled Access Control (ORCON)
–  Originator (creator) of information controls who can

access information

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #12

Policy Languages

•  Express security policies in a precise way
•  High-level languages

– Policy constraints expressed abstractly
•  Low-level languages

– Policy constraints expressed in terms of
program options, input, or specific
characteristics of entities on system

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #13

High-Level Policy Languages

•  Constraints expressed independent of
enforcement mechanism

•  Constraints restrict entities, actions
•  Constraints expressed unambiguously

– Requires a precise language, usually a
mathematical, logical, or programming-like
language

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #14

Example: Ponder

•  Security and management policy
specification language

•  Handles many types of policies
– Authorization policies
– Delegation policies
–  Information filtering policies
– Obligation policies
– Refrain policies

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #15

Entities
•  Organized into hierarchical domains
•  Network administrators

–  Domain is /NetAdmins
–  Subdomain for net admin trainees is
–  /NetAdmins/Trainees

•  Routers in LAN
–  Domain is /localnet
–  Subdomain that is a testbed for routers is
–  /localnet/testbed/routers

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #16

Authorization Policies

•  Allowed actions: netadmins can enable,
disable, reconfigure, view configuration of
routers

inst auth+ switchAdmin {
subject /NetAdmins;
target /localnetwork/routers;
action enable(), disable(), reconfig(),

dumpconfig();
}

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #17

Authorization Policies

•  Disallowed actions: trainees cannot test
performance between 8AM and 5PM

inst auth- testOps {
 subject /NetEngineers/trainees;
 target /localnetwork/routers;
 action testperformance();
 when Time.between("0800", "1700");
}

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #18

Delegation Policies

•  Delegated rights: net admins delegate to net
engineers the right to enable, disable,
reconfigure routers on the router testbed

inst deleg+ (switchAdmin) delegSwitchAdmin {
 grantee /NetEngineers;
 target /localnetwork/testNetwork/routers;
 action enable(), disable(), reconfig();
 valid Time.duration(8);
}

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #19

Information Filtering Policies
•  Control information flow: net admins can

dump everything from routers between 8PM
and 5AM, and config info anytime

inst auth+ switchOpsFilter {
 subject /NetAdmins;
 target /localnetwork/routers;
 action dumpconfig(what)
 { in partial = "config"; }

if (Time.between("2000", "0500")){
in partial = "all"; }

}

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #20

Refrain Policies
•  Like authorization denial policies, but enforced

by the subjects: net engineers cannot send test
results to net developers while testing in
progress

inst refrain testSwitchOps {
 subject s=/NetEngineers;
 target /NetDevelopers;
 action sendTestResults();
 when s.teststate="in progress"
}

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #21

Obligation Policies

•  Must take actions when events occur: on 3rd
login failure, net security admins will disable
account and log event

inst oblig loginFailure {
 on loginfail(userid, 3);
 subject s=/NetAdmins/SecAdmins;
 target t=/NetAdmins/users ^ (userid);
 do t.disable() -> s.log(userid);
}

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #22

Example

•  Policy: separation of duty requires 2 different
members of Accounting approve check

inst auth+ separationOfDuty {
 subject s=/Accountants;
 target t=checks;
 action approve(), issue();
 when s.id <> t.issuerid;
}

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #23

Low-Level Policy Languages

•  Set of inputs or arguments to commands
– Check or set constraints on system

•  Low level of abstraction
– Need details of system, commands

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #24

Example: tripwire

•  File scanner that reports changes to file
system and file attributes
–  tw.config describes what may change
/usr/mab/tripwire +gimnpsu012345678-a

•  Check everything but time of last access (“-a”)
– Database holds previous values of attributes

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #25

Example Database Record
/usr/mab/tripwire/README 0/. 100600 45763 1

917 10 33242 .gtPvf .gtPvY .gtPvY
0 .ZD4cc0Wr8i21ZKaI..LUOr3 .
0fwo5:hf4e4.8TAqd0V4ubv ?...... ...9b3
1M4GX01xbGIX0oVuGo1h15z3 ?:Y9jfa04rdzM1q:eqt1AP
gHk ?.Eb9yo.2zkEh1XKovX1:d0wF0kfAvC ?
1M4GX01xbGIX2947jdyrior38h15z3 0

•  file name, version, bitmask for attributes, mode,
inode number, number of links, UID, GID, size,
times of creation, last modification, last access,
cryptographic checksums

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #26

Comments

•  System administrators not expected to edit
database to set attributes properly

•  Checking for changes with tripwire is easy
–  Just run once to create the database, run again to check

•  Checking for conformance to policy is harder
–  Need to either edit database file, or (better) set system

up to conform to policy, then run tripwire to construct
database

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #27

Secure, Precise Mechanisms

•  Can one devise a procedure for developing a
mechanism that is both secure and precise?
–  Consider confidentiality policies only here
–  Integrity policies produce same result

•  Program a function with multiple inputs and one
output
–  Let p be a function p: I1 × ... × In → R. Then p is a

program with n inputs ik ∈ Ik, 1 ≤ k ≤ n, and one output
r → R

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #28

Programs and Postulates
•  Observability Postulate: the output of a function

encodes all available information about its inputs
–  Covert channels considered part of the output

•  Example: authentication function
–  Inputs name, password; output Good or Bad
–  If name invalid, immediately print Bad; else access

database
–  Problem: time output of Bad, can determine if name

valid
–  This means timing is part of output

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #29

Protection Mechanism

•  Let p be a function p: I1 × ... × In → R. A
protection mechanism m is a function

m: I1 × ... × In → R ∪ E
for which, when ik ∈ Ik, 1 ≤ k ≤ n, either
–  m(i1, ..., in) = p(i1, ..., in) or
–  m(i1, ..., in) ∈ E.

•  E is set of error outputs
–  In above example, E = { “Password Database Missing”,

“Password Database Locked” }
April 14, 2017 ECS 235B Spring Quarter 2017 Slide #30

Confidentiality Policy
•  Confidentiality policy for program p says which

inputs can be revealed
–  Formally, for p: I1 × ... × In → R, it is a function c: I1
× ... × In → A, where A ⊆ I1 × ... × In

–  A is set of inputs available to observer
•  Security mechanism is function

m: I1 × ... × In → R ∪ E
–  m is secure if and only if ∃ m´: A → R ∪ E such that,
∀ik ∈ Ik, 1 ≤ k ≤ n, m(i1, ..., in) = m´(c(i1, ..., in))

–  m returns values consistent with c

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #31

Examples

•  c(i1, ..., in) = C, a constant
– Deny observer any information (output does

not vary with inputs)
•  c(i1, ..., in) = (i1, ..., in), and m´ = m

– Allow observer full access to information
•  c(i1, ..., in) = i1

– Allow observer information about first input
but no information about other inputs.

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #32

Precision

•  Security policy may be over-restrictive
–  Precision measures how over-restrictive

•  m1, m2 distinct protection mechanisms for program
p under policy c
–  m1 as precise as m2 (m1 ≈ m2) if, for all inputs i1, …, in,

m2(i1, …, in) = p(i1, …, in) ⇒ m1(i1, …, in) = p(i1, …, in)
–  m1 more precise than m2 (m1 ~ m2) if there is an input

(i1´, …, in´) such that m1(i1´, …, in´) = p(i1´, …, in´) and
m2(i1´, …, in´) ≠ p(i1´, …, in´).

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #33

Combining Mechanisms

•  m1, m2 protection mechanisms
•  m3 = m1 ∪ m2

–  For inputs on which m1 and m2 return same value as p,
m3 does also; otherwise, m3 returns same value as m1

•  Theorem: if m1, m2 secure, then m3 secure
–  Also, m3 ≈ m1 and m3 ≈ m2

–  Follows from definitions of secure, precise, and m3

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #34

Existence Theorem

•  For any program p and security policy c,
there exists a precise, secure mechanism m*
such that, for all secure mechanisms m
associated with p and c, m* ≈ m
– Maximally precise mechanism
– Ensures security
– Minimizes number of denials of legitimate

actions

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #35

Lack of Effective Procedure

•  There is no effective procedure that
determines a maximally precise, secure
mechanism for any policy and program.
– Sketch of proof: let policy c be constant

function, and p compute function T(x). Assume
T(x) = 0. Consider program q, where

p;
if z = 0 then y := 1 else y := 2;
halt;

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #36

Rest of Sketch
•  m associated with q, y value of m, z output of p

corresponding to T(x)
•  ∀x[T(x) = 0] → m(x) = 1
•  ∃x´ [T(x´) ≠ 0] → m(x) = 2 or m(x)↑
•  If you can determine m, you can determine

whether T(x) = 0 for all x
•  Determines some information about input (is it 0?)
•  Contradicts constancy of c.
•  Therefore no such procedure exists
April 14, 2017 ECS 235B Spring Quarter 2017 Slide #37

Key Points

•  Policies describe what is allowed
•  Mechanisms control how policies are

enforced
•  Trust underlies everything

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #38

Confidentiality Policy

•  Goal: prevent the unauthorized disclosure of
information
– Deals with information flow
–  Integrity incidental

•  Multi-level security models are best-known
examples
– Bell-LaPadula Model basis for many, or most,

of these
April 14, 2017 ECS 235B Spring Quarter 2017 Slide #39

Bell-LaPadula Model, Step 1

•  Security levels arranged in linear ordering
– Top Secret: highest
– Secret
– Confidential
– Unclassified: lowest

•  Levels consist of security clearance L(s)
– Objects have security classification L(o)

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #40

Example

security level subject object

Top Secret Tamara Personnel Files
Secret Samuel E-Mail Files
Confidential Claire Activity Logs
Unclassified Ulaley Telephone Lists

•  Tamara can read all files
•  Claire cannot read Personnel or E-Mail Files
•  Ulaley can only read Telephone Lists

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #41

Reading Information

•  Information flows up, not down
–  “Reads up” disallowed, “reads down” allowed

•  Simple Security Condition (Step 1)
– Subject s can read object o iff, L(o) ≤ L(s) and s

has permission to read o
•  Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)

– Sometimes called “no reads up” rule

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #42

Writing Information

•  Information flows up, not down
–  “Writes up” allowed, “writes down” disallowed

•  *-Property (Step 1)
– Subject s can write object o iff L(s) ≤ L(o) and s

has permission to write o
•  Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)

– Sometimes called “no writes down” rule

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #43

Basic Security Theorem, Step 1

•  If a system is initially in a secure state, and
every transition of the system satisfies the
simple security condition, step 1, and the *-
property, step 1, then every state of the
system is secure
– Proof: induct on the number of transitions

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #44

Bell-LaPadula Model, Step 2

•  Expand notion of security level to include
categories

•  Security level is (clearance, category set)
•  Examples

–  (Top Secret, { NUC, EUR, ASI })
–  (Confidential, { EUR, ASI })
–  (Secret, { NUC, ASI })

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #45

Levels and Lattices
•  (A, C) dom (Aʹ, Cʹ) iff Aʹ ≤ A and Cʹ ⊆ C
•  Examples

–  (Top Secret, {NUC, ASI}) dom (Secret, {NUC})
–  (Secret, {NUC, EUR}) dom (Confidential,{NUC, EUR})
–  (Top Secret, {NUC}) ¬dom (Confidential, {EUR})

•  Let C be set of classifications, K set of categories.
Set of security levels L = C × K, dom form lattice
–  lub(L) = (max(A), C)
–  glb(L) = (min(A), ∅)

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #46

Levels and Ordering

•  Security levels partially ordered
– Any pair of security levels may (or may not) be

related by dom
•  “dominates” serves the role of “greater

than” in step 1
–  “greater than” is a total ordering, though

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #47

Reading Information

•  Information flows up, not down
–  “Reads up” disallowed, “reads down” allowed

•  Simple Security Condition (Step 2)
– Subject s can read object o iff L(s) dom L(o)

and s has permission to read o
•  Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)

– Sometimes called “no reads up” rule

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #48

Writing Information

•  Information flows up, not down
–  “Writes up” allowed, “writes down” disallowed

•  *-Property (Step 2)
– Subject s can write object o iff L(o) dom L(s)

and s has permission to write o
•  Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)

– Sometimes called “no writes down” rule

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #49

Basic Security Theorem, Step 2
•  If a system is initially in a secure state, and every

transition of the system satisfies the simple
security condition, step 2, and the *-property, step
2, then every state of the system is secure
–  Proof: induct on the number of transitions
–  In actual Basic Security Theorem, discretionary access

control treated as third property, and simple security
property and *-property phrased to eliminate
discretionary part of the definitions — but simpler to
express the way done here.

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #50

Problem

•  Colonel has (Secret, {NUC, EUR})
clearance

•  Major has (Secret, {EUR}) clearance
– Major can talk to colonel (“write up” or “read

down”)
– Colonel cannot talk to major (“read up” or

“write down”)
•  Clearly absurd!
April 14, 2017 ECS 235B Spring Quarter 2017 Slide #51

Solution
•  Define maximum, current levels for subjects

–  maxlevel(s) dom curlevel(s)
•  Example

–  Treat Major as an object (Colonel is writing to him/her)
–  Colonel has maxlevel (Secret, { NUC, EUR })
–  Colonel sets curlevel to (Secret, { EUR })
–  Now L(Major) dom curlevel(Colonel)

•  Colonel can write to Major without violating “no writes down”
–  Does L(s) mean curlevel(s) or maxlevel(s)?

•  Formally, we need a more precise notation

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #52

Formal Model

•  Allows us to reason precisely about the
model

•  Provides a formalism to validate systems
against

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #53

Formal Model Definitions
•  S subjects, O objects, P rights

–  Defined rights: r read, a write, w read/write, e empty
•  M set of possible access control matrices
•  C set of clearances/classifications, K set of

categories, L = C × K set of security levels
•  F = { (fs, fo, fc) }

–  fs(s) maximum security level of subject s
–  fc(s) current security level of subject s
–  fo(o) security level of object o

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #54

More Definitions
•  Hierarchy functions H: O→P(O)
•  Requirements

1.  oi ≠ oj ⇒ h(oi) ∩ h(oj) = ∅
2.  There is no set { o1, …, ok } ⊆ O such that, for i = 1,

…, k, oi+1 ∈ h(oi) and ok+1 = o1.
•  Example

–  Tree hierarchy; take h(o) to be the set of children of o
–  No two objects have any common children (#1)
–  There are no loops in the tree (#2)

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #55

States and Requests

•  V set of states
– Each state is (b, m, f, h)

•  b is like m, but excludes rights not allowed by f

•  R set of requests for access
•  D set of outcomes

–  y allowed, n not allowed, i illegal, o error
•  W set of actions of the system

– W ⊆ R × D × V × V

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #56

History
•  X = RN set of sequences of requests
•  Y = DN set of sequences of decisions
•  Z = VN set of sequences of states
•  Interpretation

–  At time t ∈ N, system is in state zt–1 ∈ V; request xt ∈ R
causes system to make decision yt ∈ D, transitioning the
system into a (possibly new) state zt ∈ V

•  System representation: Σ(R, D, W, z0) ∈ X × Y × Z
–  (x, y, z) ∈ Σ(R, D, W, z0) iff (xt, yt, zt–1, zt) ∈ W for all t
–  (x, y, z) called an appearance of Σ(R, D, W, z0)

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #57

Example

•  S = { s }, O = { o }, P = { r, w }
•  C = { High, Low }, K = { All }
•  For every f ∈ F, either fc(s) = (High, { All }) or

fc(s) = (Low, { All })
•  Initial State:

–  b1 = { (s, o, r) }, m1 ∈ M gives s read access over o, and
for f1 ∈ F, fc,1(s) = (High, {All}), fo,1(o) = (Low, {All})

–  Call this state v0 = (b1, m1, f1, h1) ∈ V.

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #58

First Transition
•  Now suppose in state v0: S = { s, sʹ }
•  Suppose fc,1(sʹ) = (Low, {All})
•  m1 ∈ M gives s and sʹ read access over o
•  As sʹ not written to o, b1 = { (s, o, r) }
•  z0 = v0; if sʹ requests r1 to write to o:

–  System decides d1 = y
–  New state v1 = (b2, m1, f1, h1) ∈ V
–  b2 = { (s, o, r), (sʹ, o, w) }
–  Here, x = (r1), y = (y), z = (v0, v1)

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #59

Second Transition

•  Current state v1 = (b2, m1, f1, h1) ∈ V
–  b2 = { (s, o, r), (sʹ, o, w) }
–  fc,1(s) = (High, { All }), fo,1(o) = (Low, { All })

•  s requests r2 to write to o:
–  System decides d2 = n (as fc,1(s) dom fo,1(o))
–  New state v2 = (b2, m1, f1, h1) ∈ V
–  b2 = { (s, o, r), (sʹ, o, w) }
–  So, x = (r1, r2), y = (y, n), z = (v0, v1, v2), where v2 = v1

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #60

Basic Security Theorem

•  Define action, secure formally
– Using a bit of foreshadowing for “secure”

•  Restate properties formally
– Simple security condition
–  *-property
– Discretionary security property

•  State conditions for properties to hold
•  State Basic Security Theorem
April 14, 2017 ECS 235B Spring Quarter 2017 Slide #61

Action
•  A request and decision that causes the system to

move from one state to another
–  Final state may be the same as initial state

•  (r, d, v, vʹ) ∈ R × D × V × V is an action of Σ(R, D,
W, z0) iff there is an (x, y, z) ∈ Σ(R, D, W, z0) and a
t ∈ N such that (r, d, v, vʹ) = (xt, yt, zt–1, zt)
–  Request r made when system in state v; decision d

moves system into (possibly the same) state vʹ
–  Correspondence with (xt, yt, zt–1, zt) makes states,

requests, part of a sequence

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #62

Simple Security Condition
•  (s, o, p) ∈ S × O × P satisfies the simple security

condition relative to f (written ssc rel f) iff one of
the following holds:

1.  p = e or p = a
2.  p = r or p = w and fs(s) dom fo(o)

•  Holds vacuously if rights do not involve reading
•  If all elements of b satisfy ssc rel f, then state

satisfies simple security condition
•  If all states satisfy simple security condition,

system satisfies simple security condition
April 14, 2017 ECS 235B Spring Quarter 2017 Slide #63

Necessary and Sufficient
•  Σ(R, D, W, z0) satisfies the simple security

condition for any secure state z0 iff for every
action (r, d, (b, m, f, h), (bʹ, mʹ, fʹ, hʹ)), W satisfies
–  Every (s, o, p) ∈ bʹ – b satisfies ssc rel f
–  Every (s, o, p) ∈ b that does not satisfy ssc rel f is not in

bʹ
•  Note: “secure” means z0 satisfies ssc rel f
•  First says every (s, o, p) added satisfies ssc rel f;

second says any (s, o, p) in b that does not satisfy
ssc rel f is deleted

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #64

*-Property
•  b(s: p1, …, pn) set of all objects that s has p1, …, pn

access to
•  State (b, m, f, h) satisfies the *-property iff for each s ∈ S

the following hold:
1.  b(s: a) ≠ ∅ ⇒ [∀o ∈ b(s: a) [fo(o) dom fc(s)]]
2.  b(s: w) ≠ ∅ ⇒ [∀o ∈ b(s: w) [fo(o) = fc(s)]]
3.  b(s: r) ≠ ∅ ⇒ [∀o ∈ b(s: r) [fc(s) dom fo(o)]]

•  Idea: for writing, object dominates subject; for reading,
subject dominates object

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #65

*-Property

•  If all states satisfy simple security condition,
system satisfies simple security condition

•  If a subset Sʹ of subjects satisfy *-property, then
*-property satisfied relative to Sʹ ⊆ S

•  Note: tempting to conclude that *-property
includes simple security condition, but this is false
–  See condition placed on w right for each

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #66

Necessary and Sufficient

•  Σ(R, D, W, z0) satisfies the *-property relative to Sʹ ⊆ S for
any secure state z0 iff for every action (r, d, (b, m, f, h), (bʹ,
mʹ, fʹ, hʹ)), W satisfies the following for every s ∈ Sʹ
–  Every (s, o, p) ∈ b´ – b satisfies the *-property relative to Sʹ
–  Every (s, o, p) ∈ b that does not satisfy the *-property relative to

Sʹ is not in b´
•  Note: “secure” means z0 satisfies *-property relative to Sʹ
•  First says every (s, o, p) added satisfies the *-property

relative to Sʹ; second says any (s, o, p) in b that does not
satisfy the *-property relative to Sʹ is deleted

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #67

Discretionary Security Property
•  State (b, m, f, h) satisfies the discretionary

security property iff, for each (s, o, p) ∈ b, then
p ∈ m[s, o]

•  Idea: if s can read o, then it must have rights to
do so in the access control matrix m

•  This is the discretionary access control part of
the model
–  The other two properties are the mandatory access

control parts of the model

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #68

Necessary and Sufficient
•  Σ(R, D, W, z0) satisfies the ds-property for any

secure state z0 iff, for every action (r, d, (b, m, f,
h), (bʹ, mʹ, fʹ, hʹ)), W satisfies:
–  Every (s, o, p) ∈ b´ – b satisfies the ds-property
–  Every (s, o, p) ∈ b that does not satisfy the ds-property

is not in b
•  Note: “secure” means z0 satisfies ds-property
•  First says every (s, o, p) added satisfies the ds-

property; second says any (s, o, p) in b that does
not satisfy the *-property is deleted

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #69

Secure

•  A system is secure iff it satisfies:
– Simple security condition
–  *-property
– Discretionary security property

•  A state meeting these three properties is
also said to be secure

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #70

Basic Security Theorem

•  Σ(R, D, W, z0) is a secure system if z0 is a
secure state and W satisfies the conditions
for the preceding three theorems
– The theorems are on the slides titled

“Necessary and Sufficient”

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #71

Rule

•  ρ: R × V → D × V
•  Takes a state and a request, returns a decision and

a (possibly new) state
•  Rule ρ ssc-preserving if for all (r, v) ∈ R × V and

v satisfying ssc rel f, ρ(r, v) = (d, vʹ) means that vʹ
satisfies ssc rel fʹ.
–  Similar definitions for *-property, ds-property
–  If rule meets all 3 conditions, it is security-preserving

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #72

Unambiguous Rule Selection
•  Problem: multiple rules may apply to a request in

a state
–  if two rules act on a read request in state v …

•  Solution: define relation W(ω) for a set of rules ω
= { ρ1, …, ρm } such that a state (r, d, v, vʹ) ∈W(ω)
iff either
–  d = i; or
–  for exactly one integer j, ρj(r, v) = (d, vʹ)

•  Either request is illegal, or only one rule applies

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #73

Rules Preserving SSC

•  Let ω be set of ssc-preserving rules. Let state z0
satisfy simple security condition. Then Σ(R, D,
W(ω), z0) satisfies simple security condition
–  Proof: by contradiction.

•  Choose (x, y, z) ∈ Σ(R, D, W(ω), z0) as state not satisfying
simple security condition; then choose t ∈ N such that (xt, yt, zt)
is first appearance not meeting simple security condition

•  As (xt, yt, zt, zt–1) ∈ W(ω), there is unique rule ρ ∈ ω such that
ρ(xt, zt–1) = (yt, zt) and yt ≠ i.

•  As ρ ssc-preserving, and zt–1 satisfies simple security condition,
then zt meets simple security condition, contradiction.

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #74

Adding States Preserving SSC
•  Let v = (b, m, f, h) satisfy simple security condition. Let

(s, o, p) ∉ b, bʹ = b ∪ { (s, o, p) }, and vʹ = (bʹ, m, f, h).
Then vʹ satisfies simple security condition iff:

1.  Either p = e or p = a; or
2.  Either p = r or p = w, and fc(s) dom fo(o)
–  Proof

1.  Immediate from definition of simple security condition and vʹ
satisfying ssc rel f

2.  vʹ satisfies simple security condition means fs(s) dom fo(o), and for
converse, (s, o, p) ∈ bʹ satisfies ssc rel f, so vʹ satisfies simple
security condition

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #75

Rules, States Preserving *-
Property

•  Let ω be set of *-property-preserving rules, state
z0 satisfies *-property. Then Σ(R, D, W(ω), z0)
satisfies *-property

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #76

Rules, States Preserving ds-
Property

•  Let ω be set of ds-property-preserving rules, state
z0 satisfies ds-property. Then Σ(R, D, W(ω), z0)
satisfies ds-property

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #77

Combining
•  Let ρ be a rule and ρ(r, v) = (d, vʹ), where v = (b, m, f, h)

and vʹ = (bʹ, mʹ, fʹ, hʹ). Then:
1.  If bʹ ⊆ b, fʹ = f, and v satisfies the simple security condition,

then vʹ satisfies the simple security condition
2.  If bʹ ⊆ b, fʹ = f, and v satisfies the *-property, then vʹ satisfies

the *-property
3.  If bʹ ⊆ b, m[s, o] ⊆ mʹ [s, o] for all s ∈ S and o ∈ O, and v

satisfies the ds-property, then vʹ satisfies the ds-property

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #78

Proof
1.  Suppose v satisfies simple security property.

a)  b´ ⊆ b and (s, o, r) ∈ bʹ implies (s, o, r) ∈ b
b)  b´ ⊆ b and (s, o, w) ∈ bʹ implies (s, o, w) ∈ b
c)  So fc(s) dom fo(o)
d)  But fʹ = f
e)  Hence fʹc(s) dom fʹo(o)
f)  So vʹ satisfies simple security condition

2, 3 proved similarly

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #79

Example Instantiation: Multics
•  11 rules affect rights:

–  set to request, release access
–  set to give, remove access to different subject
–  set to create, reclassify objects
–  set to remove objects
–  set to change subject security level

•  Set of “trusted” subjects ST ⊆ S
–  *-property not enforced; subjects trusted not to violate

•  Δ(ρ) domain
–  determines if components of request are valid

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #80

get-read Rule

•  Request r = (get, s, o, r)
–  s gets (requests) the right to read o

•  Rule is ρ1(r, v):
if (r ≠ Δ(ρ1)) then ρ1(r, v) = (i, v);
else if (fs(s) dom fo(o) and [s ∈ ST or fc(s) dom fo(o)]

and r ∈ m[s, o])
then ρ1(r, v) = (y, (b ∪ { (s, o, r) }, m, f, h));

else ρ1(r, v) = (n, v);

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #81

Security of Rule

•  The get-read rule preserves the simple
security condition, the *-property, and the
ds-property
– Proof

•  Let v satisfy all conditions. Let ρ1(r, v) = (d, vʹ). If
vʹ = v, result is trivial. So let vʹ = (b ∪ { (s2, o, r) },
m, f, h).

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #82

Proof

•  Consider the simple security condition.
–  From the choice of vʹ, either bʹ – b = ∅ or { (s2, o, r) }
–  If bʹ – b = ∅, then { (s2, o, r) } ∈ b, so v = vʹ, proving

that vʹ satisfies the simple security condition.
–  If bʹ – b = { (s2, o, r) }, because the get-read rule

requires that fs(s) dom fo(o), an earlier result says that v ́
satisfies the simple security condition.

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #83

Proof

•  Consider the *-property.
–  Either s2 ∈ ST or fc(s) dom fo(o) from the definition of

get-read
–  If s2 ∈ ST, then s2 is trusted, so *-property holds by

definition of trusted and ST.
–  If fc(s) dom fo(o), an earlier result says that vʹ satisfies

the simple security condition.

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #84

Proof

•  Consider the discretionary security property.
–  Conditions in the get-read rule require r ∈ m[s, o] and

either bʹ – b = ∅ or { (s2, o, r) }
–  If bʹ – b = ∅, then { (s2, o, r) } ∈ b, so v = vʹ, proving

that v´ satisfies the simple security condition.
–  If bʹ – b = { (s2, o, r) }, then { (s2, o, r) } ∉ b, an earlier

result says that vʹ satisfies the ds-property.

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #85

Rules, States, and Conditions
Let ρ be a rule and ρ(r, v) = (d, vʹ), where v = (b, m, f, h) and
vʹ = (bʹ, mʹ, fʹ, hʹ). Then:

1.  If b ⊆ bʹ, f = fʹ, and v satisfies the simple security
condition, then vʹ satisfies the simple security
condition

2.  If b ⊆ bʹ, f = fʹ, and v satisfies the *-property, then vʹ
satisfies the *-property

3.  If b ⊆ bʹ, m[s, o] ⊆ mʹ [s, o] for all s ∈ S and o ∈ O,
and v satisfies the ds-property, then vʹ satisfies the ds-
property

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #86

Example Instantiation: Multics
•  11 rules affect rights:

–  set to request, release access
–  set to give, remove access to different subject
–  set to create, reclassify objects
–  set to remove objects
–  set to change subject security level

•  Set of “trusted” subjects ST ⊆ S
–  *-property not enforced; subjects trusted not to violate

•  Δ(ρ) domain
–  determines if components of request are valid

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #87

get-read Rule

•  Request r = (get, s, o, r)
–  s gets (requests) the right to read o

•  Rule is ρ1(r, v):
if (r ≠ Δ(ρ1)) then ρ1(r, v) = (i, v);
else if (fs(s) dom fo(o) and [s ∈ ST or fc(s) dom fo(o)]

and r ∈ m[s, o])
then ρ1(r, v) = (y, (b ∪ { (s, o, r) }, m, f, h));

else ρ1(r, v) = (n, v);

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #88

Security of Rule

•  The get-read rule preserves the simple
security condition, the *-property, and the
ds-property
– Proof

•  Let v satisfy all conditions. Let ρ1(r, v) = (d, vʹ). If
vʹ = v, result is trivial. So let vʹ = (b ∪ { (s2, o, r) },
m, f, h).

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #89

Proof

•  Consider the simple security condition.
–  From the choice of vʹ, either bʹ – b = ∅ or { (s2, o, r) }
–  If bʹ – b = ∅, then { (s2, o, r) } ∈ b, so v = vʹ, proving

that vʹ satisfies the simple security condition.
–  If bʹ – b = { (s2, o, r) }, because the get-read rule

requires that fc(s) dom fo(o), an earlier result says that v ́
satisfies the simple security condition.

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #90

Proof

•  Consider the *-property.
–  Either s2 ∈ ST or fc(s) dom fo(o) from the definition of

get-read
–  If s2 ∈ ST, then s2 is trusted, so *-property holds by

definition of trusted and ST.
–  If fc(s) dom fo(o), an earlier result says that vʹ satisfies

the simple security condition.

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #91

Proof

•  Consider the discretionary security property.
–  Conditions in the get-read rule require r ∈ m[s, o] and

either bʹ – b = ∅ or { (s2, o, r) }
–  If bʹ – b = ∅, then { (s2, o, r) } ∈ b, so v = vʹ, proving

that v´ satisfies the simple security condition.
–  If bʹ – b = { (s2, o, r) }, then { (s2, o, r) } ∉ b, an earlier

result says that vʹ satisfies the ds-property.

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #92

give-read Rule
•  Request r = (s1, give, s2, o, r)

–  s1 gives (request to give) s2 the (discretionary) right to read o
–  Rule: can be done if giver can alter parent of object

•  If object or parent is root of hierarchy, special authorization required

•  Useful definitions
–  root(o): root object of hierarchy h containing o
–  parent(o): parent of o in h (so o ∈ h(parent(o)))
–  canallow(s, o, v): s specially authorized to grant access when

object or parent of object is root of hierarchy
–  m∧m[s, o]←r: access control matrix m with r added to m[s, o]

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #93

give-read Rule
•  Rule is ρ6(r, v):

if (r ≠ Δ(ρ6)) then ρ6(r, v) = (i, v);
else if ([o ≠ root(o) and parent(o) ≠ root(o) and

parent(o) ∈ b(s1:w)] or
[parent(o) = root(o) and canallow(s1, o, v)] or
[o = root(o) and canallow(s1, o, v)])

then ρ6(r, v) = (y, (b, m∧m[s2, o] ← r, f, h));
else ρ1(r, v) = (n, v);

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #94

Security of Rule

•  The give-read rule preserves the simple security
condition, the *-property, and the ds-property
–  Proof: Let v satisfy all conditions. Let ρ1(r, v) = (d, vʹ).

If v´ = v, result is trivial. So let vʹ = (b, m[s2, o]←r, f, h).
So bʹ = b, fʹ = f, mʹ[x, y] = m[x, y] for all x ∈ S and y ∈
O such that x ≠ s and y ≠ o, and m[s, o] ⊆ mʹ[s, o]. Then
by earlier result, vʹ satisfies the simple security
condition, the *-property, and the ds-property.

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #95

Principle of Tranquility
•  Raising object’s security level

–  Information once available to some subjects is no
longer available

–  Usually assume information has already been accessed,
so this does nothing

•  Lowering object’s security level
–  The declassification problem
–  Essentially, a “write down” violating *-property
–  Solution: define set of trusted subjects that sanitize or

remove sensitive information before security level
lowered

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #96

Types of Tranquility

•  Strong Tranquility
–  The clearances of subjects, and the classifications of

objects, do not change during the lifetime of the system
•  Weak Tranquility

–  The clearances of subjects, and the classifications of
objects, do not change in a way that violates the simple
security condition or the *-property during the lifetime
of the system

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #97

Example of Weak Tranquility

•  Only one subject at TOP SECRET
•  Document at CONFIDENTIAL
•  New CONFIDENTIAL user to be added

– User should not see document
•  Raise document to SECRET

– Subject still cannot write document
– All security relationships unchanged

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #98

Declassification

•  Lowering the security level of a document
– Direct violation of the “no writes down” rule
– May be necessary for legal or other purposes

•  Declassification policy
– Part of security policy covering this
– Here, “secure” means classification changes to

a lower level in accordance with
declassification policy

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #99

Principles

•  Principle of Semantic Consistency
•  Principle of Occlusion
•  Principle of Conservativity
•  Principle of Monotonicity of Release

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #100

Principle of Semantic
Consistency

•  As long as the semantics of the parts of the
system not involved in the declassification
do not change, those parts may be changed
without affecting system security
– No leaking due to semantic incompatibilities
– Delimited release: allow declassification,

release of information only through specific
channels (“escape hatches”)

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #101

Principle of Occlusion

•  Declassification mechanism cannot conceal
improper lowering of security levels
– Robust declassification property: attacker

cannot use escape hatches to obtain information
unless it is properly declassified

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #102

Other Principles

•  Principle of Conservativity
–  Absent declassification, system is secure

•  Principle of Monotonicity of Release
–  When declassification is performed in an

authorized manner by authorized subjects, the
system remains secure

Idea: declassifying information in accordance
with declassification policy does not affect
security

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #103

Controversy

•  McLean:
–  “value of the BST is much overrated since there

is a great deal more to security than it captures.
Further, what is captured by the BST is so
trivial that it is hard to imagine a realistic
security model for which it does not hold.”

– Basis: given assumptions known to be non-
secure, BST can prove a non-secure system to
be secure

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #104

†-Property
•  State (b, m, f, h) satisfies the †-property iff for each s ∈ S

the following hold:
1.  b(s: a) ≠ ∅ ⇒ [∀o ∈ b(s: a) [fc(s) dom fo(o)]]
2.  b(s: w) ≠ ∅ ⇒ [∀o ∈ b(s: w) [fo(o) = fc(s)]]
3.  b(s: r) ≠ ∅ ⇒ [∀o ∈ b(s: r) [fc(s) dom fo(o)]]

•  Idea: for reading, subject dominates object; for writing,
subject also dominates object

•  Differs from *-property in that the mandatory condition for
writing is reversed
–  For *-property, it’s “object dominates subject”

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #105

Analogues

The following two theorems can be proved
•  Σ(R, D, W, z0) satisfies the †-property relative to Sʹ ⊆ S for

any secure state z0 iff for every action (r, d, (b, m, f, h),
(bʹ, mʹ, fʹ, hʹ)), W satisfies the following for every s ∈ S´
–  Every (s, o, p) ∈ bʹ – b satisfies the †-property relative to Sʹ
–  Every (s, o, p) ∈ b that does not satisfy the †-property relative to S ́

is not in b
•  Σ(R, D, W, z0) is a secure system if z0 is a secure state and

W satisfies the conditions for the simple security condition,
the †-property, and the ds-property.

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #106

Problem

•  This system is clearly non-secure!
–  Information flows from higher to lower because

of the †-property

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #107

Discussion
•  Role of Basic Security Theorem is to demonstrate

that rules preserve security
•  Key question: what is security?

–  Bell-LaPadula defines it in terms of 3 properties
(simple security condition, *-property, discretionary
security property)

–  Theorems are assertions about these properties
–  Rules describe changes to a particular system

instantiating the model
–  Showing system is secure requires proving rules

preserve these 3 properties
April 14, 2017 ECS 235B Spring Quarter 2017 Slide #108

Rules and Model
•  Nature of rules is irrelevant to model
•  Model treats “security” as axiomatic
•  Policy defines “security”

–  This instantiates the model
–  Policy reflects the requirements of the systems

•  McLean’s definition differs from Bell-LaPadula
–  … and is not suitable for a confidentiality policy

•  Analysts cannot prove “security” definition is
appropriate through the model

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #109

System Z

•  System supporting weak tranquility
•  On any request, system downgrades all

subjects and objects to lowest level and
adds the requested access permission
– Let initial state satisfy all 3 properties
– Successive states also satisfy all 3 properties

•  Clearly not secure
– On first request, everyone can read everything

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #110

Reformulation of Secure Action

•  Given state that satisfies the 3 properties,
the action transforms the system into a state
that satisfies these properties and eliminates
any accesses present in the transformed
state that would violate the property in the
initial state, then the action is secure

•  BST holds with these modified versions of
the 3 properties

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #111

Reconsider System Z
•  Initial state:

–  subject s, object o
–  C = {High, Low}, K = {All}

•  Take:
–  fc(s) = (Low, {All}), fo(o) = (High, {All})
–  m[s, o] = { w }, and b = { (s, o, w) }.

•  s requests r access to o
•  Now:

–  fʹo(o) = (Low, {All})
–  (s, o, r) ∈ bʹ, mʹ [s, o] = {r, w}

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #112

Non-Secure System Z

•  As (s, o, r) ∈ bʹ – b and fo(o) dom fc(s),
access added that was illegal in previous
state
– Under the new version of the Basic Security

Theorem, the current state of System Z is not
secure

– But, as fʹc(s) = fʹo(o) under the old version of the
Basic Security Theorem, the current state of
System Z is secure

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #113

Response: What Is Modeling?

•  Two types of models
1.  Abstract physical phenomenon to

fundamental properties
2.  Begin with axioms and construct a structure

to examine the effects of those axioms
•  Bell-LaPadula Model developed as a model

in the first sense
–  McLean assumes it was developed as a

model in the second sense
April 14, 2017 ECS 235B Spring Quarter 2017 Slide #114

Reconciling System Z

•  Different definitions of security create
different results
– Under one (original definition in Bell-LaPadula

Model), System Z is secure
– Under other (McLean’s definition), System Z is

not secure

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #115

