April 14: Policy

- Policies
- Trust
- Nature of Security Mechanisms
- Policy Expression Languages
- Limits on Secure and Precise Mechanisms
- Bell-LaPadula Confidentiality Model

Policy Models

- Abstract description of a policy or class of policies
- Focus on points of interest in policies
	- Security levels in multilevel security models
	- Separation of duty in Clark-Wilson model
	- Conflict of interest in Chinese Wall model

Mechanisms

- Entity or procedure that enforces some part of the security policy
	- Access controls (like bits to prevent someone from reading a homework file)
	- Disallowing people from bringing CDs and floppy disks into a computer facility to control what is placed on systems

Question

- Policy disallows cheating
	- Includes copying homework, with or without permission
- CS class has students do homework on computer
- Anne forgets to read-protect her homework file
- Bill copies it
- Who cheated?
	- Anne, Bill, or both?

Answer Part 1

- Bill cheated
	- Policy forbids copying homework assignment
	- Bill did it
	- System entered unauthorized state (Bill having a copy of Anne's assignment)
- If not explicit in computer security policy, certainly implicit
	- Not credible that a unit of the university allows something that the university as a whole forbids, unless the unit explicitly says so

Answer Part #2

- Anne didn't protect her homework – Not required by security policy
- She didn't breach security
- If policy said students had to read-protect homework files, then Anne did breach security
	- She didn't do this

Types of Security Policies

- Military (governmental) security policy – Policy primarily protecting confidentiality
- Commercial security policy – Policy primarily protecting integrity
- Confidentiality policy – Policy protecting only confidentiality
- Integrity policy
	- Policy protecting only integrity

Integrity and Transactions

- Begin in consistent state
	- "Consistent" defined by specification
- Perform series of actions (*transaction*)
	- Actions cannot be interrupted
	- If actions complete, system in consistent state
	- If actions do not complete, system reverts to beginning (consistent) state

Trust

Administrator installs patch

- 1. Trusts patch came from vendor, not tampered with in transit
- 2. Trusts vendor tested patch thoroughly
- 3. Trusts vendor's test environment corresponds to local environment
- 4. Trusts patch is installed correctly

Trust in Formal Verification

- Gives formal mathematical proof that given input *i*, program *P* produces output *o* as specified
- Suppose a security-related program *S* formally verified to work with operating system *O*
- What are the assumptions?

Trust in Formal Methods

- 1. Proof has no errors
	- Bugs in automated theorem provers
- 2. Preconditions hold in environment in which *S* is to be used
- *3. S* transformed into executable *S*ʹ whose actions follow source code
	- Compiler bugs, linker/loader/library problems
- 4. Hardware executes *S*ʹ as intended
	- Hardware bugs (Pentium $f00f$ bug, for example)

Types of Access Control

- Discretionary Access Control (DAC, IBAC)
	- Individual user sets access control mechanism to allow or deny access to an object
- Mandatory Access Control (MAC)
	- System mechanism controls access to object, and individual cannot alter that access
- Originator Controlled Access Control (ORCON)
	- Originator (creator) of information controls who can access information

Policy Languages

- Express security policies in a precise way
- High-level languages
	- Policy constraints expressed abstractly
- Low-level languages
	- Policy constraints expressed in terms of program options, input, or specific characteristics of entities on system

High-Level Policy Languages

- Constraints expressed independent of enforcement mechanism
- Constraints restrict entities, actions
- Constraints expressed unambiguously
	- Requires a precise language, usually a mathematical, logical, or programming-like language

Example: Ponder

- Security and management policy specification language
- Handles many types of policies
	- Authorization policies
	- Delegation policies
	- Information filtering policies
	- Obligation policies
	- Refrain policies

Entities

- Organized into hierarchical domains
- Network administrators
	- *Domain* is /NetAdmins
	- Subdomain for net admin trainees is
	- /NetAdmins/Trainees
- Routers in LAN
	- Domain is /localnet
	- Subdomain that is a testbed for routers is
	- /localnet/testbed/routers

Authorization Policies

• Allowed actions: netadmins can enable, disable, reconfigure, view configuration of routers

```
inst auth+ switchAdmin {
      subject /NetAdmins;
      target /localnetwork/routers;
      action enable(), disable(), reconfig(), 
dumpconfig();
}
```
Authorization Policies

• Disallowed actions: trainees cannot test performance between 8AM and 5PM

```
inst auth- testOps {
     subject /NetEngineers/trainees;
     target /localnetwork/routers;
     action testperformance();
    when Time.between("0800", "1700");
}
```
Delegation Policies

- Delegated rights: net admins delegate to net engineers the right to enable, disable, reconfigure routers on the router testbed
- **inst deleg+** (switchAdmin) delegSwitchAdmin { **grantee** /NetEngineers; **target** /localnetwork/testNetwork/routers; **action** enable(), disable(), reconfig(); **valid** Time.duration(8); }

Information Filtering Policies

• Control information flow: net admins can dump everything from routers between 8PM and 5AM, and config info anytime

```
inst auth+ switchOpsFilter {
     subject /NetAdmins;
     target /localnetwork/routers;
     action dumpconfig(what)
              { in partial = "config"; }
             if (Time.between("2000", "0500")){
                   in partial = "all"; \}}
```
Refrain Policies

• Like authorization denial policies, but enforced by the *subjects*: net engineers cannot send test results to net developers while testing in progress

```
inst refrain testSwitchOps {
    subject s=/NetEngineers;
    target /NetDevelopers;
    action sendTestResults();
   when s.teststate="in progress"
}
```
Obligation Policies

• Must take actions when events occur: on 3rd login failure, net security admins will disable account and log event

```
inst oblig loginFailure {
    on loginfail(userid, 3);
    subject s=/NetAdmins/SecAdmins;
    target t=/NetAdmins/users ^ (userid);
   do t.disable() -> s.loq(userid);
}
```
Example

• Policy: separation of duty requires 2 different members of Accounting approve check

```
inst auth+ separationOfDuty {
    subject s=/Accountants;
   target t=checks;
    action approve(), issue();
   when s.id <> t.issuerid;
}
```
Low-Level Policy Languages

- Set of inputs or arguments to commands – Check or set constraints on system
- Low level of abstraction
	- Need details of system, commands

Example: tripwire

- File scanner that reports changes to file system and file attributes
	- *tw.config* describes what may change /usr/mab/tripwire +gimnpsu012345678-a
		- Check everything but time of last access ("-a")
	- Database holds previous values of attributes

Example Database Record

/usr/mab/tripwire/README 0/. 100600 45763 1 917 10 33242 .gtPvf .gtPvY .gtPvY 0 .ZD4cc0Wr8i21ZKaI..LUOr3 . 0fwo5:hf4e4.8TAqd0V4ubv ?.........9b3 1M4GX01xbGIX0oVuGo1h15z3 ?:Y9jfa04rdzM1q:eqt1AP gHk ?.Eb9yo.2zkEh1XKovX1:d0wF0kfAvC ? 1M4GX01xbGIX2947jdyrior38h15z3 0

• file name, version, bitmask for attributes, mode, inode number, number of links, UID, GID, size, times of creation, last modification, last access, cryptographic checksums

Comments

- System administrators not expected to edit database to set attributes properly
- Checking for changes with tripwire is easy
	- Just run once to create the database, run again to check
- Checking for conformance to policy is harder
	- Need to either edit database file, or (better) set system up to conform to policy, then run tripwire to construct database

Secure, Precise Mechanisms

- Can one devise a procedure for developing a mechanism that is both secure *and* precise?
	- Consider confidentiality policies only here
	- Integrity policies produce same result
- Program a function with multiple inputs and one output
	- $-$ Let *p* be a function $p: I_1 \times ... \times I_n \rightarrow R$. Then *p* is a program with *n* inputs $i_k \in I_k$, $1 \le k \le n$, and one output $r \rightarrow R$

Programs and Postulates

- Observability Postulate: the output of a function encodes all available information about its inputs
	- Covert channels considered part of the output
- Example: authentication function
	- Inputs name, password; output Good or Bad
	- If name invalid, immediately print Bad; else access database
	- Problem: time output of Bad, can determine if name valid
	- This means timing is part of output

Protection Mechanism

• Let *p* be a function $p: I_1 \times ... \times I_n \rightarrow R$. A *protection mechanism m* is a function

$$
m: I_1 \times \dots \times I_n \to R \cup E
$$

for which, when $i_k \in I_k$, $1 \le k \le n$, either

$$
-m(i_1, ..., i_n) = p(i_1, ..., i_n)
$$
 or

$$
-m(i_1, ..., i_n) \in E.
$$

- *E* is set of error outputs
	- In above example, $E = \{$ "Password Database Missing", "Password Database Locked" }

Confidentiality Policy

- Confidentiality policy for program *p* says which inputs can be revealed
	- $-$ Formally, for $p: I_1 \times ... \times I_n \rightarrow R$, it is a function $c: I_1$ $\times ... \times I_n \rightarrow A$, where $A \subseteq I_1 \times ... \times I_n$
	- *A* is set of inputs available to observer
- Security mechanism is function

$$
m: I_1 \times \dots \times I_n \to R \cup E
$$

- *m* is *secure* if and only if $\exists m$: *A* → *R* ∪ *E* such that, $∀i_k ∈ I_k, 1 ≤ k ≤ n, m(i₁, ..., i_n) = m'(c(i₁, ..., i_n))$
- *m* returns values consistent with *c*

Examples

- $c(i_1, ..., i_n) = C$, a constant
	- Deny observer any information (output does not vary with inputs)

•
$$
c(i_1, ..., i_n) = (i_1, ..., i_n)
$$
, and $m' = m$

– Allow observer full access to information

$$
\bullet \ \ c(i_1, \ldots, i_n) = i_1
$$

– Allow observer information about first input but no information about other inputs.

Precision

- Security policy may be over-restrictive – Precision measures how over-restrictive
- m_1 , m_2 distinct protection mechanisms for program *p* under policy *c*
	- m_1 *as precise as m₂ (m₁* \approx *m₂) if, for all inputs* $i_1, ..., i_n$ *,* $m_2(i_1, \ldots, i_n) = p(i_1, \ldots, i_n) \Rightarrow m_1(i_1, \ldots, i_n) = p(i_1, \ldots, i_n)$
	- m_1 *more precise than* m_2 ($m_1 \sim m_2$) if there is an input $(i_1^{\prime}, \ldots, i_n^{\prime})$ such that $m_1(i_1^{\prime}, \ldots, i_n^{\prime}) = p(i_1^{\prime}, \ldots, i_n^{\prime})$ and $m_2(i_1^{'}, \ldots, i_n^{'}) \neq p(i_1^{'}, \ldots, i_n^{'})$.

Combining Mechanisms

- m_1 , m_2 protection mechanisms
- $m_3 = m_1 \cup m_2$
	- For inputs on which m_1 and m_2 return same value as p , m_3 does also; otherwise, m_3 returns same value as m_1
- Theorem: if m_1 , m_2 secure, then m_3 secure
	- $-$ Also, $m_3 \approx m_1$ and $m_3 \approx m_2$
	- $-$ Follows from definitions of secure, precise, and m_3

Existence Theorem

- For any program *p* and security policy *c*, there exists a precise, secure mechanism *m** such that, for all secure mechanisms *m* associated with *p* and *c*, $m^* \approx m$
	- Maximally precise mechanism
	- Ensures security
	- Minimizes number of denials of legitimate actions

Lack of Effective Procedure

- There is no effective procedure that determines a maximally precise, secure mechanism for any policy and program.
	- Sketch of proof: let policy *c* be constant function, and p compute function $T(x)$. Assume $T(x) = 0$. Consider program *q*, where

$$
P;
$$

if $z = 0$ then $y := 1$ else $y := 2;$
halt;
Rest of Sketch

• *m* associated with *q*, *y* value of *m*, *z* output of *p* corresponding to *T*(*x*)

•
$$
\forall x[T(x) = 0] \rightarrow m(x) = 1
$$

- $\exists x \in T(x \cap \neq 0] \rightarrow m(x) = 2 \text{ or } m(x)$
- If you can determine *m*, you can determine whether $T(x) = 0$ for all x
- Determines some information about input (is it 0?)
- Contradicts constancy of *c*.
- Therefore no such procedure exists

Key Points

- Policies describe *what* is allowed
- Mechanisms control *how* policies are enforced
- Trust underlies everything

Confidentiality Policy

- Goal: prevent the unauthorized disclosure of information
	- Deals with information flow
	- Integrity incidental
- Multi-level security models are best-known examples
	- Bell-LaPadula Model basis for many, or most, of these

April 14, 2017 *ECS 235B Spring Quarter 2017* Slide #39

Bell-LaPadula Model, Step 1

- Security levels arranged in linear ordering
	- Top Secret: highest
	- Secret
	- Confidential
	- Unclassified: lowest
- Levels consist of *security clearance L*(*s*) – Objects have *security classification L*(*o*)

Example

- Tamara can read all files
- Claire cannot read Personnel or E-Mail Files
- Ulaley can only read Telephone Lists April 14, 2017 *ECS 235B Spring Quarter 2017* Slide #41

Reading Information

- Information flows *up*, not *down* – "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 1)
	- $-$ Subject *s* can read object *o* iff, $L(o) \le L(s)$ and *s* has permission to read *o*
		- Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)

– Sometimes called "no reads up" rule

Writing Information

- Information flows up, not down – "Writes up" allowed, "writes down" disallowed
- ***-Property (Step 1)
	- $-$ Subject *s* can write object *o* iff $L(s) \leq L(o)$ and *s* has permission to write *o*
		- Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
	- Sometimes called "no writes down" rule

Basic Security Theorem, Step 1

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 1, and the * property, step 1, then every state of the system is secure
	- Proof: induct on the number of transitions

Bell-LaPadula Model, Step 2

- Expand notion of security level to include categories
- Security level is (*clearance*, *category set*)
- Examples
	- $-$ (Top Secret, { NUC, EUR, ASI })
	- $-$ (Confidential, $\{$ EUR, ASI $\}$)
	- $-$ (Secret, $\{ NUC, ASI \}$)

Levels and Lattices

- (A, C) *dom* (A', C') iff $A' \le A$ and $C' \subseteq C$
- Examples
	- (Top Secret, {NUC, ASI}) *dom* (Secret, {NUC})
	- (Secret, {NUC, EUR}) *dom* (Confidential,{NUC, EUR})
	- (Top Secret, {NUC}) ¬*dom* (Confidential, {EUR})
- Let *C* be set of classifications, *K* set of categories. Set of security levels $L = C \times K$, *dom* form lattice $-\textit{lub}(L) = (\textit{max}(A), C)$ $-$ glb(L) = (min(A), \varnothing)

Levels and Ordering

- Security levels partially ordered
	- Any pair of security levels may (or may not) be related by *dom*
- "dominates" serves the role of "greater" than" in step 1
	- "greater than" is a total ordering, though

Reading Information

- Information flows *up*, not *down* – "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 2)
	- Subject *s* can read object *o* iff *L*(*s*) *dom L*(*o*) and *s* has permission to read *o*
		- Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)

– Sometimes called "no reads up" rule

Writing Information

- Information flows up, not down – "Writes up" allowed, "writes down" disallowed
- ***-Property (Step 2)
	- Subject *s* can write object *o* iff *L*(*o*) *dom L*(*s*) and *s* has permission to write *o*
		- Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
	- Sometimes called "no writes down" rule

Basic Security Theorem, Step 2

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 2, and the *-property, step 2, then every state of the system is secure
	- Proof: induct on the number of transitions
	- In actual Basic Security Theorem, discretionary access control treated as third property, and simple security property and *-property phrased to eliminate discretionary part of the definitions — but simpler to express the way done here.

Problem

- Colonel has (Secret, {NUC, EUR}) clearance
- Major has (Secret, {EUR}) clearance
	- Major can talk to colonel ("write up" or "read down")
	- Colonel cannot talk to major ("read up" or "write down")
- Clearly absurd!

Solution

- Define maximum, current levels for subjects – *maxlevel*(*s*) *dom curlevel*(*s*)
- Example
	- Treat Major as an object (Colonel is writing to him/her)
	- Colonel has *maxlevel* (Secret, { NUC, EUR })
	- Colonel sets *curlevel* to (Secret, { EUR })
	- Now *L*(Major) *dom curlevel*(Colonel)
		- Colonel can write to Major without violating "no writes down"
	- Does *L*(*s*) mean *curlevel*(*s*) or *maxlevel*(*s*)?
		- Formally, we need a more precise notation

April 14, 2017 *ECS 235B Spring Quarter 2017* Slide #52

Formal Model

- Allows us to reason precisely about the model
- Provides a formalism to validate systems against

Formal Model Definitions

- *S* subjects, *O* objects, *P* rights – Defined rights: r read, a write, w read/write, e empty
- *M* set of possible access control matrices
- *C* set of clearances/classifications, *K* set of categories, $L = C \times K$ set of security levels
- $F = \{ (f_s, f_o, f_c) \}$
	- $-f_s(s)$ maximum security level of subject *s*
	- $f_c(s)$ current security level of subject *s*
	- $-f_o(o)$ security level of object *o*

More Definitions

- Hierarchy functions *H*: *O*→*P*(*O*)
- Requirements
	- 1. $o_i \neq o_j \Rightarrow h(o_i) \cap h(o_j) = \varnothing$
	- 2. There is no set $\{o_1, ..., o_k\} \subseteq O$ such that, for $i = 1$, ..., k , $o_{i+1} \in h(o_i)$ and $o_{k+1} = o_1$.
- Example
	- Tree hierarchy; take *h*(*o*) to be the set of children of *o*
	- No two objects have any common children (#1)
	- There are no loops in the tree $(\#2)$

States and Requests

- *V* set of states
	- $-$ Each state is (b, m, f, h)
		- *b* is like *m*, but excludes rights not allowed by *f*
- *R* set of requests for access
- *D* set of outcomes
	- y allowed, <u>n</u> not allowed, i illegal, <u>o</u> error
- *W* set of actions of the system $-W \subseteq R \times D \times V \times V$

History

- $X = R^N$ set of sequences of requests
- $Y = D^N$ set of sequences of decisions
- $Z = V^N$ set of sequences of states
- Interpretation
	- At time *t* ∈ *N*, system is in state z_{t-1} ∈ *V*; request x_t ∈ *R* causes system to make decision $y_t \in D$, transitioning the system into a (possibly new) state $z_t \in V$
- System representation: $\Sigma(R, D, W, z_0) \in X \times Y \times Z$
	- $(x, y, z) \in \Sigma(R, D, W, z_0)$ iff $(x_t, y_t, z_{t-1}, z_t) \in W$ for all *t*
	- (*x*, *y*, *z*) called an *appearance* of Σ(*R*, *D*, *W*, *z*0)

April 14, 2017 *ECS 235B Spring Quarter 2017* Slide #57

Example

- $S = \{ s \}, O = \{ o \}, P = \{ r, w \}$
- $C = \{ High, Low \}, K = \{ All \}$
- For every $f \in F$, either $f_c(s) = (High, \{All\})$ or $f_c(s) = ($ Low, $\{$ All $\})$
- Initial State:
	- $-b_1 = \{ (s, o, \underline{r}) \}, m_1 \in M$ gives *s* read access over *o*, and $for f_1 \in F, f_{c1}(s) = (High, {All}), f_{o1}(o) = (Low, {All})$
	- $-$ Call this state $v_0 = (b_1, m_1, f_1, h_1) \in V$.

First Transition

- Now suppose in state v_0 : $S = \{ s, s' \}$
- Suppose $f_{c,1}(s') = (Low, \{All\})$
- $m_1 \in M$ gives *s* and *s'* read access over *o*
- As *s'* not written to $o, b_1 = \{ (s, o, \underline{r}) \}$
- $z_0 = v_0$; if *s'* requests r_1 to write to *o*:
	- System decides $d_1 = y$
	- $-$ New state $v_1 = (b_2, m_1, f_1, h_1) \in V$
	- $b_2 = \{ (s, o, \underline{r}), (s', o, \underline{w}) \}$
	- $-$ Here, $x = (r_1)$, $y = (y)$, $z = (v_0, v_1)$

Second Transition

- Current state $v_1 = (b_2, m_1, f_1, h_1) \in V$ $- b_2 = \{ (s, o, \underline{r}), (s', o, \underline{w}) \}$
	- $f_{c,1}(s) = (High, \{All \})$, $f_{o,1}(o) = (Low, \{ All \})$
- *s* requests r_2 to write to σ :
	- $-$ System decides $d_2 = \underline{n}$ (as $f_c_1(s)$ *dom* $f_o_1(o)$)
	- $-$ New state $v_2 = (b_2, m_1, f_1, h_1) \in V$
	- $b_2 = \{ (s, o, \underline{r}), (s', o, \underline{w}) \}$
	- S_0 , $x = (r_1, r_2)$, $y = (y, n)$, $z = (v_0, v_1, v_2)$, where $v_2 = v_1$

Basic Security Theorem

- Define action, secure formally – Using a bit of foreshadowing for "secure"
- Restate properties formally
	- Simple security condition
	- *-property
	- Discretionary security property
- State conditions for properties to hold
- State Basic Security Theorem

Action

• A request and decision that causes the system to move from one state to another

– Final state may be the same as initial state

- $(r, d, v, v') \in R \times D \times V \times V$ is an *action* of $\Sigma(R, D, v')$ *W*, *z*₀) iff there is an $(x, y, z) \in \Sigma(R, D, W, z_0)$ and a $t \in N$ such that $(r, d, v, v') = (x_t, y_t, z_{t-1}, z_t)$
	- Request *r* made when system in state *v*; decision *d* moves system into (possibly the same) state *v*^ʹ
	- $-$ Correspondence with (x_t, y_t, z_{t-1}, z_t) makes states, requests, part of a sequence

Simple Security Condition

• $(s, o, p) \in S \times O \times P$ satisfies the simple security condition relative to *f* (written *ssc rel f*) iff one of the following holds:

1.
$$
p = \underline{e}
$$
 or $p = \underline{a}$

- 2. $p = r$ or $p = w$ and $f_s(s)$ *dom* $f_o(o)$
- Holds vacuously if rights do not involve reading
- If all elements of *b* satisfy *ssc rel f*, then state satisfies simple security condition
- If all states satisfy simple security condition, system satisfies simple security condition

Necessary and Sufficient

• $\Sigma(R, D, W, z_0)$ satisfies the simple security condition for any secure state z_0 iff for every action (*r*, *d*, (*b*, *m*, *f*, *h*), (*b*^ʹ , *m*^ʹ , *f*^ʹ , *h*ʹ)), *W* satisfies

 $−$ Every $(s, o, p) \in b' − b$ satisfies *ssc rel f*

- Every (s, o, p) ∈ *b* that does not satisfy *ssc rel f* is not in b'
- Note: "secure" means z_0 satisfies *ssc rel f*
- First says every (*s*, *o*, *p*) added satisfies *ssc rel f*; second says any (s, o, p) in *b* that does not satisfy *ssc rel f* is deleted

*-Property

- $b(s: p_1, \ldots, p_n)$ set of all objects that *s* has p_1, \ldots, p_n access to
- State (b, m, f, h) satisfies the *-property iff for each $s \in S$ the following hold:
	- 1. $b(s: a) \neq \emptyset \Rightarrow [\forall o \in b(s: a) [f_o(o) \text{ dom } f_c(s)]]$

2.
$$
b(s: \underline{w}) \neq \emptyset \Rightarrow [\forall o \in b(s: \underline{w}) [f_o(o) = f_c(s)]]
$$

- 3. $b(s: r) \neq \emptyset \Rightarrow [\forall o \in b(s: r) [f_c(s) \text{ dom } f_o(o)]]$
- Idea: for writing, object dominates subject; for reading, subject dominates object

*-Property

- If all states satisfy simple security condition, system satisfies simple security condition
- If a subset *S'* of subjects satisfy *-property, then *-property satisfied relative to $S' \subseteq S$
- Note: tempting to conclude that *-property includes simple security condition, but this is false
	- See condition placed on w right for each

Necessary and Sufficient

- $\Sigma(R, D, W, z_0)$ satisfies the *-property relative to $S' \subseteq S$ for any secure state z_0 iff for every action $(r, d, (b, m, f, h), (b',$ $m\prime$, $f\prime$, $h\prime$), *W* satisfies the following for every $s \in S'$
	- − Every $(s, o, p) \in b^2 b$ satisfies the *-property relative to S[']
	- Every (s, o, p) ∈ *b* that does not satisfy the *-property relative to *S*^ʹ is not in *b*´
- Note: "secure" means z_0 satisfies *-property relative to S'
- First says every (s, o, p) added satisfies the *-property relative to S'; second says any (s, o, p) in *b* that does not satisfy the *-property relative to *S*ʹ is deleted

Discretionary Security Property

- State (*b*, *m*, *f*, *h*) satisfies the discretionary security property iff, for each $(s, o, p) \in b$, then $p \in m[s, o]$
- Idea: if *s* can read *o*, then it must have rights to do so in the access control matrix *m*
- This is the discretionary access control part of the model
	- The other two properties are the mandatory access control parts of the model

Necessary and Sufficient

• $\Sigma(R, D, W, z_0)$ satisfies the ds-property for any secure state z_0 iff, for every action $(r, d, (b, m, f,$ *h*), (b', m', f', h') , *W* satisfies:

– Every $(s, o, p) \in b' - b$ satisfies the ds-property

- Every $(s, o, p) \in b$ that does not satisfy the ds-property is not in *b*
- Note: "secure" means z_0 satisfies ds-property
- First says every (*s*, *o*, *p*) added satisfies the dsproperty; second says any (*s*, *o*, *p*) in *b* that does not satisfy the *-property is deleted

Secure

- A system is secure iff it satisfies:
	- Simple security condition
	- *-property
	- Discretionary security property
- A state meeting these three properties is also said to be secure

Basic Security Theorem

- $\Sigma(R, D, W, z_0)$ is a secure system if z_0 is a secure state and *W* satisfies the conditions for the preceding three theorems
	- The theorems are on the slides titled "Necessary and Sufficient"

Rule

- \bullet $\rho: R \times V \rightarrow D \times V$
- Takes a state and a request, returns a decision and a (possibly new) state
- Rule ρ *ssc-preserving* if for all $(r, v) \in R \times V$ and *v* satisfying *ssc rel f*, $\rho(r, v) = (d, v')$ means that *v'* satisfies *ssc rel f*ʹ.
	- Similar definitions for *-property, ds-property
	- If rule meets all 3 conditions, it is *security-preserving*
Unambiguous Rule Selection

• Problem: multiple rules may apply to a request in a state

– if two rules act on a read request in state *v …*

- Solution: define relation $W(\omega)$ for a set of rules ω $= \{ \rho_1, \ldots, \rho_m \}$ such that a state $(r, d, v, v') \in W(\omega)$ iff either
	- $-d = i$; or
	- $-$ for exactly one integer *j*, $\rho_j(r, v) = (d, v')$
- Either request is illegal, or only one rule applies

Rules Preserving *SSC*

- Let ω be set of *ssc*-preserving rules. Let state z_0 satisfy simple security condition. Then $\Sigma(R, D, D)$ $W(\omega)$, z_0) satisfies simple security condition
	- Proof: by contradiction.
		- Choose $(x, y, z) \in \Sigma(R, D, W(\omega), z_0)$ as state not satisfying simple security condition; then choose $t \in N$ such that (x_t, y_t, z_t) is first appearance not meeting simple security condition
		- As $(x_t, y_t, z_t, z_{t-1}) \in W(\omega)$, there is unique rule $\rho \in \omega$ such that $\rho(x_t, z_{t-1}) = (y_t, z_t)$ and $y_t \neq \underline{i}$.
		- As ρ ssc-preserving, and z_{t-1} satisfies simple security condition, then z_t meets simple security condition, contradiction.

Adding States Preserving *SSC*

- Let $v = (b, m, f, h)$ satisfy simple security condition. Let $(s, o, p) \notin b, b' = b \cup \{ (s, o, p) \}$, and $v' = (b', m, f, h)$. Then *v*' satisfies simple security condition iff:
	- 1. Either $p = e$ or $p = a$; or
	- 2. Either $p = r$ or $p = w$, and $f_c(s)$ *dom* $f_o(o)$
	- Proof
		- 1. Immediate from definition of simple security condition and *v*^ʹ satisfying *ssc rel f*
		- 2. *v*' satisfies simple security condition means $f_s(s)$ *dom* $f_o(o)$, and for converse, $(s, o, p) \in b'$ satisfies *ssc relf*, so *v*' satisfies simple security condition

Rules, States Preserving *- Property

Let ω be set of *-property-preserving rules, state *z*₀ satisfies *-property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies *-property

Rules, States Preserving ds-Property

• Let ω be set of ds-property-preserving rules, state *z*₀ satisfies ds-property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies ds-property

Combining

- Let ρ be a rule and $\rho(r, v) = (d, v')$, where $v = (b, m, f, h)$ and $v' = (b', m')$ \prime , $f\prime$, $h\prime$). Then:
	- 1. If $b' \subseteq b, f' = f$, and *v* satisfies the simple security condition, then v' satisfies the simple security condition
	- 2. If $b' \subseteq b, f' = f$, and *v* satisfies the *-property, then *v*' satisfies the *-property
	- 3. If $b' \subseteq b$, $m[s, o] \subseteq m'[s, o]$ for all $s \in S$ and $o \in O$, and v satisfies the ds-property, then v' satisfies the ds-property

- 1. Suppose *v* satisfies simple security property.
	- a) $b' \subseteq b$ and $(s, o, r) \in b'$ implies $(s, o, r) \in b$
	- b) $b' \subseteq b$ and $(s, o, w) \in b'$ implies $(s, o, w) \in b$
	- c) So $f_c(s)$ *dom* $f_o(o)$
	- d) But $f' = f$
	- e) Hence $f'_c(s)$ *dom* $f'_o(o)$
	- f) So *v*['] satisfies simple security condition
- 2, 3 proved similarly

Example Instantiation: Multics

- 11 rules affect rights:
	- set to request, release access
	- set to give, remove access to different subject
	- set to create, reclassify objects
	- set to remove objects
	- set to change subject security level
- Set of "trusted" subjects $S_T \subseteq S$
	- *-property not enforced; subjects trusted not to violate
- $\Delta(\rho)$ domain
	- determines if components of request are valid

April 14, 2017 *ECS 235B Spring Quarter 2017* Slide #80

get-read Rule

• Request
$$
r = (get, s, o, r)
$$

\n- s gets (request) the right to read o

\n- \n Rule is
$$
\rho_1(r, v)
$$
:\n
	\n- \n if $(r \neq \Delta(\rho_1))$ then $\rho_1(r, v) = (\underline{i}, v)$;\n
	\n- \n else if $(f_s(s) \text{ dom } f_o(o)$ and $[s \in S_T \text{ or } f_c(s) \text{ dom } f_o(o)]$ \n
	\n- \n and $r \in m[s, o]$.\n
	\n- \n then $\rho_1(r, v) = (y, (b \cup \{ (s, o, \underline{r}) \}, m, f, h))$;\n
	\n- \n else $\rho_1(r, v) = (\underline{n}, v)$;\n
	\n\n
\n

April 14, 2017 *ECS 235B Spring Quarter 2017* Slide #81

Security of Rule

- The get-read rule preserves the simple security condition, the *-property, and the ds-property
	- Proof
		- Let *v* satisfy all conditions. Let $\rho_1(r, v) = (d, v')$. If $v' = v$, result is trivial. So let $v' = (b \cup \{ (s_2, o, r) \},$ *m*, *f*, *h*).

- Consider the simple security condition.
	- $-$ From the choice of *v'*, either $b' b = \emptyset$ or { (*s*₂, *o*, <u>r</u>) }
	- $-$ If $b' b = \emptyset$, then $\{ (s_2, o, r) \} \in b$, so $v = v'$, proving that *v*' satisfies the simple security condition.
	- $-$ If $b' b = \{ (s_2, o, r) \}$, because the *get-read* rule requires that $f_s(s)$ *dom* $f_o(o)$, an earlier result says that v^c satisfies the simple security condition.

- Consider the *-property.
	- Either *s*₂ ∈ *S_T* or $f_c(s)$ *dom* $f_o(o)$ from the definition of *get-read*
	- If $s_2 \in S_T$, then s_2 is trusted, so *-property holds by definition of trusted and S_T .
	- $-$ If $f_c(s)$ *dom* $f_o(o)$, an earlier result says that *v*' satisfies the simple security condition.

- Consider the discretionary security property.
	- Conditions in the *get-read* rule require $r \in m[s, o]$ and either $b' - b = \emptyset$ or $\{ (s_2, o, r) \}$
	- $-$ If $b' b = \emptyset$, then $\{ (s_2, o, r) \} \in b$, so $v = v'$, proving that *v*´ satisfies the simple security condition.
	- $-$ If $b' b = \{ (s_2, o, r) \}$, then $\{ (s_2, o, r) \} \notin b$, an earlier result says that *v*' satisfies the ds-property.

Rules, States, and Conditions

Let ρ be a rule and $\rho(r, v) = (d, v')$, where $v = (b, m, f, h)$ and $v' = (b', m')$ $\langle f, h \rangle$. Then:

- 1. If $b \subseteq b'$, $f = f'$, and *v* satisfies the simple security condition, then v' satisfies the simple security condition
- 2. If $b \subseteq b'$, $f = f'$, and *v* satisfies the *-property, then *v*' satisfies the *-property
- 3. If $b \subseteq b'$, $m[s, o] \subseteq m' [s, o]$ for all $s \in S$ and $o \in O$, and ν satisfies the ds-property, then ν' satisfies the dsproperty

Example Instantiation: Multics

- 11 rules affect rights:
	- set to request, release access
	- set to give, remove access to different subject
	- set to create, reclassify objects
	- set to remove objects
	- set to change subject security level
- Set of "trusted" subjects $S_T \subseteq S$
	- *-property not enforced; subjects trusted not to violate
- $\Delta(\rho)$ domain
	- determines if components of request are valid

April 14, 2017 *ECS 235B Spring Quarter 2017* Slide #87

get-read Rule

• Request
$$
r = (get, s, o, r)
$$

\n- s gets (request) the right to read o

\n- \n Rule is
$$
\rho_1(r, v)
$$
:\n
	\n- \n if $(r \neq \Delta(\rho_1))$ then $\rho_1(r, v) = (\underline{i}, v)$;\n
	\n- \n else if $(f_s(s) \text{ dom } f_o(o)$ and $[s \in S_T \text{ or } f_c(s) \text{ dom } f_o(o)]$ \n
	\n- \n and $r \in m[s, o]$.\n
	\n- \n then $\rho_1(r, v) = (y, (b \cup \{ (s, o, \underline{r}) \}, m, f, h))$;\n
	\n- \n else $\rho_1(r, v) = (\underline{n}, v)$;\n
	\n\n
\n

April 14, 2017 *ECS 235B Spring Quarter 2017* Slide #88

Security of Rule

- The get-read rule preserves the simple security condition, the *-property, and the ds-property
	- Proof
		- Let *v* satisfy all conditions. Let $\rho_1(r, v) = (d, v')$. If $v' = v$, result is trivial. So let $v' = (b \cup \{ (s_2, o, r) \},$ *m*, *f*, *h*).

- Consider the simple security condition.
	- $-$ From the choice of *v'*, either $b' b = \emptyset$ or { (*s*₂, *o*, <u>r</u>) }
	- $-$ If $b' b = \emptyset$, then $\{ (s_2, o, r) \} \in b$, so $v = v'$, proving that *v*' satisfies the simple security condition.
	- $-$ If $b' b = \{ (s_2, o, r) \}$, because the *get-read* rule requires that $f_c(s)$ *dom* $f_o(o)$, an earlier result says that *v* satisfies the simple security condition.

- Consider the *-property.
	- Either *s*₂ ∈ *S_T* or $f_c(s)$ *dom* $f_o(o)$ from the definition of *get-read*
	- If $s_2 \in S_T$, then s_2 is trusted, so *-property holds by definition of trusted and S_T .
	- $-$ If $f_c(s)$ *dom* $f_o(o)$, an earlier result says that *v*' satisfies the simple security condition.

- Consider the discretionary security property.
	- Conditions in the *get-read* rule require $r \in m[s, o]$ and either $b' - b = \emptyset$ or $\{ (s_2, o, r) \}$
	- $-$ If $b' b = \emptyset$, then $\{ (s_2, o, r) \} \in b$, so $v = v'$, proving that *v*´ satisfies the simple security condition.
	- $-$ If $b' b = \{ (s_2, o, r) \}$, then $\{ (s_2, o, r) \} \notin b$, an earlier result says that *v*' satisfies the ds-property.

give-read Rule

- Request $r = (s_1, give, s_2, o, r)$
	- $-$ *s*₁ gives (request to give) *s*₂ the (discretionary) right to read *o*
	- Rule: can be done if giver can alter parent of object
		- If object or parent is root of hierarchy, special authorization required
- Useful definitions
	- *root*(*o*): root object of hierarchy *h* containing *o*
	- *parent*(*o*): parent of *o* in *h* (so *o* ∈ *h*(*parent*(*o*)))
	- *canallow*(*s*, *o*, *v*): *s* specially authorized to grant access when object or parent of object is root of hierarchy
	- $m \land m[s, o]$ ←r: access control matrix m with \underline{r} added to $m[s, o]$

give-read Rule

\n- \n Rule is
$$
\rho_6(r, v)
$$
:\n
	\n- \n if $(r \neq \Delta(\rho_6))$ then $\rho_6(r, v) = (i, v)$;\n else if $([o \neq root(o) \text{ and } parent(o) \neq root(o) \text{ and } parent(o) \in b(s_1; w)]$ or\n
	\n- \n [parent(o) = root(o) and canallow(s_1, o, v)] or\n
	\n- \n [o = root(o) and canallow(s_1, o, v)]\n
	\n- \n then $\rho_6(r, v) = (y, (b, m \land m[s_2, o] \leftarrow r, f, h))$;\n
	\n\n
\n- \n else $\rho_1(r, v) = (\underline{n}, v)$;\n
\n

Security of Rule

- The *give-read* rule preserves the simple security condition, the *-property, and the ds-property
	- Proof: Let *v* satisfy all conditions. Let $\rho_1(r, v) = (d, v')$. If $v' = v$, result is trivial. So let $v' = (b, m[s_2, o] \leftarrow r, f, h)$. So $b' = b$, $f' = f$, $m'[x, y] = m[x, y]$ for all $x \in S$ and $y \in S$ *O* such that $x \neq s$ and $y \neq o$, and $m[s, o] \subseteq m[s, o]$. Then by earlier result, *v*' satisfies the simple security condition, the *-property, and the ds-property.

Principle of Tranquility

- Raising object's security level
	- Information once available to some subjects is no longer available
	- Usually assume information has already been accessed, so this does nothing
- Lowering object's security level
	- The *declassification problem*
	- Essentially, a "write down" violating *-property
	- Solution: define set of trusted subjects that *sanitize* or remove sensitive information before security level lowered

Types of Tranquility

- Strong Tranquility
	- The clearances of subjects, and the classifications of objects, do not change during the lifetime of the system
- Weak Tranquility
	- The clearances of subjects, and the classifications of objects, do not change in a way that violates the simple security condition or the *-property during the lifetime of the system

Example of Weak Tranquility

- Only one subject at TOP SECRET
- Document at CONFIDENTIAL
- New CONFIDENTIAL user to be added – User should not see document
- Raise document to SECRET
	- Subject still cannot write document
	- All security relationships unchanged

Declassification

- Lowering the security level of a document
	- Direct violation of the "no writes down" rule
	- May be necessary for legal or other purposes
- Declassification policy
	- Part of security policy covering this
	- Here, "secure" means classification changes to a lower level in accordance with declassification policy

Principles

- Principle of Semantic Consistency
- Principle of Occlusion
- Principle of Conservativity
- Principle of Monotonicity of Release

Principle of Semantic **Consistency**

- As long as the semantics of the parts of the system not involved in the declassification do not change, those parts may be changed without affecting system security
	- No leaking due to semantic incompatibilities
	- *Delimited release*: allow declassification, release of information only through specific channels ("escape hatches")

Principle of Occlusion

- Declassification mechanism cannot conceal *improper* lowering of security levels
	- Robust declassification property: attacker cannot use escape hatches to obtain information unless it is properly declassified

Other Principles

- Principle of Conservativity – Absent declassification, system is secure
- Principle of Monotonicity of Release
	- When declassification is performed in an authorized manner by authorized subjects, the system remains secure
- Idea: declassifying information in accordance with declassification policy does not affect security

Controversy

- McLean:
	- "value of the BST is much overrated since there is a great deal more to security than it captures. Further, what is captured by the BST is so trivial that it is hard to imagine a realistic security model for which it does not hold."
	- Basis: given assumptions known to be nonsecure, BST can prove a non-secure system to be secure

†-Property

• State (b, m, f, h) satisfies the †-property iff for each $s \in S$ the following hold:

1. $b(s: a) \neq \emptyset \Rightarrow [\forall o \in b(s: a) [f_c(s) \text{ dom } f_o(o)]]$

2.
$$
b(s: \underline{w}) \neq \emptyset \Rightarrow [\forall o \in b(s: \underline{w}) [f_o(o) = f_c(s)]]
$$

3. $b(s: r) \neq \emptyset \Rightarrow [\forall o \in b(s: r) [f_c(s) \text{ dom } f_o(o)]]$

- Idea: for reading, subject dominates object; for writing, subject also dominates object
- Differs from *-property in that the mandatory condition for writing is reversed

– For *-property, it's "object dominates subject"

April 14, 2017 *ECS 235B Spring Quarter 2017* Slide #105

Analogues

The following two theorems can be proved

- $\Sigma(R, D, W, z_0)$ satisfies the †-property relative to $S' \subseteq S$ for any secure state z_0 iff for every action $(r, d, (b, m, f, h))$, (b', m', f', h') , *W* satisfies the following for every $s \in S'$
	- − Every $(s, o, p) \in b'$ − *b* satisfies the †-property relative to *S'*
	- Every (s, o, p) ∈ *b* that does not satisfy the †-property relative to *S'* is not in *b*
- $\Sigma(R, D, W, z_0)$ is a secure system if z_0 is a secure state and *W* satisfies the conditions for the simple security condition, the †-property, and the ds-property.

April 14, 2017 *ECS 235B Spring Quarter 2017* Slide #106

Problem

- This system is *clearly* non-secure!
	- Information flows from higher to lower because of the †-property

Discussion

- Role of Basic Security Theorem is to demonstrate that rules preserve security
- Key question: what is security?
	- Bell-LaPadula defines it in terms of 3 properties (simple security condition, *-property, discretionary security property)
	- Theorems are assertions about these properties
	- Rules describe changes to a *particular* system instantiating the model
	- Showing system is secure requires proving rules preserve these 3 properties

April 14, 2017 *ECS 235B Spring Quarter 2017* Slide #108
Rules and Model

- Nature of rules is irrelevant to model
- Model treats "security" as axiomatic
- Policy defines "security"
	- This instantiates the model
	- Policy reflects the requirements of the systems
- McLean's definition differs from Bell-LaPadula – … and is not suitable for a confidentiality policy
- Analysts cannot prove "security" definition is appropriate through the model

System Z

- System supporting weak tranquility
- On *any* request, system downgrades *all* subjects and objects to lowest level and adds the requested access permission
	- Let initial state satisfy all 3 properties
	- Successive states also satisfy all 3 properties
- Clearly not secure
	- On first request, everyone can read everything

Reformulation of Secure Action

- Given state that satisfies the 3 properties, the action transforms the system into a state that satisfies these properties and eliminates any accesses present in the transformed state that would violate the property in the initial state, then the action is secure
- BST holds with these modified versions of the 3 properties

Reconsider System Z

- Initial state:
	- subject *s*, object *o*
	- $-C = {High, Low}, K = {All}$
- Take:

$$
-f_c(s) = (\text{Low}, \{\text{All}\}), f_o(o) = (\text{High}, \{\text{All}\})
$$

$$
-m[s, o] = \{\underline{w}\}, \text{ and } b = \{ (s, o, \underline{w}) \}.
$$

- *s* requests <u>r</u> access to *o*
- Now:

$$
-f'_{o}(o) = (\text{Low}, \{\text{All}\})
$$

$$
-(s, o, \underline{r}) \in b', m'[\underline{s}, o] = \{\underline{r}, \underline{w}\}
$$

Non-Secure System Z

- As $(s, o, r) \in b' b$ and $f_o(o)$ *dom* $f_c(s)$, access added that was illegal in previous state
	- Under the new version of the Basic Security Theorem, the current state of System Z is not secure
	- $-$ But, as $f'_c(s) = f'_o(o)$ under the old version of the Basic Security Theorem, the current state of System Z is secure

Response: What Is Modeling?

- Two types of models
	- 1. Abstract physical phenomenon to fundamental properties
	- 2. Begin with axioms and construct a structure to examine the effects of those axioms
- Bell-LaPadula Model developed as a model in the first sense
	- McLean assumes it was developed as a model in the second sense

Reconciling System Z

- Different definitions of security create different results
	- Under one (original definition in Bell-LaPadula Model), System Z is secure
	- Under other (McLean's definition), System Z is not secure