
April 14: Policy

•  Policies
•  Trust
•  Nature of Security Mechanisms
•  Policy Expression Languages
•  Limits on Secure and Precise Mechanisms
•  Bell-LaPadula Confidentiality Model
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Policy Models

•  Abstract description of a policy or class of 
policies

•  Focus on points of interest in policies
– Security levels in multilevel security models
– Separation of duty in Clark-Wilson model
– Conflict of interest in Chinese Wall model
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Mechanisms

•  Entity or procedure that enforces some part 
of the security policy
– Access controls (like bits to prevent someone 

from reading a homework file)
– Disallowing people from bringing CDs and 

floppy disks into a computer facility to control 
what is placed on systems
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Question

•  Policy disallows cheating
–  Includes copying homework, with or without 

permission
•  CS class has students do homework on computer
•  Anne forgets to read-protect her homework file
•  Bill copies it
•  Who cheated?

–  Anne, Bill, or both?
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Answer Part 1
•  Bill cheated

–  Policy forbids copying homework assignment
–  Bill did it
–  System entered unauthorized state (Bill having a copy 

of Anne’s assignment)
•  If not explicit in computer security policy, 

certainly implicit
–  Not credible that a unit of the university allows 

something that the university as a whole forbids, unless 
the unit explicitly says so
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Answer Part #2

•  Anne didn’t protect her homework
– Not required by security policy

•  She didn’t breach security
•  If policy said students had to read-protect 

homework files, then Anne did breach 
security
– She didn’t do this
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Types of Security Policies

•  Military (governmental) security policy
– Policy primarily protecting confidentiality

•  Commercial security policy
– Policy primarily protecting integrity

•  Confidentiality policy
– Policy protecting only confidentiality

•  Integrity policy
– Policy protecting only integrity
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Integrity and Transactions

•  Begin in consistent state
–  “Consistent” defined by specification

•  Perform series of actions (transaction)
– Actions cannot be interrupted
–  If actions complete, system in consistent state
–  If actions do not complete, system reverts to 

beginning (consistent) state
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Trust

Administrator installs patch
1.  Trusts patch came from vendor, not 

tampered with in transit
2.  Trusts vendor tested patch thoroughly
3.  Trusts vendor’s test environment 

corresponds to local environment
4.  Trusts patch is installed correctly
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Trust in Formal Verification

•  Gives formal mathematical proof that given 
input i, program P produces output o as 
specified

•  Suppose a security-related program S 
formally verified to work with operating 
system O

•  What are the assumptions?
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Trust in Formal Methods
1.  Proof has no errors

•  Bugs in automated theorem provers
2.  Preconditions hold in environment in which S is 

to be used
3. S transformed into executable Sʹ whose actions 

follow source code
•  Compiler bugs, linker/loader/library problems

4.  Hardware executes Sʹ as intended
•  Hardware bugs (Pentium f00f bug, for example)
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Types of Access Control

•  Discretionary Access Control (DAC, IBAC)
–  Individual user sets access control mechanism to allow 

or deny access to an object
•  Mandatory Access Control (MAC)

–  System mechanism controls access to object, and 
individual cannot alter that access

•  Originator Controlled Access Control (ORCON)
–  Originator (creator) of information controls who can 

access information
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Policy Languages

•  Express security policies in a precise way
•  High-level languages

– Policy constraints expressed abstractly
•  Low-level languages

– Policy constraints expressed in terms of 
program options, input, or specific 
characteristics of entities on system
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High-Level Policy Languages

•  Constraints expressed independent of 
enforcement mechanism

•  Constraints restrict entities, actions
•  Constraints expressed unambiguously

– Requires a precise language, usually a 
mathematical, logical, or programming-like 
language
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Example: Ponder

•  Security and management policy 
specification language

•  Handles many types of policies
– Authorization policies
– Delegation policies
–  Information filtering policies
– Obligation policies
– Refrain policies

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #15



Entities
•  Organized into hierarchical domains
•  Network administrators

–  Domain is /NetAdmins
–  Subdomain for net admin trainees is
–  /NetAdmins/Trainees

•  Routers in LAN
–  Domain is /localnet
–  Subdomain that is a testbed for routers is
–  /localnet/testbed/routers
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Authorization Policies

•  Allowed actions: netadmins can enable, 
disable, reconfigure, view configuration of 
routers

inst auth+ switchAdmin {
subject /NetAdmins;
target  /localnetwork/routers;
action  enable(), disable(), reconfig(), 

dumpconfig();
}
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Authorization Policies

•  Disallowed actions: trainees cannot test 
performance between 8AM and 5PM

inst auth- testOps {
    subject /NetEngineers/trainees;
    target  /localnetwork/routers;
    action  testperformance();
    when    Time.between("0800", "1700");
}
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Delegation Policies

•  Delegated rights: net admins delegate to net 
engineers the right to enable, disable, 
reconfigure routers on the router testbed

inst deleg+ (switchAdmin) delegSwitchAdmin {
    grantee  /NetEngineers;
    target   /localnetwork/testNetwork/routers;
    action   enable(), disable(), reconfig();
    valid    Time.duration(8);
}
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Information Filtering Policies
•  Control information flow: net admins can 

dump everything from routers between 8PM 
and 5AM, and config info anytime

inst auth+ switchOpsFilter {
    subject  /NetAdmins;
    target   /localnetwork/routers;
    action   dumpconfig(what)
             { in partial = "config"; }

if (Time.between("2000", "0500")){
in partial = "all"; }

}
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Refrain Policies
•  Like authorization denial policies, but enforced 

by the subjects: net engineers cannot send test 
results to net developers while testing in 
progress

inst refrain testSwitchOps {
    subject  s=/NetEngineers;
    target   /NetDevelopers;
    action   sendTestResults();
    when  s.teststate="in progress"
}
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Obligation Policies

•  Must take actions when events occur: on 3rd 
login failure, net security admins will disable 
account and log event

inst oblig loginFailure {
    on       loginfail(userid, 3);
    subject  s=/NetAdmins/SecAdmins;
    target   t=/NetAdmins/users ^ (userid);
    do       t.disable() -> s.log(userid);
}
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Example

•  Policy: separation of duty requires 2 different 
members of Accounting approve check

inst auth+ separationOfDuty {
    subject  s=/Accountants;
    target   t=checks;
    action   approve(), issue();
    when     s.id <> t.issuerid;
}
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Low-Level Policy Languages

•  Set of inputs or arguments to commands
– Check or set constraints on system

•  Low level of abstraction
– Need details of system, commands
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Example: tripwire

•  File scanner that reports changes to file 
system and file attributes
–  tw.config describes what may change
/usr/mab/tripwire +gimnpsu012345678-a

•  Check everything but time of last access (“-a”)
– Database holds previous values of attributes
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Example Database Record
/usr/mab/tripwire/README 0 ..../. 100600 45763 1 

917 10 33242 .gtPvf .gtPvY .gtPvY 
0 .ZD4cc0Wr8i21ZKaI..LUOr3 .
0fwo5:hf4e4.8TAqd0V4ubv ?...... ...9b3 
1M4GX01xbGIX0oVuGo1h15z3 ?:Y9jfa04rdzM1q:eqt1AP
gHk ?.Eb9yo.2zkEh1XKovX1:d0wF0kfAvC ?
1M4GX01xbGIX2947jdyrior38h15z3 0

•  file name, version, bitmask for attributes, mode, 
inode number, number of links, UID, GID, size, 
times of creation, last modification, last access, 
cryptographic checksums
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Comments

•  System administrators not expected to edit 
database to set attributes properly

•  Checking for changes with tripwire is easy
–  Just run once to create the database, run again to check

•  Checking for conformance to policy is harder
–  Need to either edit database file, or (better) set system 

up to conform to policy, then run tripwire to construct 
database
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Secure, Precise Mechanisms

•  Can one devise a procedure for developing a 
mechanism that is both secure and precise?
–  Consider confidentiality policies only here
–  Integrity policies produce same result

•  Program a function with multiple inputs and one 
output
–  Let p be a function p: I1 × ... × In → R. Then p is a 

program with n inputs ik ∈ Ik, 1 ≤ k ≤ n, and one output 
r → R
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Programs and Postulates
•  Observability Postulate: the output of a function 

encodes all available information about its inputs
–  Covert channels considered part of the output

•  Example: authentication function
–  Inputs name, password; output Good or Bad
–  If name invalid, immediately print Bad; else access 

database
–  Problem: time output of Bad, can determine if name 

valid
–  This means timing is part of output
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Protection Mechanism

•  Let p be a function p: I1 × ... × In → R. A 
protection mechanism m is a function

m: I1 × ... × In → R ∪ E
for which, when ik ∈ Ik, 1 ≤ k ≤ n, either
–  m(i1, ..., in) = p(i1, ..., in) or
–  m(i1, ..., in) ∈ E.

•  E is set of error outputs
–  In above example, E = { “Password Database Missing”, 

“Password Database Locked” }
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Confidentiality Policy
•  Confidentiality policy for program p says which 

inputs can be revealed
–  Formally, for p: I1 × ... × In → R, it is a function c: I1 
× ... × In → A, where A ⊆ I1 × ... × In

–  A is set of inputs available to observer
•  Security mechanism is function

m: I1 × ... × In → R ∪ E
–  m is secure if and only if ∃ m´: A → R ∪ E such that, 
∀ik ∈ Ik, 1 ≤ k ≤ n, m(i1, ..., in) = m´(c(i1, ..., in))

–  m returns values consistent with c
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Examples

•  c(i1, ..., in) = C, a constant
– Deny observer any information (output does 

not vary with inputs)
•  c(i1, ..., in) = (i1, ..., in), and m´ = m

– Allow observer full access to information
•  c(i1, ..., in) = i1

– Allow observer information about first input 
but no information about other inputs.
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Precision

•  Security policy may be over-restrictive
–  Precision measures how over-restrictive

•  m1, m2 distinct protection mechanisms for program 
p under policy c
–  m1 as precise as m2 (m1 ≈ m2) if, for all inputs i1, …, in,

m2(i1, …, in) = p(i1, …, in) ⇒ m1(i1, …, in) = p(i1, …, in)
–  m1 more precise than m2 (m1 ~ m2) if there is an input    

(i1´, …, in´) such that m1(i1´, …, in´) = p(i1´, …, in´) and 
m2(i1´, …, in´) ≠ p(i1´, …, in´).
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Combining Mechanisms

•  m1, m2 protection mechanisms
•  m3 = m1 ∪ m2

–  For inputs on which m1 and m2 return same value as p, 
m3 does also; otherwise, m3 returns same value as m1

•  Theorem: if m1, m2 secure, then m3 secure
–  Also, m3 ≈ m1 and m3 ≈ m2

–  Follows from definitions of secure, precise, and m3 
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Existence Theorem

•  For any program p and security policy c, 
there exists a precise, secure mechanism m* 
such that, for all secure mechanisms m 
associated with p and c, m* ≈ m
– Maximally precise mechanism
– Ensures security
– Minimizes number of denials of legitimate 

actions
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Lack of Effective Procedure

•  There is no effective procedure that 
determines a maximally precise, secure 
mechanism for any policy and program.
– Sketch of proof: let policy c be constant 

function, and p compute function T(x). Assume 
T(x) = 0. Consider program q, where

p;
if z = 0 then y := 1 else y := 2;
halt;
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Rest of Sketch
•  m associated with q, y value of m, z output of p 

corresponding to T(x)
•  ∀x[T(x) = 0] → m(x) = 1
•  ∃x´ [T(x´) ≠ 0] → m(x) = 2 or m(x)↑
•  If you can determine m, you can determine 

whether T(x) = 0 for all x
•  Determines some information about input (is it 0?)
•  Contradicts constancy of c.
•  Therefore no such procedure exists
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Key Points

•  Policies describe what is allowed
•  Mechanisms control how policies are 

enforced
•  Trust underlies everything
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Confidentiality Policy

•  Goal: prevent the unauthorized disclosure of 
information
– Deals with information flow
–  Integrity incidental

•  Multi-level security models are best-known 
examples
– Bell-LaPadula Model basis for many, or most, 

of these
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Bell-LaPadula Model, Step 1

•  Security levels arranged in linear ordering
– Top Secret: highest
– Secret
– Confidential
– Unclassified: lowest

•  Levels consist of security clearance L(s)
– Objects have security classification L(o)
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Example

security level subject object

Top Secret Tamara Personnel Files
Secret Samuel E-Mail Files
Confidential Claire Activity Logs
Unclassified Ulaley Telephone Lists

•  Tamara can read all files
•  Claire cannot read Personnel or E-Mail Files
•  Ulaley can only read Telephone Lists
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Reading Information

•  Information flows up, not down
–  “Reads up” disallowed, “reads down” allowed

•  Simple Security Condition (Step 1)
– Subject s can read object o iff, L(o) ≤ L(s) and s 

has permission to read o
•  Note: combines mandatory control (relationship of 

security levels) and discretionary control (the 
required permission)

– Sometimes called “no reads up” rule

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #42



Writing Information

•  Information flows up, not down
–  “Writes up” allowed, “writes down” disallowed

•  *-Property (Step 1)
– Subject s can write object o iff L(s) ≤ L(o) and s 

has permission to write o
•  Note: combines mandatory control (relationship of 

security levels) and discretionary control (the 
required permission)

– Sometimes called “no writes down” rule
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Basic Security Theorem, Step 1

•  If a system is initially in a secure state, and 
every transition of the system satisfies the 
simple security condition, step 1, and the *-
property, step 1, then every state of the 
system is secure
– Proof: induct on the number of transitions
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Bell-LaPadula Model, Step 2

•  Expand notion of security level to include 
categories

•  Security level is (clearance, category set)
•  Examples

–  ( Top Secret, { NUC, EUR, ASI } )
–  ( Confidential, { EUR, ASI } )
–  ( Secret, { NUC, ASI } )
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Levels and Lattices
•  (A, C) dom (Aʹ, Cʹ) iff Aʹ ≤ A and Cʹ ⊆ C
•  Examples

–  (Top Secret, {NUC, ASI}) dom (Secret, {NUC})
–  (Secret, {NUC, EUR}) dom (Confidential,{NUC, EUR})
–  (Top Secret, {NUC}) ¬dom (Confidential, {EUR})

•  Let C be set of classifications, K set of categories. 
Set of security levels L = C × K, dom form lattice
–  lub(L) = (max(A), C)
–  glb(L) = (min(A), ∅)
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Levels and Ordering

•  Security levels partially ordered
– Any pair of security levels may (or may not) be 

related by dom
•  “dominates” serves the role of “greater 

than” in step 1
–  “greater than” is a total ordering, though
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Reading Information

•  Information flows up, not down
–  “Reads up” disallowed, “reads down” allowed

•  Simple Security Condition (Step 2)
– Subject s can read object o iff L(s) dom L(o) 

and s has permission to read o
•  Note: combines mandatory control (relationship of 

security levels) and discretionary control (the 
required permission)

– Sometimes called “no reads up” rule
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Writing Information

•  Information flows up, not down
–  “Writes up” allowed, “writes down” disallowed

•  *-Property (Step 2)
– Subject s can write object o iff L(o) dom L(s) 

and s has permission to write o
•  Note: combines mandatory control (relationship of 

security levels) and discretionary control (the 
required permission)

– Sometimes called “no writes down” rule
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Basic Security Theorem, Step 2
•  If a system is initially in a secure state, and every 

transition of the system satisfies the simple 
security condition, step 2, and the *-property, step 
2, then every state of the system is secure
–  Proof: induct on the number of transitions
–  In actual Basic Security Theorem, discretionary access 

control treated as third property, and simple security 
property and *-property phrased to eliminate 
discretionary part of the definitions — but simpler to 
express the way done here.
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Problem

•  Colonel has (Secret, {NUC, EUR}) 
clearance

•  Major has (Secret, {EUR}) clearance
– Major can talk to colonel (“write up” or “read 

down”)
– Colonel cannot talk to major (“read up” or 

“write down”)
•  Clearly absurd!
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Solution
•  Define maximum, current levels for subjects

–  maxlevel(s) dom curlevel(s)
•  Example

–  Treat Major as an object (Colonel is writing to him/her)
–  Colonel has maxlevel (Secret, { NUC, EUR })
–  Colonel sets curlevel to (Secret, { EUR })
–  Now L(Major) dom curlevel(Colonel)

•  Colonel can write to Major without violating “no writes down”
–  Does L(s) mean curlevel(s) or maxlevel(s)?

•  Formally, we need a more precise notation
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Formal Model

•  Allows us to reason precisely about the 
model

•  Provides a formalism to validate systems 
against
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Formal Model Definitions
•  S subjects, O objects, P rights

–  Defined rights: r read, a write, w read/write, e empty
•  M set of possible access control matrices
•  C set of clearances/classifications, K set of 

categories, L = C × K set of security levels
•  F  = { ( fs, fo, fc) }

–  fs(s) maximum security level of subject s
–  fc(s) current security level of subject s
–  fo(o) security level of object o
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More Definitions
•  Hierarchy functions H: O→P(O)
•  Requirements

1.   oi ≠ oj ⇒ h(oi ) ∩ h(oj ) = ∅
2.   There is no set { o1, …, ok } ⊆ O such that, for i = 1, 

…, k, oi+1 ∈ h(oi ) and ok+1 = o1.
•  Example

–  Tree hierarchy; take h(o) to be the set of children of o
–  No two objects have any common children (#1)
–  There are no loops in the tree (#2)
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States and Requests

•  V set of states
– Each state is (b, m, f, h)

•  b is like m, but excludes rights not allowed by f

•  R set of requests for access
•  D set of outcomes

–  y allowed, n not allowed, i illegal, o error
•  W set of actions of the system

– W ⊆ R × D × V × V

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #56



History
•  X = RN set of sequences of requests
•  Y = DN set of sequences of decisions
•  Z = VN set of sequences of states
•  Interpretation

–  At time t ∈ N, system is in state zt–1 ∈ V; request xt ∈ R 
causes system to make decision yt ∈ D, transitioning the 
system into a (possibly new) state zt ∈ V

•  System representation: Σ(R, D, W, z0) ∈ X × Y × Z
–  (x, y, z) ∈ Σ(R, D, W, z0) iff (xt, yt, zt–1, zt) ∈ W for all t
–  (x, y, z) called an appearance of Σ(R, D, W, z0)
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Example

•  S = { s }, O = { o }, P = { r, w }
•  C = { High, Low }, K = { All }
•  For every f ∈ F, either  fc(s) = ( High, { All }) or 

fc(s) = ( Low, { All })
•  Initial State:

–  b1 = { (s, o, r) }, m1 ∈ M gives s read access over o, and 
for f1 ∈ F, fc,1(s) = (High, {All}), fo,1(o) = (Low, {All})

–  Call this state v0 = (b1, m1, f1, h1) ∈ V.
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First Transition
•  Now suppose in state v0: S = { s, sʹ }
•  Suppose fc,1(sʹ) = (Low, {All})
•  m1 ∈ M gives s and sʹ read access over o
•  As sʹ not written to o, b1 = { (s, o, r) }
•  z0 = v0; if sʹ requests r1 to write to o:

–  System decides d1 = y
–  New state v1 = (b2, m1, f1, h1) ∈ V
–  b2 = { (s, o, r), (sʹ, o, w) }
–  Here, x = (r1), y = (y), z = (v0, v1)
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Second Transition

•  Current state v1 = (b2, m1, f1, h1) ∈ V
–  b2 = { (s, o, r), (sʹ, o, w) }
–  fc,1(s) = (High, { All }), fo,1(o) = (Low, { All })

•  s requests r2 to write to o:
–  System decides d2 = n (as fc,1(s) dom fo,1(o))
–  New state v2 = (b2, m1, f1, h1) ∈ V
–  b2 = { (s, o, r), (sʹ, o, w) }
–  So, x = (r1, r2), y = (y, n), z = (v0, v1, v2), where v2 = v1
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Basic Security Theorem

•  Define action, secure formally
– Using a bit of foreshadowing for “secure”

•  Restate properties formally
– Simple security condition
–  *-property
– Discretionary security property

•  State conditions for properties to hold
•  State Basic Security Theorem
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Action
•  A request and decision that causes the system to 

move from one state to another
–  Final state may be the same as initial state

•  (r, d, v, vʹ) ∈ R × D × V × V is an action of Σ(R, D, 
W, z0) iff there is an (x, y, z) ∈ Σ(R, D, W, z0) and a 
t ∈ N such that (r, d, v, vʹ) = (xt, yt, zt–1, zt)
–  Request r made when system in state v; decision d 

moves system into (possibly the same) state vʹ
–  Correspondence with (xt, yt, zt–1, zt) makes states, 

requests, part of a sequence
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Simple Security Condition
•  (s, o, p) ∈ S × O × P satisfies the simple security 

condition relative to f (written ssc rel f) iff one of 
the following holds:

1.   p = e or p = a
2.   p = r or p = w and fs(s) dom fo(o)

•  Holds vacuously if rights do not involve reading
•  If all elements of b satisfy ssc rel f, then state 

satisfies simple security condition
•  If all states satisfy simple security condition, 

system satisfies simple security condition
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Necessary and Sufficient
•  Σ(R, D, W, z0) satisfies the simple security 

condition for any secure state z0 iff for every 
action (r, d, (b, m, f, h), (bʹ, mʹ, fʹ, hʹ)), W satisfies
–  Every (s, o, p) ∈ bʹ – b satisfies ssc rel f
–  Every (s, o, p) ∈ b that does not satisfy ssc rel f is not in 

bʹ
•  Note: “secure” means z0 satisfies ssc rel f
•  First says every (s, o, p) added satisfies ssc rel f; 

second says any (s, o, p) in b that does not satisfy 
ssc rel f is deleted
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*-Property
•  b(s: p1, …, pn) set of all objects that s has p1, …, pn 

access to
•  State (b, m, f, h) satisfies the *-property iff for each s ∈ S 

the following hold:
1.   b(s: a) ≠ ∅ ⇒ [∀o ∈ b(s: a) [ fo(o) dom fc(s) ] ]
2.   b(s: w) ≠ ∅ ⇒ [∀o ∈ b(s: w) [ fo(o) = fc(s) ] ]
3.   b(s: r) ≠ ∅ ⇒ [∀o ∈ b(s: r) [ fc(s) dom fo(o) ] ]

•  Idea: for writing, object dominates subject; for reading, 
subject dominates object
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*-Property

•  If all states satisfy simple security condition, 
system satisfies simple security condition

•  If a subset Sʹ of subjects satisfy *-property, then  
*-property satisfied relative to Sʹ ⊆ S 

•  Note: tempting to conclude that *-property 
includes simple security condition, but this is false
–  See condition placed on w right for each
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Necessary and Sufficient

•  Σ(R, D, W, z0) satisfies the *-property relative to Sʹ ⊆ S for 
any secure state z0 iff for every action (r, d, (b, m, f, h), (bʹ, 
mʹ, fʹ, hʹ)), W satisfies the following for every s ∈ Sʹ
–  Every (s, o, p) ∈ b´ – b satisfies the *-property relative to Sʹ
–  Every (s, o, p) ∈ b that does not satisfy the *-property relative to  

Sʹ is not in b´
•  Note: “secure” means z0 satisfies *-property relative to Sʹ
•  First says every (s, o, p) added satisfies the *-property 

relative to Sʹ; second says any (s, o, p) in b that does not 
satisfy the *-property relative to Sʹ is deleted
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Discretionary Security Property
•  State (b, m, f, h) satisfies the discretionary 

security property iff, for each (s, o, p) ∈ b, then  
p ∈ m[s, o]

•  Idea: if s can read o, then it must have rights to 
do so in the access control matrix m

•  This is the discretionary access control part of 
the model
–  The other two properties are the mandatory access 

control parts of the model
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Necessary and Sufficient
•  Σ(R, D, W, z0) satisfies the ds-property for any 

secure state z0 iff, for every action (r, d, (b, m, f, 
h), (bʹ, mʹ, fʹ, hʹ)), W satisfies:
–  Every (s, o, p) ∈ b´ – b satisfies the ds-property
–  Every (s, o, p) ∈ b that does not satisfy the ds-property 

is not in b
•  Note: “secure” means z0 satisfies ds-property
•  First says every (s, o, p) added satisfies the ds-

property; second says any (s, o, p) in b that does 
not satisfy the *-property is deleted
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Secure

•  A system is secure iff it satisfies:
– Simple security condition
–  *-property
– Discretionary security property

•  A state meeting these three properties is 
also said to be secure
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Basic Security Theorem

•  Σ(R, D, W, z0) is a secure system if z0 is a 
secure state and W satisfies the conditions 
for the preceding three theorems
– The theorems are on the slides titled 

“Necessary and Sufficient”
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Rule

•  ρ: R × V → D × V
•  Takes a state and a request, returns a decision and 

a (possibly new) state
•  Rule ρ ssc-preserving if for all (r, v) ∈ R × V and 

v satisfying ssc rel f, ρ(r, v) = (d, vʹ) means that vʹ 
satisfies ssc rel fʹ.
–  Similar definitions for *-property, ds-property
–  If rule meets all 3 conditions, it is security-preserving
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Unambiguous Rule Selection
•  Problem: multiple rules may apply to a request in 

a state
–  if two rules act on a read request in state v …

•  Solution: define relation W(ω) for a set of rules ω 
= { ρ1, …, ρm } such that a state (r, d, v, vʹ) ∈W(ω) 
iff either
–  d = i; or 
–  for exactly one integer j, ρj(r, v) = (d, vʹ)

•  Either request is illegal, or only one rule applies 
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Rules Preserving SSC

•  Let ω be set of ssc-preserving rules. Let state z0 
satisfy simple security condition. Then Σ(R, D, 
W(ω), z0 ) satisfies simple security condition
–  Proof: by contradiction.

•  Choose (x, y, z) ∈ Σ(R, D, W(ω), z0) as state not satisfying 
simple security condition; then choose t ∈ N such that (xt, yt, zt) 
is first appearance not meeting simple security condition

•  As (xt, yt, zt, zt–1) ∈ W(ω), there is unique rule ρ ∈ ω such that 
ρ(xt, zt–1) = (yt, zt) and yt ≠ i.

•  As ρ ssc-preserving, and zt–1 satisfies simple security condition, 
then zt meets simple security condition, contradiction.
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Adding States Preserving SSC
•  Let v = (b, m, f, h) satisfy simple security condition. Let   

(s, o, p) ∉ b, bʹ = b ∪ { (s, o, p) }, and vʹ = (bʹ, m, f, h). 
Then vʹ satisfies simple security condition iff:

1.  Either p = e or p = a; or
2.  Either p = r or p = w, and fc(s) dom fo(o)
–  Proof

1.  Immediate from definition of simple security condition and vʹ 
satisfying ssc rel f

2.  vʹ satisfies simple security condition means fs(s) dom fo(o), and for 
converse, (s, o, p) ∈ bʹ satisfies ssc rel f, so vʹ satisfies simple 
security condition
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Rules, States Preserving *-
Property

•  Let ω be set of *-property-preserving rules, state 
z0 satisfies *-property. Then Σ(R, D, W(ω), z0 ) 
satisfies *-property
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Rules, States Preserving ds-
Property

•  Let ω be set of ds-property-preserving rules, state 
z0 satisfies ds-property. Then Σ(R, D, W(ω), z0 ) 
satisfies ds-property
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Combining
•  Let ρ be a rule and ρ(r, v) = (d, vʹ), where v = (b, m, f, h) 

and vʹ = (bʹ, mʹ, fʹ, hʹ). Then:
1.  If bʹ ⊆ b, fʹ = f, and v satisfies the simple security condition, 

then vʹ satisfies the simple security condition
2.  If bʹ ⊆ b, fʹ = f, and v satisfies the *-property, then vʹ satisfies 

the *-property
3.  If bʹ ⊆ b, m[s, o] ⊆ mʹ [s, o] for all s ∈ S and o ∈ O, and v 

satisfies the ds-property, then vʹ satisfies the ds-property
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Proof
1.  Suppose v satisfies simple security property.

a)   b´ ⊆ b and (s, o, r) ∈ bʹ implies (s, o, r) ∈ b
b)   b´ ⊆ b and (s, o, w) ∈ bʹ implies (s, o, w) ∈ b
c)  So fc(s) dom fo(o)
d)  But fʹ = f
e)  Hence fʹc(s) dom fʹo(o)
f)  So vʹ satisfies simple security condition

2, 3 proved similarly
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Example Instantiation: Multics
•  11 rules affect rights:

–  set to request, release access
–  set to give, remove access to different subject
–  set to create, reclassify objects
–  set to remove objects
–  set to change subject security level

•  Set of “trusted” subjects ST ⊆ S
–  *-property not enforced; subjects trusted not to violate

•  Δ(ρ) domain
–  determines if components of request are valid
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get-read Rule

•  Request r = (get, s, o, r)
–  s gets (requests) the right to read o

•  Rule is ρ1(r, v):
if (r ≠ Δ(ρ1)) then ρ1(r, v) = (i, v);
else if (fs(s) dom fo(o) and [s ∈ ST or fc(s) dom fo(o)]

and r ∈ m[s, o])
then ρ1(r, v) = (y, (b ∪ { (s, o, r) }, m, f, h));

else ρ1(r, v) = (n, v);
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Security of Rule

•  The get-read rule preserves the simple 
security condition, the *-property, and the 
ds-property
– Proof

•  Let v satisfy all conditions.   Let ρ1(r, v) = (d, vʹ). If 
vʹ = v, result is trivial. So let vʹ  = (b ∪ { (s2, o, r) }, 
m, f, h).
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Proof

•  Consider the simple security condition.
–  From the choice of vʹ, either bʹ – b = ∅ or { (s2, o, r) }
–  If bʹ – b = ∅, then { (s2, o, r) } ∈ b, so v = vʹ, proving 

that vʹ satisfies the simple security condition.
–  If bʹ – b = { (s2, o, r) }, because the get-read rule 

requires that fs(s) dom fo(o), an earlier result says that v  ́
satisfies the simple security condition.
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Proof

•  Consider the *-property.
–  Either s2 ∈ ST or fc(s) dom fo(o) from the definition of 

get-read 
–  If s2 ∈ ST, then s2 is trusted, so *-property holds by 

definition of trusted and ST.
–  If fc(s) dom fo(o), an earlier result says that vʹ satisfies 

the simple security condition.
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Proof

•  Consider the discretionary security property.
–  Conditions in the get-read rule require r ∈ m[s, o] and 

either bʹ – b = ∅ or { (s2, o, r) }
–  If bʹ – b = ∅, then { (s2, o, r) } ∈ b, so v = vʹ, proving 

that v´ satisfies the simple security condition.
–  If bʹ – b = { (s2, o, r) }, then { (s2, o, r) } ∉ b, an earlier 

result says that vʹ satisfies the ds-property.
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Rules, States, and Conditions
Let ρ be a rule and ρ(r, v) = (d, vʹ), where v = (b, m, f, h) and 
vʹ = (bʹ, mʹ, fʹ, hʹ). Then:

1.  If b ⊆ bʹ, f = fʹ, and v satisfies the simple security 
condition, then vʹ satisfies the simple security 
condition

2.  If b ⊆ bʹ, f = fʹ, and v satisfies the *-property, then vʹ 
satisfies the *-property

3.  If b ⊆ bʹ, m[s, o] ⊆ mʹ [s, o] for all s ∈ S and o ∈ O, 
and v satisfies the ds-property, then vʹ satisfies the ds-
property
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Example Instantiation: Multics
•  11 rules affect rights:

–  set to request, release access
–  set to give, remove access to different subject
–  set to create, reclassify objects
–  set to remove objects
–  set to change subject security level

•  Set of “trusted” subjects ST ⊆ S
–  *-property not enforced; subjects trusted not to violate

•  Δ(ρ) domain
–  determines if components of request are valid
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get-read Rule

•  Request r = (get, s, o, r)
–  s gets (requests) the right to read o

•  Rule is ρ1(r, v):
if (r ≠ Δ(ρ1)) then ρ1(r, v) = (i, v);
else if (fs(s) dom fo(o) and [s ∈ ST or fc(s) dom fo(o)]

and r ∈ m[s, o])
then ρ1(r, v) = (y, (b ∪ { (s, o, r) }, m, f, h));

else ρ1(r, v) = (n, v);
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Security of Rule

•  The get-read rule preserves the simple 
security condition, the *-property, and the 
ds-property
– Proof

•  Let v satisfy all conditions.   Let ρ1(r, v) = (d, vʹ). If 
vʹ = v, result is trivial. So let vʹ  = (b ∪ { (s2, o, r) }, 
m, f, h).
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Proof

•  Consider the simple security condition.
–  From the choice of vʹ, either bʹ – b = ∅ or { (s2, o, r) }
–  If bʹ – b = ∅, then { (s2, o, r) } ∈ b, so v = vʹ, proving 

that vʹ satisfies the simple security condition.
–  If bʹ – b = { (s2, o, r) }, because the get-read rule 

requires that fc(s) dom fo(o), an earlier result says that v  ́
satisfies the simple security condition.
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Proof

•  Consider the *-property.
–  Either s2 ∈ ST or fc(s) dom fo(o) from the definition of 

get-read 
–  If s2 ∈ ST, then s2 is trusted, so *-property holds by 

definition of trusted and ST.
–  If fc(s) dom fo(o), an earlier result says that vʹ satisfies 

the simple security condition.
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Proof

•  Consider the discretionary security property.
–  Conditions in the get-read rule require r ∈ m[s, o] and 

either bʹ – b = ∅ or { (s2, o, r) }
–  If bʹ – b = ∅, then { (s2, o, r) } ∈ b, so v = vʹ, proving 

that v´ satisfies the simple security condition.
–  If bʹ – b = { (s2, o, r) }, then { (s2, o, r) } ∉ b, an earlier 

result says that vʹ satisfies the ds-property.
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give-read Rule
•  Request r = (s1, give, s2, o, r)

–  s1 gives (request to give) s2 the (discretionary) right to read o
–  Rule: can be done if giver can alter parent of object

•  If object or parent is root of hierarchy, special authorization required

•  Useful definitions
–  root(o): root object of hierarchy h containing o
–  parent(o): parent of o in h (so o ∈ h(parent(o)))
–  canallow(s, o, v): s specially authorized to grant access when 

object or parent of object is root of hierarchy
–  m∧m[s, o]←r: access control matrix m with r  added to m[s, o]
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give-read Rule
•  Rule is ρ6(r, v):

if (r ≠ Δ(ρ6)) then ρ6(r, v) = (i, v);
else if ([o ≠ root(o) and parent(o) ≠ root(o) and 

parent(o) ∈ b(s1:w)] or
[parent(o) = root(o) and canallow(s1, o, v) ] or
[o = root(o) and canallow(s1, o, v) ])

then ρ6(r, v) = (y, (b, m∧m[s2, o] ← r, f, h));
else ρ1(r, v) = (n, v);
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Security of Rule

•  The give-read rule preserves the simple security 
condition, the *-property, and the ds-property
–  Proof: Let v satisfy all conditions. Let ρ1(r, v) = (d, vʹ). 

If v´ = v, result is trivial. So let vʹ = (b, m[s2, o]←r, f, h). 
So bʹ = b, fʹ = f, mʹ[x, y] = m[x, y] for all x ∈ S and y ∈ 
O such that x ≠ s and y ≠ o, and m[s, o] ⊆ mʹ[s, o]. Then 
by earlier result, vʹ satisfies the simple security 
condition, the *-property, and the ds-property.
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Principle of Tranquility
•  Raising object’s security level

–  Information once available to some subjects is no 
longer available

–  Usually assume information has already been accessed, 
so this does nothing

•  Lowering object’s security level
–  The declassification problem
–  Essentially, a “write down” violating *-property
–  Solution: define set of trusted subjects that sanitize or 

remove sensitive information before security level 
lowered
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Types of Tranquility

•  Strong Tranquility
–  The clearances of subjects, and the classifications of 

objects, do not change during the lifetime of the system
•  Weak Tranquility

–  The clearances of subjects, and the classifications of 
objects, do not change in a way that violates the simple 
security condition or the *-property during the lifetime 
of the system
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Example of Weak Tranquility

•  Only one subject at TOP SECRET
•  Document at CONFIDENTIAL
•  New CONFIDENTIAL user to be added

– User should not see document
•  Raise document to SECRET

– Subject still cannot write document
– All security relationships unchanged
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Declassification 

•  Lowering the security level of a document
– Direct violation of the “no writes down” rule
– May be necessary for legal or other purposes

•  Declassification policy
– Part of security policy covering this
– Here, “secure” means classification changes to 

a lower level in accordance with 
declassification policy
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Principles

•  Principle of Semantic Consistency
•  Principle of Occlusion
•  Principle of Conservativity
•  Principle of Monotonicity of Release
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Principle of Semantic 
Consistency

•  As long as the semantics of the parts of the 
system not involved in the declassification 
do not change, those parts may be changed 
without affecting system security
– No leaking due to semantic incompatibilities
– Delimited release: allow declassification, 

release of information only through specific 
channels (“escape hatches”)
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Principle of Occlusion

•  Declassification mechanism cannot conceal 
improper lowering of security levels
– Robust declassification property: attacker 

cannot use escape hatches to obtain information 
unless it is properly declassified
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Other Principles

•  Principle of Conservativity 
–  Absent declassification, system is secure

•  Principle of Monotonicity of Release
–  When declassification is performed in an 

authorized manner by authorized subjects, the 
system remains secure

Idea: declassifying information in accordance 
with declassification policy does not affect 
security
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Controversy

•  McLean:
–  “value of the BST is much overrated since there 

is a great deal more to security than it captures. 
Further, what is captured by the BST is so 
trivial that it is hard to imagine a realistic 
security model for which it does not hold.”

– Basis: given assumptions known to be non-
secure, BST can prove a non-secure system to 
be secure
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†-Property
•  State (b, m, f, h) satisfies the †-property iff for each s ∈ S 

the following hold:
1.   b(s: a) ≠ ∅ ⇒ [∀o ∈ b(s: a) [ fc(s) dom fo(o) ] ]
2.   b(s: w) ≠ ∅ ⇒ [∀o ∈ b(s: w) [ fo(o) = fc(s) ] ]
3.   b(s: r) ≠ ∅ ⇒ [∀o ∈ b(s: r) [ fc(s) dom fo(o) ] ]

•  Idea: for reading, subject dominates object; for writing, 
subject also dominates object 

•  Differs from *-property in that the mandatory condition for 
writing is reversed
–  For *-property, it’s “object dominates subject”
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Analogues

The following two theorems can be proved
•  Σ(R, D, W, z0) satisfies the †-property relative to Sʹ ⊆ S for 

any secure state z0 iff for every action (r, d, (b, m, f, h),     
(bʹ, mʹ, fʹ, hʹ)), W satisfies the following for every s ∈ S´
–  Every (s, o, p) ∈ bʹ – b satisfies the †-property relative to Sʹ
–  Every (s, o, p) ∈ b that does not satisfy the †-property relative to S  ́

is not in b
•  Σ(R, D, W, z0) is a secure system if z0 is a secure state and 

W satisfies the conditions for the simple security condition, 
the †-property, and the ds-property.

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #106



Problem

•  This system is clearly non-secure!
–  Information flows from higher to lower because 

of the †-property
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Discussion
•  Role of Basic Security Theorem is to demonstrate 

that rules preserve security
•  Key question: what is security?

–  Bell-LaPadula defines it in terms of 3 properties 
(simple security condition, *-property, discretionary 
security property)

–  Theorems are assertions about these properties
–  Rules describe changes to a particular system 

instantiating the model
–  Showing system is secure requires proving rules 

preserve these 3 properties
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Rules and Model
•  Nature of rules is irrelevant to model
•  Model treats “security” as axiomatic
•  Policy defines “security”

–  This instantiates the model
–  Policy reflects the requirements of the systems

•  McLean’s definition differs from Bell-LaPadula
–  … and is not suitable for a confidentiality policy

•  Analysts cannot prove “security” definition is 
appropriate through the model
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System Z

•  System supporting weak tranquility
•  On any request, system downgrades all 

subjects and objects to lowest level and 
adds the requested access permission
– Let initial state satisfy all 3 properties
– Successive states also satisfy all 3 properties

•  Clearly not secure
– On first request, everyone can read everything
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Reformulation of Secure Action

•  Given state that satisfies the 3 properties, 
the action transforms the system into a state 
that satisfies these properties and eliminates 
any accesses present in the transformed 
state that would violate the property in the 
initial state, then the action is secure

•  BST holds with these modified versions of 
the 3 properties
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Reconsider System Z
•  Initial state:

–   subject s, object o
–  C = {High, Low}, K = {All}

•  Take:
–  fc(s) = (Low, {All}), fo(o) = (High, {All})
–  m[s, o] = { w }, and b = { (s, o, w) }.

•  s requests r access to o
•  Now:

–  fʹo(o) = (Low, {All})
–  (s, o, r) ∈ bʹ, mʹ [s, o] = {r, w}
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Non-Secure System Z

•  As (s, o, r) ∈ bʹ – b and fo(o) dom fc(s), 
access added that was illegal in previous 
state
– Under the new version of the Basic Security 

Theorem, the current state of System Z is not 
secure

– But, as fʹc(s) = fʹo(o) under the old version of the 
Basic Security Theorem, the current state of 
System Z is secure
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Response: What Is Modeling?

•  Two types of models
1.  Abstract physical phenomenon to 

fundamental properties
2.  Begin with axioms and construct a structure 

to examine the effects of those axioms
•  Bell-LaPadula Model developed as a model 

in the first sense
–  McLean assumes it was developed as a 

model in the second sense
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Reconciling System Z

•  Different definitions of security create 
different results
– Under one (original definition in Bell-LaPadula 

Model), System Z is secure
– Under other (McLean’s definition), System Z is 

not secure

April 14, 2017 ECS 235B Spring Quarter 2017 Slide #115


