
May 10: Information Flow

•  Entropy
•  Entropy and information flow
•  Non-lattice information flow policies
•  Static (compile-time) mechanisms
•  Dynamic (run-time) mechanisms
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Information Flow

•  How do we define and measure it?
– Entropy

•  So, let’s review entropy
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Entropy

•  Uncertainty of a value, as measured in bits
•  Example: X value of fair coin toss; X could 

be heads or tails, so 1 bit of uncertainty
– Therefore entropy of X is H(X) = 1

•  Formal definition: random variable X, 
values x1, …, xn; so Σi p(X = xi) = 1
H(X) = –Σi p(X = xi) lg p(X = xi)
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Heads or Tails?

•  H(X) = – p(X = heads) lg p(X = heads)
– p(X = tails) lg p(X = tails)

    = – (1/2) lg (1/2) – (1/2) lg (1/2)
    =   – (1/2) (–1) – (1/2) (–1) = 1

•  Confirms previous intuitive result 
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n-Sided Fair Die

H(X) = –Σi p(X = xi) lg p(X = xi)
As p(X = xi) = 1/n, this becomes
H(X) = –Σi (1/n) lg (1/ n) = –n(1/n) (–lg n)
so
H(X) = lg n
which is the number of bits in n, as expected
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Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul
W represents the winner. What is its entropy?

–  w1 = Ann, w2 = Pam, w3 = Paul
–  p(W= w1) = p(W= w2) = 2/5, p(W= w3) = 1/5

•  So H(W) = –Σi p(W = wi) lg p(W = wi)
= – (2/5) lg (2/5) – (2/5) lg (2/5) – (1/5) lg (1/5)
= – (4/5) + lg 5 ≈ 1.52

•  If all equally likely to win, H(W) = lg 3 = 1.58
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Joint Entropy

•  X takes values from { x1, …, xn }
– Σi p(X = xi) = 1

•  Y takes values from { y1, …, ym }
– Σi p(Y = yi) = 1

•  Joint entropy of X, Y is:
– H(X, Y) = –Σj Σi p(X=xi, Y=yj) lg p(X=xi, Y=yj)
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Example

X: roll of fair die, Y: flip of coin
p(X=1, Y=heads) = p(X=1) p(Y=heads) = 1/12

– As X and Y are independent
H(X, Y) = –Σj Σi p(X=xi, Y=yj) lg p(X=xi, Y=yj)
              = –2 [ 6 [ (1/12) lg (1/12) ] ] = lg 12
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Conditional Entropy

•  X takes values from { x1, …, xn }
–  Σi p(X=xi) = 1

•  Y takes values from { y1, …, ym }
–  Σi p(Y=yi) = 1

•  Conditional entropy of X given Y=yj is:
–  H(X | Y=yj) = –Σi p(X=xi | Y=yj) lg p(X=xi | Y=yj)

•  Conditional entropy of X given Y is:
–  H(X | Y) = –Σj p(Y=yj) Σi p(X=xi | Y=yj) lg p(X=xi | Y=yj)
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Example
•  X roll of red die, Y sum of red, blue roll
•  Note p(X=1 | Y=2) = 1, p(X=i | Y=2) = 0 for i ≠ 1

–  If the sum of the rolls is 2, both dice were 1
•  H(X|Y=2) = –Σi p(X=xi | Y=2) lg p(X=xi | Y=2) = 0
•  Note p(X=i , Y=7) = 1/6

–  If the sum of the rolls is 7, the red die can be any of 1, 
…, 6 and the blue die must be 7–roll of red die

•  H(X|Y=7) = –Σi p(X=xi | Y=7) lg p(X=xi | Y=7)
                     = –6 (1/6) lg (1/6) = lg 6
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Perfect Secrecy

•  Cryptography: knowing the ciphertext does 
not decrease the uncertainty of the plaintext

•  M = { m1, …, mn } set of messages
•  C = { c1, …, cn } set of messages
•  Cipher ci = E(mi) achieves perfect secrecy if 

H(M | C) = H(M)
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Entropy and Information Flow

•  Idea: info flows from x to y as a result of a 
sequence of commands c if you can deduce 
information about x before c from the value 
in y after c

•  Formally:
–  s time before execution of c, t time after
– H(xs | yt) < H(xs | ys)
–  If no y at time s, then H(xs | yt) < H(xs)
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Example 1

•  Command is x := y + z; where:
–  0 ≤ y ≤ 7, equal probability
–  z = 1 with prob. 1/2, z = 2 or 3 with prob. 1/4 each

•  s state before command executed; t, after; so
–  H(ys) = H(yt) = –8(1/8) lg (1/8) = 3
–  H(zs) = H(zt) = –(1/2) lg (1/2) –2(1/4) lg (1/4) = 1.5

•  If you know xt, ys can have at most 3 values, so 
H(ys | xt) = –3(1/3) lg (1/3) = lg 3
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Example 2
•  Command is

–  if x = 1 then y := 0 else y := 1;
where:
–  x, y equally likely to be either 0 or 1

•  H(xs) = 1 as x can be either 0 or 1 with equal 
probability

•  H(xs | yt) = 0 as if yt = 1 then xs = 0 and vice versa
–  Thus, H(xs | yt) = 0 < 1 = H(xs)

•  So information flowed from x to y
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Implicit Flow of Information

•  Information flows from x to y without an 
explicit assignment of the form y := f(x)
–  f(x) an arithmetic expression with variable x

•  Example from previous slide:
–  if x = 1 then y := 0
else y := 1;

•  So must look for implicit flows of 
information to analyze program
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Notation

•  x means class of x
–  In Bell-LaPadula based system, same as “label 

of security compartment to which x belongs”
•  x ≤ y means “information can flow from an 

element in class of x to an element in class 
of y”
– Or, “information with a label placing it in class 

x can flow into class y”
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Information Flow Policies

Information flow policies are usually:
•  reflexive

– So information can flow freely among members 
of a single class

•  transitive
– So if information can flow from class 1 to class 

2, and from class 2 to class 3, then information 
can flow from class 1 to class 3
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Non-Transitive Policies

•  Betty is a confident of Anne
•  Cathy is a confident of Betty

– With transitivity, information flows from Anne 
to Betty to Cathy

•  Anne confides to Betty she is having an 
affair with Cathy’s spouse
– Transitivity undesirable in this case, probably
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Transitive Non-Lattice Policies
•  2 faculty members co-PIs on a grant

–  Equal authority; neither can overrule the other
•  Grad students report to faculty members
•  Undergrads report to grad students
•  Information flow relation is:

–  Reflexive and transitive
•  But some elements (people) have no “least upper 

bound” element
–  What is it for the faculty members?
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Confidentiality Policy Model
•  Lattice model fails in previous 2 cases
•  Generalize: policy I = (SCI, ≤I, joinI):

–  SCI set of security classes
–  ≤I ordering relation on elements of SCI
–  joinI function to combine two elements of SCI

•  Example: Bell-LaPadula Model
–  SCI set of security compartments
–  ≤I ordering relation dom
–  joinI function lub
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Confinement Flow Model

•  (I, O, confine, →)
–  I = (SCI, ≤I, joinI)
–  O set of entities
–  →: O×O with (a, b) ∈ → (written a → b) iff 

information can flow from a to b
–  for a ∈ O, confine(a) = (aL, aU) ∈ SCI×SCI with aL ≤I aU

•  Interpretation: for a ∈ O, if x ≤I aU, info can flow from x to a, 
and if aL ≤I x, info can flow from a to x

•  So aL lowest classification of info allowed to flow out of a, and 
aU highest classification of info allowed to flow into a 
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Assumptions, etc.

•  Assumes: object can change security classes
– So, variable can take on security class of its 

data
•  Object x has security class x currently
•  Note transitivity not required
•  If information can flow from a to b, then b 

dominates a under ordering of policy I:
(∀ a, b ∈ O)[ a → b ⇒ aL ≤I bU ]
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Example 1
•  SCI = { U, C, S, TS }, with U ≤I C, C ≤I S, and     

S ≤I TS
•  a, b, c ∈ O

–  confine(a) = [ C, C ]
–  confine(b) = [ S, S ]
–  confine(c) = [ TS, TS ]

•  Secure information flows: a → b, a → c, b → c
–  As aL ≤I bU, aL ≤I cU, bL ≤I cU
–  Transitivity holds
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Example 2
•  SCI, ≤I as in Example 1
•  x, y, z ∈ O

–  confine(x) = [ C, C ]
–  confine(y) = [ S, S ]
–  confine(z) = [ C, TS ]

•  Secure information flows:  x → y,  x → z,  y → z,  
z → x, z → y
–  As xL ≤I yU, xL ≤I zU, yL ≤I zU, zL ≤I xU, zL ≤I yU
–  Transitivity does not hold

•   y → z and z → x, but y → x  is false, because yL ≤I xU is false
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Transitive Non-Lattice Policies

•  Q = (SQ, ≤Q) is a quasi-ordered set when ≤Q 
is transitive and reflexive over SQ

•  How to handle information flow?
– Define a partially ordered set containing quasi-

ordered set
– Add least upper bound, greatest lower bound to 

partially ordered set
–  It’s a lattice, so apply lattice rules!
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In Detail …
•  ∀x ∈ SQ: let f(x) = { y | y ∈ SQ ∧ y ≤Q x }

–  Define SQP = { f(x) | x ∈ SQ }
–  Define ≤QP = { (x, y) | x, y ∈ SQ ∧ x ⊆ y }

•  SQP partially ordered set under ≤QP 
•  f preserves order, so y ≤Q x iff f(x) ≤QP f(y)

•  Add upper, lower bounds
–  SQPʹ = SQP ∪ { SQ, ∅ }
–  Upper bound ub(x, y) = { z | z ∈ SQP ∧ x ⊆ z ∧ y ⊆ z }
–  Least upper bound lub(x, y) = ∩ub(x, y)

•  Lower bound, greatest lower bound defined analogously
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And the Policy Is …

•  Now (SQPʹ, ≤QP) is lattice
•  Information flow policy on quasi-ordered 

set emulates that of this lattice!
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Non-Transitive Flow Policies

•  Government agency information flow policy 
(on next slide)

•  Entities public relations officers PRO, 
analysts A, spymasters S
–  confine(PRO) = { public, analysis }
–  confine(A) = { analysis, top-level }
–  confine(S) = { covert, top-level }
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Information Flow
•  By confinement flow 

model:
–  PRO ≤ A, A ≤ PRO
–  PRO ≤ S
–  A ≤ S, S ≤ A

•  Data cannot flow to 
public relations 
officers; not transitive
–  S ≤ A, A ≤ PRO
–  S ≤ PRO is false

top-level

analysis covert

public
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Transforming Into Lattice

•  Rough idea: apply a special mapping to generate a 
subset of the power set of the set of classes
–  Done so this set is partially ordered
–  Means it can be transformed into a lattice

•  Can show this mapping preserves ordering relation
–  So it preserves non-orderings and non-transitivity of 

elements corresponding to those of original set
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Dual Mapping

•  R = (SCR, ≤R, joinR) reflexive info flow policy
•  P = (SP, ≤P) ordered set

–  Define dual mapping functions lR, hR: SCR→SP
•  lR(x) = { x }
•  hR(x) = { y | y ∈ SCR ∧ y ≤R x }

–  SP contains subsets of SCR; ≤P subset relation
–  Dual mapping function order preserving iff

(∀a, b ∈ SCR )[ a ≤R b ⇔ lR(a) ≤P hR(b) ]
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Theorem

Dual mapping from reflexive info flow policy 
R to ordered set P order-preserving
Proof sketch: all notation as before
(⇒) Let a ≤R b. Then a ∈ lR(a), a ∈ hR(b), so 
lR(a) ⊆ hR(b), or lR(a) ≤P hR(b)
(⇐) Let lR(a) ≤P hR(b). Then lR(a) ⊆ hR(b). 
But lR(a) = { a }, so a ∈ hR(b), giving a ≤R b
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Info Flow Requirements

•  Interpretation: let confine(x) = { xL, xU }, 
consider class y
–  Information can flow from x to element of y iff 

xL ≤R y, or lR(xL) ⊆ hR(y)
–  Information can flow from element of y to x iff 

y ≤R xU, or lR(y) ⊆ hR(xU)
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Revisit Government Example

•  Information flow policy is R
•  Flow relationships among classes are:

public ≤R public
public ≤R analysis analysis ≤R  analysis
public ≤R  covert covert ≤R  covert
public ≤R  top-level covert ≤R  top-level
analysis ≤R  top-level top-level ≤R  top-level

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #34



Dual Mapping of R

•  Elements lR, hR:
lR(public) = { public }
hR(public = { public }
lR(analysis) = { analysis }
hR(analysis) = { public, analysis }
lR(covert) = { covert }
hR(covert) = { public, covert }
lR(top-level) = { top-level }
hR(top-level) = { public, analysis, covert, top-level }
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confine

•  Let p be entity of type PRO, a of type A, s 
of type S

•  In terms of P (not R), we get:
–  confine(p) = [ { public }, { public, analysis } ]
–  confine(a) = [ { analysis },

{ public, analysis, covert, top-level } ]
–  confine(s) = [ { covert },

{ public, analysis, covert, top-level } ]

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #36



And the Flow Relations Are …

•  p → a as lR(p) ⊆ hR(a)
–  lR(p) = { public }
–  hR(a) = { public, analysis, covert, top-level }

•  Similarly: a → p, p → s, a → s, s → a
•  But s → p is false as lR(s) ⊄ hR(p)

–  lR(s) = { covert }
–  hR(p) = { public, analysis }
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Analysis

•  (SP, ≤P) is a lattice, so it can be analyzed 
like a lattice policy

•  Dual mapping preserves ordering, hence 
non-ordering and non-transitivity, of 
original policy
– So results of analysis of (SP, ≤P) can be mapped 

back into (SCR, ≤R, joinR)
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Compiler-Based Mechanisms
•  Detect unauthorized information flows in a 

program during compilation
•  Analysis not precise, but secure

–  If a flow could violate policy (but may not), it is 
unauthorized

–  No unauthorized path along which information could 
flow remains undetected

•  Set of statements certified with respect to an 
information flow policy if the flows in the set of 
statements do not violate that policy
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Example

if x = 1 then y := a;
else y := b;

•  Info flows from x and a to y, or from x and b 
to y

•  Certified only if x ≤ y and a ≤ y and b ≤ y 
– Note flows for both branches must be true 

unless compiler can determine that one branch 
will never be taken
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Declarations

•  Notation:
x: int class { A, B }

 means x is an integer variable with security 
class at least lub{ A, B }, so lub{ A, B } ≤ x

•  Distinguished classes Low, High
– Constants are always Low
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Input Parameters

•  Parameters through which data passed into 
procedure

•  Class of parameter is class of actual 
argument

ip: type class { ip }
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Output Parameters

•  Parameters through which data passed out of 
procedure
–  If data passed in, called “input/output parameter”

•  As information can flow from input parameters to 
output parameters, class must include this:
op: type class { r1, ..., rn }

where ri is class of ith input or input/output 
argument 
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Example

proc sum(x: int class { A };
var out: int class { A, B });

begin
out := out + x;

end;

•  Require x ≤ out and out ≤ out 
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Array Elements

•  Information flowing out:
... := a[i]

Value of i, a[i] both affect result, so class is 
lub{ a[i], i }

•  Information flowing in:
a[i] := ...

•  Only value of a[i] affected, so class is a[i] 
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Assignment Statements

x := y + z;

•  Information flows from y, z to x, so this 
requires lub(y, z) ≤ x

More generally:
y := f(x1, ..., xn)

•  the relation lub( x1, …, xn) ≤ y must hold
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Compound Statements

x := y + z; a := b * c – x;

•  First statement: lub(y, z) ≤ x
•  Second statement: lub(b, c, x) ≤ a
•  So, both must hold (i.e., be secure)
More generally:

S1; ...; Sn;

•  Each individual Si must be secure
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Conditional Statements
if x + y < z then a := b else d := b * c – x;

•  The statement executed reveals information about 
x, y, z, so lub(x, y, z) ≤ glb(a, d)

More generally:
if f(x1, ..., xn) then S1 else S2; end

•  S1, S2 must be secure
•  lub(x1, …, xn) ≤
                     glb(y | y target of assignment in S1, S2)
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Iterative Statements
while i < n do begin

a[i] := b[i]; i := i + 1; end

•  Same ideas as for “if”, but must terminate
More generally:

while f(x1, ..., xn) do S;

•  Loop must terminate;
•  S must be secure
•  lub(x1, …, xn) ≤
                            glb(y | y target of assignment in S)
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Goto Statements

•  No assignments
– Hence no explicit flows

•  Need to detect implicit flows
•  Basic block is sequence of statements that 

have one entry point and one exit point
– Control in block always flows from entry point 

to exit point
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Example Program
proc tm(x: array[1..10][1..10] of int class {x};
    var y: array[1..10][1..10] of int class {y});
var i, j: int {i};
begin
b1 i := 1;
b2 L2: if i > 10 then goto L7;
b3 j := 1;
b4 L4: if j > 10 then goto L6;
b5 y[j][i] := x[i][j]; j := j + 1; goto L4;
b6 L6: i := i + 1; goto L2;
b7 L7:
end;
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Flow of Control

b1 b2 b7

b6
b3

b4

b5

i > n

i ≤ n

j > n

j ≤ n

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #52



IFDs
•  Idea: when two paths out of basic block, implicit 

flow occurs
–  Because information says which path to take

•  When paths converge, either:
–  Implicit flow becomes irrelevant; or
–  Implicit flow becomes explicit

•  Immediate forward dominator of a basic block b 
(written IFD(b)) is the first basic block lying on all 
paths of execution passing through b
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IFD Example

•  In previous procedure:
–  IFD(b1) = b2 one path
–  IFD(b2) = b7 b2→b7 or b2→b3→b6→b2→b7

–  IFD(b3) = b4 one path
–  IFD(b4) = b6 b4→b6 or b4→b5→b6

–  IFD(b5) = b4 one path
–  IFD(b6) = b2 one path
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Requirements
•  Bi is the set of basic blocks along an execution 

path from bi to IFD(bi)
–  Analogous to statements in conditional statement

•  xi1, …, xin variables in expression selecting which 
execution path containing basic blocks in Bi used
–  Analogous to conditional expression

•  Requirements for being secure:
–  All statements in each basic blocks are secure
–  lub(xi1, …, xin) ≤ glb{ y | y target of assignment in Bi }
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Example of Requirements

•  Within each basic block:
b1: Low ≤ i b3: Low ≤ j  b6: lub{ Low, i } ≤ i
b5: lub(x[i][j], i, j) ≤ y[j][i]; lub(Low, j) ≤ j
–  Combining, lub(x[i][j], i, j) ≤ y[j][i]
–  From declarations, true when lub(x, i) ≤ y

•  B2 = {b3, b4, b5, b6}
–  Assignments to i, j, y[j][i]; conditional is i ≤ 10
–  Requires i ≤ glb(i, j, y[j][i])
–  From declarations, true when i ≤ y
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Example (continued)

•  B4 = { b5 }
– Assignments to j, y[j][i]; conditional is j ≤ 10
– Requires j ≤ glb(j, y[j][i])
– From declarations, means i ≤ y

•  Result:
– Combine lub(x, i) ≤ y; i ≤ y; i ≤ y
– Requirement is lub(x, i) ≤ y
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Procedure Calls
tm(a, b);

From previous slides, to be secure, lub(x, i) ≤ y must hold
•  In call, x corresponds to a, y to b
•  Means that lub(a, i) ≤ b, or a ≤ b 
More generally:
proc pn(i1, ..., im: int; var o1, ..., on: int) 
begin S end;

•  S must be secure
•  For all j and k, if ij ≤ ok, then xj ≤ yk
•  For all j and k, if oj ≤ ok, then  yj ≤ yk

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #58



Exceptions
proc copy(x: int class { x };
                var y: int class Low)
var sum: int class { x };
    z: int class Low;
begin
     y := z := sum := 0;
     while z = 0 do begin
          sum := sum + x;
          y := y + 1;
     end
end
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Exceptions (cont)

•  When sum overflows, integer overflow trap
–  Procedure exits
–  Value of x is MAXINT/y
–  Info flows from y to x, but x ≤ y never checked

•  Need to handle exceptions explicitly
–  Idea: on integer overflow, terminate loop
on integer_overflow_exception sum do z := 1;

–  Now info flows from sum to z, meaning sum ≤ z
–  This is false (sum = { x } dominates z = Low)

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #60



Infinite Loops
proc copy(x: int 0..1 class { x };
          var y: int 0..1 class Low)
begin
     y := 0;
     while x = 0 do
          (* nothing *);
     y := 1;
end
•  If x = 0 initially, infinite loop
•  If x = 1 initially, terminates with y set to 1
•  No explicit flows, but implicit flow from x to y
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Semaphores

Use these constructs:
wait(x):   if x = 0 then block until x > 0; x := x – 1;
signal(x): x := x + 1;

–  x is semaphore, a shared variable
– Both executed atomically

Consider statement
wait(sem); x := x + 1;

•  Implicit flow from sem to x
– Certification must take this into account!
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Flow Requirements
•  Semaphores in signal irrelevant

–  Don’t affect information flow in that process
•  Statement S is a wait

–  shared(S): set of shared variables read
•  Idea: information flows out of variables in shared(S)

–  fglb(S): glb of assignment targets following S
–  So, requirement is shared(S) ≤ fglb(S)

•  begin S1; . . . Sn end
–  All Si must be secure
–  For all i, shared(Si) ≤ fglb(Si)
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Example
begin
    x := y + z;       (* S1 *)
    wait(sem);        (* S2 *)
    a := b * c – x;   (* S3 *)
end

•  Requirements:
–  lub(y, z) ≤ x
–  lub(b, c, x) ≤ a
–  sem ≤ a

•  Because fglb(S2) = a and shared(S2) = sem
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Concurrent Loops

•  Similar, but wait in loop affects all statements in 
loop
–  Because if flow of control loops, statements in loop 

before wait may be executed after wait
•  Requirements

–  Loop terminates
–  All statements S1, …, Sn in loop secure
–  lub(shared(S1), …, shared(Sn) } ≤ glb(t1, …, tm)

•  Where t1, …, tm are variables assigned to in loop
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Loop Example
while i < n do begin
    a[i] := item;    (* S1 *)
    wait(sem);       (* S2 *)
    i := i + 1;      (* S3 *)
end

•  Conditions for this to be secure:
–  Loop terminates, so this condition met
–  S1 secure if lub(i, item) ≤ a[i]
–  S2 secure if sem ≤ i and sem ≤ a[i]
–  S3 trivially secure
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cobegin/coend
cobegin
     x := y + z;       (* S1 *)
     a := b * c – y;   (* S2 *)
coend
•  No information flow among statements

–  For S1, lub(y, z) ≤ x
–  For S2, lub(b, c, y) ≤ a

•  Security requirement is both must hold
–  So this is secure if lub(y, z) ≤ x ∧ lub(b, c, y) ≤ a
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Soundness

•  Above exposition intuitive
•  Can be made rigorous:

– Express flows as types
– Equate certification to correct use of types
– Checking for valid information flows same as 

checking types conform to semantics imposed 
by security policy

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #68



Execution-Based Mechanisms

•  Detect and stop flows of information that violate 
policy
–  Done at run time, not compile time

•  Obvious approach: check explicit flows
–  Problem: assume for security, x ≤ y

if x = 1 then y := a;
–  When x ≠ 1, x = High, y = Low, a = Low, appears okay

—but implicit flow violates condition!
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Fenton’s Data Mark Machine

•  Each variable has an associated class
•  Program counter (PC) has one too
•  Idea: branches are assignments to PC, so 

you can treat implicit flows as explicit flows
•  Stack-based machine, so everything done in 

terms of pushing onto and popping from a 
program stack
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Instruction Description

•  skip means instruction not executed
•  push(x, x) means push variable x and its 

security class x onto program stack
•  pop(x, x) means pop top value and security 

class from program stack, assign them to 
variable x and its security class x 
respectively
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Instructions
•   x := x + 1 (increment)

–  Same as:
if PC ≤ x then x := x + 1 else skip

•   if x = 0 then goto n else x := x – 1 (branch 
and save PC on stack)
–  Same as:
if x = 0 then begin
push(PC, PC); PC := lub{PC, x}; PC := n;

  end else if PC ≤ x then
x := x - 1

else
skip;
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More Instructions
•   if’ x = 0 then goto n else x := x – 1 

(branch without saving PC on stack)
–  Same as:
if x = 0 then
if x ≤ PC then PC := n else skip
else
if PC ≤ x then x := x - 1 else skip
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More Instructions

•   return (go to just after last if)
–  Same as:
pop(PC, PC);

•   halt (stop)
–  Same as:
if program stack empty then halt

–  Note stack empty to prevent user obtaining information 
from it after halting
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Example Program
1   if x = 0 then goto 4 else x := x - 1
2   if z = 0 then goto 6 else z := z - 1
3   halt
4   z := z + 1
5   return
6   y := y + 1
7   return
•  Initially x = 0 or x = 1, y = 0, z = 0
•  Program copies value of x to y
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Example Execution
x y z PC PC stack check
1 0 0 1 Low —
0 0 0 2 Low — Low ≤ x
0 0 0 6 z (3, Low)
0 1 0 7 z (3, Low) PC ≤ y
0 1 0 3 Low —
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Handling Errors

•  Ignore statement that causes error, but 
continue execution
–  If aborted or a visible exception taken, user 

could deduce information
– Means errors cannot be reported unless user has 

clearance at least equal to that of the 
information causing the error
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Variable Classes

•  Up to now, classes fixed
– Check relationships on assignment, etc.

•  Consider variable classes
– Fenton’s Data Mark Machine does this for PC
– On assignment of form y := f(x1, …, xn), y 

changed to lub(x1, …, xn)
– Need to consider implicit flows, also
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Example Program
// Copy value from x to y; initially, x is 0 or 1
proc copy(x: int class { x };
          var y: int class { y })
var z: int class variable { Low };
begin

y := 0;
z := 0;
if x = 0 then z := 1;
if z = 0 then y := 1;

end;

•  z changes when z assigned to
•  Assume y <  x
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Analysis of Example
•  x = 0

–   z := 0 sets z to Low
–   if x = 0 then z := 1 sets z to 1 and z to x
–   So on exit, y = 0

•  x = 1
–   z := 0 sets z to Low
–   if z = 0 then y := 1 sets y to 1 and checks that 

lub{Low, z} ≤ y
–   So on exit, y = 1

•  Information flowed from x to y even though y < x
May 10, 2017 ECS 235B Spring Quarter 2017 Slide #80



Handling This (1)

•  Fenton’s Data Mark Machine detects 
implicit flows violating certification rules
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Handling This (2)

•  Raise class of variables assigned to in conditionals 
even when branch not taken

•  Also, verify information flow requirements even 
when branch not taken

•  Example:
–  In if x = 0 then z := 1, z raised to x whether or not 

x = 0
–  Certification check in next statement, that z ≤ y, fails, as 

z = x from previous statement, and y ≤ x
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Handling This (3)

•  Change classes only when explicit flows occur, 
but all flows (implicit as well as explicit) force 
certification checks

•  Example
–  When x = 0, first “if” sets z to Low then checks x ≤ z
–  When x = 1, first “if” checks that x ≤ z
–  This holds if and only if x = Low

•  Not possible as y < x = Low and there is no such class
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