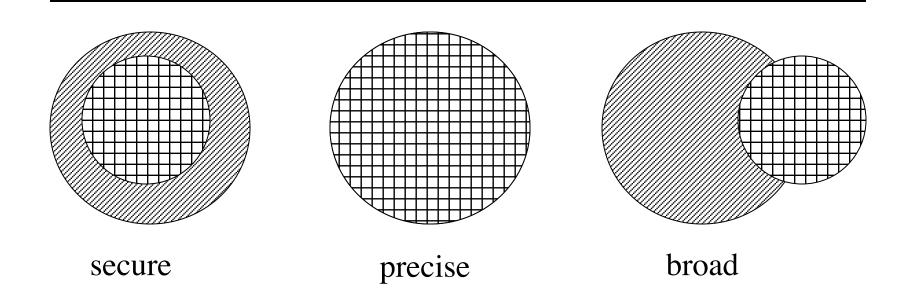
April 17: Policy

- Limits on secure and precise mechanisms
- Bell-LaPadula confidentiality model
- Tranquility
- Declassification
- McLean's criticism and System Z

Types of Mechanisms



set of reachable states

set of secure states

Secure, Precise Mechanisms

- Can one devise a procedure for developing a mechanism that is both secure *and* precise?
 - Consider confidentiality policies only here
 - Integrity policies produce same result
- Program a function with multiple inputs and one output
 - Let p be a function $p: I_1 \times ... \times I_n \rightarrow R$. Then p is a program with n inputs $i_k \in I_k$, $1 \le k \le n$, and one output $r \rightarrow R$

Programs and Postulates

- Observability Postulate: the output of a function encodes all available information about its inputs
 - Covert channels considered part of the output
- Example: authentication function
 - Inputs name, password; output Good or Bad
 - If name invalid, immediately print Bad; else access database
 - Problem: time output of Bad, can determine if name valid
 - This means timing is part of output

Protection Mechanism

• Let *p* be a function $p: I_1 \times ... \times I_n \rightarrow R$. A protection mechanism *m* is a function

$$m: I_1 \times ... \times I_n \rightarrow R \cup E$$

for which, when $i_k \in I_k$, $1 \le k \le n$, either

- $-m(i_1, ..., i_n) = p(i_1, ..., i_n)$ or
- $m(i_1, ..., i_n) \in E.$
- E is set of error outputs
 - In above example, E = { "Password Database Missing","Password Database Locked" }

Confidentiality Policy

- Confidentiality policy for program *p* says which inputs can be revealed
 - Formally, for $p: I_1 \times ... \times I_n \rightarrow R$, it is a function $c: I_1 \times ... \times I_n \rightarrow A$, where $A \subseteq I_1 \times ... \times I_n$
 - A is set of inputs available to observer
- Security mechanism is function

$$m: I_1 \times ... \times I_n \rightarrow R \cup E$$

- m is secure if and only if $\exists m': A \rightarrow R \cup E$ such that, $\forall i_k \in I_k, 1 \le k \le n, m(i_1, ..., i_n) = m'(c(i_1, ..., i_n))$
- m returns values consistent with c

Examples

- $c(i_1, ..., i_n) = C$, a constant
 - Deny observer any information (output does not vary with inputs)
- $c(i_1, ..., i_n) = (i_1, ..., i_n)$, and m' = m
 - Allow observer full access to information
- $c(i_1, ..., i_n) = i_1$
 - Allow observer information about first input but no information about other inputs.

Precision

- Security policy may be over-restrictive
 - Precision measures how over-restrictive
- m_1, m_2 distinct protection mechanisms for program p under policy c
 - m_1 as precise as m_2 ($m_1 \approx m_2$) if, for all inputs $i_1, ..., i_n$, $m_2(i_1, ..., i_n) = p(i_1, ..., i_n) \Rightarrow m_1(i_1, ..., i_n) = p(i_1, ..., i_n)$
 - m_1 more precise than m_2 ($m_1 \sim m_2$) if there is an input $(i_1', ..., i_n')$ such that $m_1(i_1', ..., i_n') = p(i_1', ..., i_n')$ and $m_2(i_1', ..., i_n') \neq p(i_1', ..., i_n')$.

Combining Mechanisms

- m_1, m_2 protection mechanisms
- $m_3 = m_1 \cup m_2$
 - For inputs on which m_1 and m_2 return same value as p, m_3 does also; otherwise, m_3 returns same value as m_1
- Theorem: if m_1, m_2 secure, then m_3 secure
 - Also, $m_3 \approx m_1$ and $m_3 \approx m_2$
 - Follows from definitions of secure, precise, and m_3

Existence Theorem

- For any program p and security policy c, there exists a precise, secure mechanism m^* such that, for all secure mechanisms m associated with p and c, $m^* \approx m$
 - Maximally precise mechanism
 - Ensures security
 - Minimizes number of denials of legitimate actions

Lack of Effective Procedure

- There is no effective procedure that determines a maximally precise, secure mechanism for any policy and program.
 - Sketch of proof: let policy c be constant function, and p compute function T(x). Assume T(x) = 0. Consider program q, where

```
p;
if z = 0 then y := 1 else y := 2;
halt;
```

Rest of Sketch

- m associated with q, y value of m, z output of p corresponding to T(x)
- $\forall x[T(x) = 0] \rightarrow m(x) = 1$
- $\exists x' [T(x') \neq 0] \rightarrow m(x) = 2 \text{ or } m(x) \uparrow$
- If you can determine m, you can determine whether T(x) = 0 for all x
- Determines some information about input (is it 0?)
- Contradicts constancy of c.
- Therefore no such procedure exists

Key Points

- Policies describe what is allowed
- Mechanisms control *how* policies are enforced
- Trust underlies everything

Confidentiality Policy

- Goal: prevent the unauthorized disclosure of information
 - Deals with information flow
 - Integrity incidental
- Multi-level security models are best-known examples
 - Bell-LaPadula Model basis for many, or most, of these

Bell-LaPadula Model, Step 1

- Security levels arranged in linear ordering
 - Top Secret: highest
 - Secret
 - Confidential
 - Unclassified: lowest
- Levels consist of *security clearance L(s)*
 - Objects have security classification L(o)

Example

security level	subject	object
Top Secret	Tamara	Personnel Files
Secret	Samuel	E-Mail Files
Confidential	Claire	Activity Logs
Unclassified	Ulaley	Telephone Lists

- Tamara can read all files
- Claire cannot read Personnel or E-Mail Files
- Ulaley can only read Telephone Lists

Reading Information

- Information flows *up*, not *down*
 - "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 1)
 - Subject s can read object o iff, $L(o) \le L(s)$ and s has permission to read o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no reads up" rule

Writing Information

- Information flows up, not down
 - "Writes up" allowed, "writes down" disallowed
- *-Property (Step 1)
 - Subject s can write object o iff $L(s) \le L(o)$ and s has permission to write o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no writes down" rule

Basic Security Theorem, Step 1

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 1, and the *-property, step 1, then every state of the system is secure
 - Proof: induct on the number of transitions

Bell-LaPadula Model, Step 2

- Expand notion of security level to include categories
- Security level is (clearance, category set)
- Examples
 - (Top Secret, { NUC, EUR, ASI })
 - (Confidential, { EUR, ASI })
 - (Secret, { NUC, ASI })

Levels and Lattices

- $(A, C) dom(A', C') iff A' \leq A and C' \subseteq C$
- Examples
 - (Top Secret, {NUC, ASI}) dom (Secret, {NUC})
 - (Secret, {NUC, EUR}) dom (Confidential,{NUC, EUR})
 - (Top Secret, {NUC}) ¬dom (Confidential, {EUR})
- Let C be set of classifications, K set of categories. Set of security levels $L = C \times K$, dom form lattice
 - lub(L) = (max(A), C)
 - $glb(L) = (min(A), \emptyset)$

Levels and Ordering

- Security levels partially ordered
 - Any pair of security levels may (or may not) be related by dom
- "dominates" serves the role of "greater than" in step 1
 - "greater than" is a total ordering, though

Reading Information

- Information flows *up*, not *down*
 - "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 2)
 - Subject s can read object o iff L(s) dom L(o)
 and s has permission to read o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no reads up" rule

Writing Information

- Information flows up, not down
 - "Writes up" allowed, "writes down" disallowed
- *-Property (Step 2)
 - Subject s can write object o iff L(o) dom L(s)
 and s has permission to write o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no writes down" rule

Basic Security Theorem, Step 2

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 2, and the *-property, step 2, then every state of the system is secure
 - Proof: induct on the number of transitions
 - In actual Basic Security Theorem, discretionary access control treated as third property, and simple security property and *-property phrased to eliminate discretionary part of the definitions — but simpler to express the way done here.

Problem

- Colonel has (Secret, {NUC, EUR}) clearance
- Major has (Secret, {EUR}) clearance
 - Major can talk to colonel ("write up" or "read down")
 - Colonel cannot talk to major ("read up" or "write down")
- Clearly absurd!

Solution

- Define maximum, current levels for subjects
 - maxlevel(s) dom curlevel(s)
- Example
 - Treat Major as an object (Colonel is writing to him/her)
 - Colonel has maxlevel (Secret, { NUC, EUR })
 - Colonel sets curlevel to (Secret, { EUR })
 - Now L(Major) dom curlevel(Colonel)
 - Colonel can write to Major without violating "no writes down"
 - Does L(s) mean curlevel(s) or maxlevel(s)?
 - Formally, we need a more precise notation

Formal Model

- Allows us to reason precisely about the model
- Provides a formalism to validate systems against

Formal Model Definitions

- S subjects, O objects, P rights
 - Defined rights: <u>r</u> read, <u>a</u> write, <u>w</u> read/write, <u>e</u> empty
- M set of possible access control matrices
- C set of clearances/classifications, K set of categories, $L = C \times K$ set of security levels
- $F = \{ (f_s, f_o, f_c) \}$
 - $-f_s(s)$ maximum security level of subject s
 - $-f_c(s)$ current security level of subject s
 - $-f_o(o)$ security level of object o

More Definitions

- Hierarchy functions $H: O \rightarrow P(O)$
- Requirements
 - 1. $o_i \neq o_j \Rightarrow h(o_i) \cap h(o_j) = \emptyset$
 - 2. There is no set $\{o_1, ..., o_k\} \subseteq O$ such that, for i = 1, ..., $k, o_{i+1} \in h(o_i)$ and $o_{k+1} = o_1$.
- Example
 - Tree hierarchy; take h(o) to be the set of children of o
 - No two objects have any common children (#1)
 - There are no loops in the tree (#2)