
April 17: Policy

•  Limits on secure and precise mechanisms
•  Bell-LaPadula confidentiality model
•  Tranquility
•  Declassification
•  McLean’s criticism and System Z

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #1

Types of Mechanisms

secure precise broad

set of reachable states set of secure states

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #2

Secure, Precise Mechanisms

•  Can one devise a procedure for developing a
mechanism that is both secure and precise?
–  Consider confidentiality policies only here
–  Integrity policies produce same result

•  Program a function with multiple inputs and one
output
–  Let p be a function p: I1 × ... × In → R. Then p is a

program with n inputs ik ∈ Ik, 1 ≤ k ≤ n, and one output
r → R

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #3

Programs and Postulates
•  Observability Postulate: the output of a function

encodes all available information about its inputs
–  Covert channels considered part of the output

•  Example: authentication function
–  Inputs name, password; output Good or Bad
–  If name invalid, immediately print Bad; else access

database
–  Problem: time output of Bad, can determine if name

valid
–  This means timing is part of output

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #4

Protection Mechanism

•  Let p be a function p: I1 × ... × In → R. A
protection mechanism m is a function

m: I1 × ... × In → R ∪ E
for which, when ik ∈ Ik, 1 ≤ k ≤ n, either
–  m(i1, ..., in) = p(i1, ..., in) or
–  m(i1, ..., in) ∈ E.

•  E is set of error outputs
–  In above example, E = { “Password Database Missing”,

“Password Database Locked” }
April 17, 2017 ECS 235B Spring Quarter 2017 Slide #5

Confidentiality Policy
•  Confidentiality policy for program p says which

inputs can be revealed
–  Formally, for p: I1 × ... × In → R, it is a function c: I1
× ... × In → A, where A ⊆ I1 × ... × In

–  A is set of inputs available to observer
•  Security mechanism is function

m: I1 × ... × In → R ∪ E
–  m is secure if and only if ∃ m´: A → R ∪ E such that,
∀ik ∈ Ik, 1 ≤ k ≤ n, m(i1, ..., in) = m´(c(i1, ..., in))

–  m returns values consistent with c

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #6

Examples

•  c(i1, ..., in) = C, a constant
– Deny observer any information (output does

not vary with inputs)
•  c(i1, ..., in) = (i1, ..., in), and m´ = m

– Allow observer full access to information
•  c(i1, ..., in) = i1

– Allow observer information about first input
but no information about other inputs.

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #7

Precision

•  Security policy may be over-restrictive
–  Precision measures how over-restrictive

•  m1, m2 distinct protection mechanisms for program
p under policy c
–  m1 as precise as m2 (m1 ≈ m2) if, for all inputs i1, …, in,

m2(i1, …, in) = p(i1, …, in) ⇒ m1(i1, …, in) = p(i1, …, in)
–  m1 more precise than m2 (m1 ~ m2) if there is an input

(i1´, …, in´) such that m1(i1´, …, in´) = p(i1´, …, in´) and
m2(i1´, …, in´) ≠ p(i1´, …, in´).

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #8

Combining Mechanisms

•  m1, m2 protection mechanisms
•  m3 = m1 ∪ m2

–  For inputs on which m1 and m2 return same value as p,
m3 does also; otherwise, m3 returns same value as m1

•  Theorem: if m1, m2 secure, then m3 secure
–  Also, m3 ≈ m1 and m3 ≈ m2

–  Follows from definitions of secure, precise, and m3

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #9

Existence Theorem

•  For any program p and security policy c,
there exists a precise, secure mechanism m*
such that, for all secure mechanisms m
associated with p and c, m* ≈ m
– Maximally precise mechanism
– Ensures security
– Minimizes number of denials of legitimate

actions

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #10

Lack of Effective Procedure

•  There is no effective procedure that
determines a maximally precise, secure
mechanism for any policy and program.
– Sketch of proof: let policy c be constant

function, and p compute function T(x). Assume
T(x) = 0. Consider program q, where

p;
if z = 0 then y := 1 else y := 2;
halt;

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #11

Rest of Sketch
•  m associated with q, y value of m, z output of p

corresponding to T(x)
•  ∀x[T(x) = 0] → m(x) = 1
•  ∃x´ [T(x´) ≠ 0] → m(x) = 2 or m(x)↑
•  If you can determine m, you can determine

whether T(x) = 0 for all x
•  Determines some information about input (is it 0?)
•  Contradicts constancy of c.
•  Therefore no such procedure exists
April 17, 2017 ECS 235B Spring Quarter 2017 Slide #12

Key Points

•  Policies describe what is allowed
•  Mechanisms control how policies are

enforced
•  Trust underlies everything

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #13

Confidentiality Policy

•  Goal: prevent the unauthorized disclosure of
information
– Deals with information flow
–  Integrity incidental

•  Multi-level security models are best-known
examples
– Bell-LaPadula Model basis for many, or most,

of these
April 17, 2017 ECS 235B Spring Quarter 2017 Slide #14

Bell-LaPadula Model, Step 1

•  Security levels arranged in linear ordering
– Top Secret: highest
– Secret
– Confidential
– Unclassified: lowest

•  Levels consist of security clearance L(s)
– Objects have security classification L(o)

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #15

Example

security level subject object

Top Secret Tamara Personnel Files
Secret Samuel E-Mail Files
Confidential Claire Activity Logs
Unclassified Ulaley Telephone Lists

•  Tamara can read all files
•  Claire cannot read Personnel or E-Mail Files
•  Ulaley can only read Telephone Lists

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #16

Reading Information

•  Information flows up, not down
–  “Reads up” disallowed, “reads down” allowed

•  Simple Security Condition (Step 1)
– Subject s can read object o iff, L(o) ≤ L(s) and s

has permission to read o
•  Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)

– Sometimes called “no reads up” rule

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #17

Writing Information

•  Information flows up, not down
–  “Writes up” allowed, “writes down” disallowed

•  *-Property (Step 1)
– Subject s can write object o iff L(s) ≤ L(o) and s

has permission to write o
•  Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)

– Sometimes called “no writes down” rule

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #18

Basic Security Theorem, Step 1

•  If a system is initially in a secure state, and
every transition of the system satisfies the
simple security condition, step 1, and the *-
property, step 1, then every state of the
system is secure
– Proof: induct on the number of transitions

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #19

Bell-LaPadula Model, Step 2

•  Expand notion of security level to include
categories

•  Security level is (clearance, category set)
•  Examples

–  (Top Secret, { NUC, EUR, ASI })
–  (Confidential, { EUR, ASI })
–  (Secret, { NUC, ASI })

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #20

Levels and Lattices
•  (A, C) dom (Aʹ, Cʹ) iff Aʹ ≤ A and Cʹ ⊆ C
•  Examples

–  (Top Secret, {NUC, ASI}) dom (Secret, {NUC})
–  (Secret, {NUC, EUR}) dom (Confidential,{NUC, EUR})
–  (Top Secret, {NUC}) ¬dom (Confidential, {EUR})

•  Let C be set of classifications, K set of categories.
Set of security levels L = C × K, dom form lattice
–  lub(L) = (max(A), C)
–  glb(L) = (min(A), ∅)

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #21

Levels and Ordering

•  Security levels partially ordered
– Any pair of security levels may (or may not) be

related by dom
•  “dominates” serves the role of “greater

than” in step 1
–  “greater than” is a total ordering, though

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #22

Reading Information

•  Information flows up, not down
–  “Reads up” disallowed, “reads down” allowed

•  Simple Security Condition (Step 2)
– Subject s can read object o iff L(s) dom L(o)

and s has permission to read o
•  Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)

– Sometimes called “no reads up” rule

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #23

Writing Information

•  Information flows up, not down
–  “Writes up” allowed, “writes down” disallowed

•  *-Property (Step 2)
– Subject s can write object o iff L(o) dom L(s)

and s has permission to write o
•  Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)

– Sometimes called “no writes down” rule

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #24

Basic Security Theorem, Step 2
•  If a system is initially in a secure state, and every

transition of the system satisfies the simple
security condition, step 2, and the *-property, step
2, then every state of the system is secure
–  Proof: induct on the number of transitions
–  In actual Basic Security Theorem, discretionary access

control treated as third property, and simple security
property and *-property phrased to eliminate
discretionary part of the definitions — but simpler to
express the way done here.

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #25

Problem

•  Colonel has (Secret, {NUC, EUR})
clearance

•  Major has (Secret, {EUR}) clearance
– Major can talk to colonel (“write up” or “read

down”)
– Colonel cannot talk to major (“read up” or

“write down”)
•  Clearly absurd!
April 17, 2017 ECS 235B Spring Quarter 2017 Slide #26

Solution
•  Define maximum, current levels for subjects

–  maxlevel(s) dom curlevel(s)
•  Example

–  Treat Major as an object (Colonel is writing to him/her)
–  Colonel has maxlevel (Secret, { NUC, EUR })
–  Colonel sets curlevel to (Secret, { EUR })
–  Now L(Major) dom curlevel(Colonel)

•  Colonel can write to Major without violating “no writes down”
–  Does L(s) mean curlevel(s) or maxlevel(s)?

•  Formally, we need a more precise notation

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #27

Formal Model

•  Allows us to reason precisely about the
model

•  Provides a formalism to validate systems
against

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #28

Formal Model Definitions
•  S subjects, O objects, P rights

–  Defined rights: r read, a write, w read/write, e empty
•  M set of possible access control matrices
•  C set of clearances/classifications, K set of

categories, L = C × K set of security levels
•  F = { (fs, fo, fc) }

–  fs(s) maximum security level of subject s
–  fc(s) current security level of subject s
–  fo(o) security level of object o

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #29

More Definitions
•  Hierarchy functions H: O→P(O)
•  Requirements

1.  oi ≠ oj ⇒ h(oi) ∩ h(oj) = ∅
2.  There is no set { o1, …, ok } ⊆ O such that, for i = 1,

…, k, oi+1 ∈ h(oi) and ok+1 = o1.
•  Example

–  Tree hierarchy; take h(o) to be the set of children of o
–  No two objects have any common children (#1)
–  There are no loops in the tree (#2)

April 17, 2017 ECS 235B Spring Quarter 2017 Slide #30

