May 10: Information Flow

- Entropy
- Entropy and information flow
- Non-lattice information flow policies
- Static (compile-time) mechanisms
- Dynamic (run-time) mechanisms

Information Flow

- How do we define and measure it? – *Entropy*
- So, let's review entropy

Entropy

- Uncertainty of a value, as measured in bits
- Example: *X* value of fair coin toss; *X* could be heads or tails, so 1 bit of uncertainty – Therefore entropy of *X* is $H(X) = 1$
- Formal definition: random variable *X*, values x_1, \ldots, x_n ; so Σ_i $p(X = x_i) = 1$ $H(X) = -\sum_{i} p(X = x_i) \lg p(X = x_i)$

Heads or Tails?

- $H(X) = -p(X = \text{heads}) \lg p(X = \text{heads})$ $-p(X = \text{tails})$ lg $p(X = \text{tails})$ $= -(1/2) \lg (1/2) - (1/2) \lg (1/2)$ $=$ $-(1/2) (-1) - (1/2) (-1) = 1$
- Confirms previous intuitive result

n-Sided Fair Die

$$
H(X) = -\sum_{i} p(X = x_i) \lg p(X = x_i)
$$

As $p(X = x_i) = 1/n$, this becomes

$$
H(X) = -\sum_{i} (1/n) \lg (1/n) = -n(1/n) (-\lg n)
$$

so

$H(X) = \lg n$

which is the number of bits in *n*, as expected

Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul *W* represents the winner. What is its entropy?

-
$$
w_1
$$
 = Ann, w_2 = Pam, w_3 = Paul
- $p(W=w_1) = p(W=w_2) = 2/5$, $p(W=w_3) = 1/5$

- So $H(W) = -\sum_{i} p(W = w_i) \lg p(W = w_i)$ $=$ $-(2/5)$ lg $(2/5)$ $-(2/5)$ lg $(2/5)$ $-(1/5)$ lg $(1/5)$ $= -(4/5) + \lg 5 \approx 1.52$
- If all equally likely to win, $H(W) = \lg 3 = 1.58$

Joint Entropy

- *X* takes values from $\{x_1, \ldots, x_n\}$ $-\sum_{i} p(X = x_i) = 1$
- *Y* takes values from $\{y_1, \ldots, y_m\}$ $-\sum_{i} p(Y = y_i) = 1$
- Joint entropy of *X*, *Y* is: $-H(X, Y) = -\sum_{j} \sum_{i} p(X=x_i, Y=y_j) \lg p(X=x_i, Y=y_j)$

Example

X: roll of fair die, *Y*: flip of coin $p(X=1, Y=heads) = p(X=1) p(Y=heads) = 1/12$ – As *X* and *Y* are independent *H*(*X*, *Y*) = $-\Sigma_j \Sigma_i p(X=x_i, Y=y_j) \lg p(X=x_i, Y=y_j)$ $=-2$ [6 [(1/12) lg (1/12)]] = lg 12

Conditional Entropy

- *X* takes values from $\{x_1, \ldots, x_n\}$ $-\sum_{i} p(X=x_i) = 1$
- *Y* takes values from $\{y_1, \ldots, y_m\}$ $-\sum_{i} p(Y=y_i) = 1$
- Conditional entropy of *X* given *Y*=*yj* is: $-H(X \mid Y=y_j) = -\sum_i p(X=x_i \mid Y=y_j) \lg p(X=x_i \mid Y=y_j)$
- Conditional entropy of *X* given *Y* is: $-H(X \mid Y) = -\sum_j p(Y=y_j) \sum_i p(X=x_i \mid Y=y_j) \lg p(X=x_i \mid Y=y_j)$

Example

- *X* roll of red die, *Y* sum of red, blue roll
- Note $p(X=1 | Y=2) = 1, p(X=i | Y=2) = 0$ for $i \neq 1$ – If the sum of the rolls is 2, both dice were 1
- $H(X|Y=2) = -\sum_i p(X=x_i | Y=2) \lg p(X=x_i | Y=2) = 0$

• Note
$$
p(X=i, Y=7) = 1/6
$$

- If the sum of the rolls is 7, the red die can be any of 1, …, 6 and the blue die must be 7–roll of red die
- $H(X|Y=7) = -\sum_i p(X=x_i | Y=7) \lg p(X=x_i | Y=7)$ $= -6$ (1/6) lg (1/6) = lg 6

Perfect Secrecy

- Cryptography: knowing the ciphertext does not decrease the uncertainty of the plaintext
- $M = \{m_1, \ldots, m_n\}$ set of messages
- $C = \{c_1, \ldots, c_n\}$ set of messages
- Cipher $c_i = E(m_i)$ achieves *perfect secrecy* if $H(M \mid C) = H(M)$

Entropy and Information Flow

- Idea: info flows from *x* to *y* as a result of a sequence of commands *c* if you can deduce information about *x* before *c* from the value in *y* after *c*
- Formally:
	- *s* time before execution of *c*, *t* time after
	- $-H(x_s | y_t) < H(x_s | y_s)$
	- $-$ If no *y* at time *s*, then $H(x_s | y_t) < H(x_s)$

Example 1

• Command is $x := y + z$; where:

 $-0 \le y \le 7$, equal probability

 $z = 1$ with prob. $1/2$, $z = 2$ or 3 with prob. $1/4$ each

• *s* state before command executed; *t*, after; so

$$
- \text{H}(y_s) = \text{H}(y_t) = -8(1/8) \text{ lg } (1/8) = 3
$$

- \text{H}(z_s) = \text{H}(z_t) = -(1/2) \text{ lg } (1/2) -2(1/4) \text{ lg } (1/4) = 1.5

• If you know x_t , y_s can have at most 3 values, so $H(y_s | x_t) = -3(1/3) \lg(1/3) = \lg 3$

Example 2

• Command is

$$
- if x = 1 then y := 0 else y := 1;
$$

where:

– *x*, *y* equally likely to be either 0 or 1

- $H(x_s) = 1$ as x can be either 0 or 1 with equal probability
- $H(x_s | y_t) = 0$ as if $y_t = 1$ then $x_s = 0$ and vice versa $-$ Thus, $H(x_s | y_t) = 0 < 1 = H(x_s)$
- So information flowed from *x* to *y*

Implicit Flow of Information

- Information flows from *x* to *y* without an *explicit* assignment of the form $y := f(x)$ $-f(x)$ an arithmetic expression with variable *x*
- Example from previous slide:

$$
-if x = 1 then y := 0
$$

else $y := 1$;

• So must look for implicit flows of information to analyze program

Notation

- *x* means class of *x*
	- In Bell-LaPadula based system, same as "label of security compartment to which *x* belongs"
- $x \leq y$ means "information can flow from an element in class of *x* to an element in class of y "
	- Or, "information with a label placing it in class *x* can flow into class *y*"

Information Flow Policies

Information flow policies are usually:

- reflexive
	- So information can flow freely among members of a single class
- transitive
	- So if information can flow from class 1 to class 2, and from class 2 to class 3, then information can flow from class 1 to class 3

Non-Transitive Policies

- Betty is a confident of Anne
- Cathy is a confident of Betty
	- With transitivity, information flows from Anne to Betty to Cathy
- Anne confides to Betty she is having an affair with Cathy's spouse
	- Transitivity undesirable in this case, probably

Transitive Non-Lattice Policies

- 2 faculty members co-PIs on a grant – Equal authority; neither can overrule the other
- Grad students report to faculty members
- Undergrads report to grad students
- Information flow relation is:
	- Reflexive and transitive
- But some elements (people) have no "least upper bound" element
	- What is it for the faculty members?

Confidentiality Policy Model

- Lattice model fails in previous 2 cases
- Generalize: policy $I = (SC_I, \leq_I, join_I)$:
	- *SC_I* set of security classes
	- \leq_I ordering relation on elements of SC_I
	- $-$ *join*_I function to combine two elements of *SC*_I
- Example: Bell-LaPadula Model
	- $-SC_I$ set of security compartments
	- ≤*^I* ordering relation *dom*
	- $-$ *join*_I function *lub*

Confinement Flow Model

- $(I, O, confine, \rightarrow)$
	- $-I = (SC_I, \leq_I, join_I)$
	- *O* set of entities
	- \rightarrow : $O \times O$ with $(a, b) \in \rightarrow$ (written $a \rightarrow b$) iff information can flow from *a* to *b*
	- *−* for *a* ∈ *O*, *confine*(*a*) = (a_L , a_U) ∈ $SC_I \times SC_I$ with $a_L ≤_I a_U$
		- Interpretation: for $a \in O$, if $x \leq I a_{U}$, info can flow from x to a, and if $a_L \leq I$ *x*, info can flow from *a* to *x*
		- So a_L lowest classification of info allowed to flow out of a , and a_U highest classification of info allowed to flow into *a*

Assumptions, *etc*.

- Assumes: object can change security classes – So, variable can take on security class of its data
- Object *x* has security class *x* currently
- Note transitivity *not* required
- If information can flow from *a* to *b*, then *b* dominates *a* under ordering of policy *I*: $(\forall a, b \in O)$ [$a \rightarrow b \Rightarrow a_{I} \leq_{I} b_{II}$]

Example 1

- $SC_I = \{ U, C, S, TS \}$, with $U \leq_I C, C \leq_I S$, and $S \leq_I TS$
- $a, b, c \in O$
	- $-$ confine(*a*) = [C, C]
	- $-$ confine(b) = [S, S]
	- $-$ confine(*c*) = [TS, TS]
- Secure information flows: $a \rightarrow b$, $a \rightarrow c$, $b \rightarrow c$

$$
- \text{ As } a_L \leq_l b_U, a_L \leq_l c_U, b_L \leq_l c_U
$$

– Transitivity holds

Example 2

- SC_I , \leq_I as in Example 1
- $x, y, z \in O$
	- $-$ confine(x) = $[C, C]$
	- $-$ confine(*y*) = [S, S]
	- $-$ confine(*z*) = [C, TS]
- Secure information flows: $x \rightarrow y$, $x \rightarrow z$, $y \rightarrow z$, $z \rightarrow x, z \rightarrow y$
	- $-$ As $x_L ≤_I y_U, x_L ≤_I z_U, y_L ≤_I z_U, z_L ≤_I x_U, z_L ≤_I y_U$
	- Transitivity does not hold
		- $y \rightarrow z$ and $z \rightarrow x$, but $y \rightarrow x$ is false, because $y_L \leq_l x_U$ is false

Transitive Non-Lattice Policies

- $Q = (S_Q, \leq_Q)$ is a *quasi-ordered set* when \leq_Q is transitive and reflexive over *SQ*
- How to handle information flow?
	- Define a partially ordered set containing quasiordered set
	- Add least upper bound, greatest lower bound to partially ordered set
	- It's a lattice, so apply lattice rules!

In Detail …

- $\forall x \in S_Q$: let $f(x) = \{y \mid y \in S_Q \land y \leq_Q x\}$ $-$ Define $S_{OP} = \{ f(x) | x \in S_Q \}$
	- $-$ Define \leq_{OP} = { (x, y) | $x, y \in S_Q$ ^ $x \subseteq y$ }
		- S_{OP} partially ordered set under \leq_{OP}
		- *f* preserves order, so $y \leq Q$ *x* iff $f(x) \leq Q$ *f*(*y*)
- Add upper, lower bounds
	- $-S_{QP} = S_{QP} \cup \{ S_Q, \emptyset \}$
	- Upper bound $ub(x, y) = \{ z | z \in S_{OP} \land x \subseteq z \land y \subseteq z \}$
	- Least upper bound *lub*(*x*, *y*) = ∩*ub*(*x*, *y*)
		- Lower bound, greatest lower bound defined analogously

And the Policy Is …

- Now (S_{QP}', \leq_{QP}) is lattice
- Information flow policy on quasi-ordered set emulates that of this lattice!

Non-Transitive Flow Policies

- Government agency information flow policy (on next slide)
- Entities public relations officers PRO, analysts A, spymasters S

 $-$ *confine*(PRO) = { public, analysis }

- $-$ *confine*(A) = { analysis, top-level }
- $-$ *confine*(S) = { covert, top-level }

Information Flow

- By confinement flow model:
	- $-$ PRO \leq A, A \leq PRO
	- $-$ PRO \leq S
	- $A \leq S, S \leq A$
- Data *cannot* flow to public relations officers; not transitive
	- $S \le A$, $A \le PRO$
	- S ≤ PRO is *false*

Transforming Into Lattice

- Rough idea: apply a special mapping to generate a subset of the power set of the set of classes
	- Done so this set is partially ordered
	- Means it can be transformed into a lattice
- Can show this mapping preserves ordering relation
	- So it preserves non-orderings and non-transitivity of elements corresponding to those of original set

Dual Mapping

- $R = (SC_R, \leq_R, join_R)$ reflexive info flow policy
- $P = (S_p, \leq_p)$ ordered set
	- $-$ Define *dual mapping* functions l_R , h_R : $SC_R \rightarrow S_p$
		- $l_R(x) = \{ x \}$
		- $h_R(x) = \{ y \mid y \in SC_R \land y \leq_R x \}$
	- $-S_p$ contains subsets of SC_p ; \leq_p subset relation
	- Dual mapping function *order preserving* iff $(\forall a, b \in SC_R)$ [$a \leq_R b \Leftrightarrow l_R(a) \leq_p h_R(b)$]

Theorem

Dual mapping from reflexive info flow policy *R* to ordered set *P* order-preserving *Proof sketch*: all notation as before (\Rightarrow) Let $a \leq R b$. Then $a \in l_R(a)$, $a \in h_R(b)$, so $l_R(a) \subseteq h_R(b)$, or $l_R(a) \leq p h_R(b)$ (\Leftarrow) Let $l_R(a) \leq p h_R(b)$. Then $l_R(a) \subseteq h_R(b)$. But $l_R(a) = \{a\}$, so $a \in h_R(b)$, giving $a \leq R b$

Info Flow Requirements

- Interpretation: let *confine* $(x) = \{x_1, x_{11}\},$ consider class *y*
	- Information can flow from *x* to element of *y* iff $x_L \leq_R y$, or $l_R(x_L) \subseteq h_R(y)$
	- Information can flow from element of *y* to *x* iff *y* ≤*R x_I*, or $l_R(y)$ ⊆ $h_R(x)$

Revisit Government Example

- Information flow policy is *R*
- Flow relationships among classes are: public \leq_R public public ≤_{*R*} analysis analysis ≤_{*R*} analysis public \leq_R covert covert \leq_R covert public ≤_{*R*} top-level covert ≤_{*R*} top-level analysis $≤_R$ top-level top-level $≤_R$ top-level

Dual Mapping of *R*

• Elements l_R , h_R : $l_R(public) = { public }$ h_R (public = { public } l_R (analysis) = { analysis } h_R (analysis) = { public, analysis } l_R (covert) = { covert } h_R (covert) = { public, covert } l_p (top-level) = { top-level } h_R (top-level) = { public, analysis, covert, top-level }

confine

- Let *p* be entity of type PRO, *a* of type A, *s* of type S
- In terms of *P* (not *R*), we get:
	- $-$ *confine*(*p*) = $\left[\{ \text{public } \}, \{ \text{public, analysis } \} \right]$
	- $-$ *confine*(*a*) = $\lceil \{\text{ analysis }\},\}$

{ public, analysis, covert, top-level }] $-$ *confine*(*s*) = $\lceil \{$ covert $\},\$ { public, analysis, covert, top-level }]
And the Flow Relations Are …

- $p \rightarrow a$ as $l_p(p) \subseteq h_p(a)$
	- $-l_R(p) = \{ \text{ public } \}$
	- $-h_R(a) = \{$ public, analysis, covert, top-level $\}$
- Similarly: $a \rightarrow p, p \rightarrow s, a \rightarrow s, s \rightarrow a$
- *But* $s \rightarrow p$ *is false* as $l_R(s) \not\subset h_R(p)$ $-l_R(s) = \{$ covert $\}$ $-h_R(p) = \{$ public, analysis $\}$

Analysis

- (S_p, \leq_p) is a lattice, so it can be analyzed like a lattice policy
- Dual mapping preserves ordering, hence non-ordering and non-transitivity, of original policy
	- So results of analysis of (S_p, \leq_p) can be mapped back into $(SC_R, \leq_R, join_R)$

Compiler-Based Mechanisms

- Detect unauthorized information flows in a program during compilation
- Analysis not precise, but secure
	- If a flow *could* violate policy (but may not), it is unauthorized
	- No unauthorized path along which information could flow remains undetected
- Set of statements *certified* with respect to an information flow policy if the flows in the set of statements do not violate that policy

Example

if $x = 1$ then $y := a$; **else** *y* := *b*;

- Info flows from *x* and *a* to *y*, or from *x* and *b* to *y*
- Certified only if $x \le y$ and $a \le y$ and $b \le y$ – Note flows for *both* branches must be true unless compiler can determine that one branch will *never* be taken

May 10, 2017 *ECS 235B Spring Quarter 2017* Slide #40

Declarations

• Notation:

x: **int class** { A, B } means *x* is an integer variable with security

- class at least $lub{ A, B }$, so $lub{ A, B }$ $\leq x$
- Distinguished classes *Low*, *High*
	- Constants are always *Low*

Input Parameters

- Parameters through which data passed into procedure
- Class of parameter is class of actual argument

 i_p : *type* class { i_p }

Output Parameters

• Parameters through which data passed out of procedure

– If data passed in, called "input/output parameter"

• As information can flow from input parameters to output parameters, class must include this:

o_p: *type* class { r_1 , ..., r_n } where r_i is class of *i*th input or input/output argument

Example

- **proc** *sum*(*x*: **int class** { A }; **var** *out*: **int class** { A, B }); **begin** *out* := *out* + *x*; **end**;
- Require *x* ≤ *out* and *out* ≤ *out*

Array Elements

• Information flowing out:

... $:= a[i]$

Value of *i*, *a*[*i*] both affect result, so class is $\lceil \text{lub} \{ \text{ } a[i], i \} \rceil$

• Information flowing in:

a[*i*] := ...

• Only value of *a*[*i*] affected, so class is *a*[*i*]

Assignment Statements

x := *y* + *z*;

• Information flows from *y*, *z* to *x*, so this requires $lub(y, z) \leq x$

More generally:

 $y := f(X_1, \ldots, X_n)$

• the relation $lub(x_1, ..., x_n) \leq y$ must hold

Compound Statements

x := *y* + *z*; *a* := *b* * *c* – *x*;

- First statement: $lub(y, z) \leq x$
- Second statement: $lub(b, c, x) \le a$
- So, both must hold (i.e., be secure)

More generally:

$$
S_1; \ldots; S_n;
$$

• Each individual S_i must be secure

Conditional Statements

if $x + y < z$ then $a := b$ else $d := b * c - x$;

• The statement executed reveals information about x, y, z , so $lub(x, y, z) \leq glb(a, d)$

More generally:

if $f(x_1, \ldots, x_n)$ then S_1 else S_2 ; end

- S_1 , S_2 must be secure
- $lub(\underline{x}_1, ..., \underline{x}_n) \leq$

glb($y \mid y$ target of assignment in S_1 , S_2)

May 10, 2017 *ECS 235B Spring Quarter 2017* Slide #48

Iterative Statements

while *i* < *n* **do begin** *a*[*i*] := *b*[*i*]; *i* := *i* + 1; **end**

• Same ideas as for "if", but must terminate

More generally:

while $f(X_1, \ldots, X_n)$ do *S*;

- Loop must terminate;
- *S* must be secure
- $lub(\underline{x}_1, ..., \underline{x}_n) \leq$

glb(*y* | *y* target of assignment in *S*)

May 10, 2017 *ECS 235B Spring Quarter 2017* Slide #49

Goto Statements

• No assignments

– Hence no explicit flows

- Need to detect implicit flows
- *Basic block* is sequence of statements that have one entry point and one exit point
	- Control in block *always* flows from entry point to exit point

Example Program

```
proc tm(x: array[1..10][1..10] of int class {x};
     var y: array[1..10][1..10] of int class {y});
var i, j: int {i};
begin
b_1 i := 1;
b_2 L2: if i > 10 then goto L7;
b_3 j := 1;
b_4 L4: if j > 10 then goto L6;
b_5 y[j][i] := x[i][j]; j := j + 1; goto L4;
b_6 L6: i := i + 1; goto L2;
b_7 L7:
end;
```
Flow of Control

IFDs

- Idea: when two paths out of basic block, implicit flow occurs
	- Because information says *which* path to take
- When paths converge, either:
	- Implicit flow becomes irrelevant; or
	- Implicit flow becomes explicit
- *Immediate forward dominator* of a basic block *b* (written IFD (b)) is the first basic block lying on all paths of execution passing through *b*

IFD Example

• In previous procedure: $-$ IFD(b_1) = b_2 one path $-$ IFD(*b*₂) = *b*₇ *b*₂→*b*₇ or *b*₂→*b*₃→*b*₄→*b*₂→*b*₇ $-$ IFD(b_3) = b_4 one path $-$ IFD(b_A) = b_6 $b_4 \rightarrow b_6$ or $b_4 \rightarrow b_5 \rightarrow b_6$ $-$ IFD(b_5) = b_4 one path $-$ IFD(b_6) = b_2 one path

Requirements

- B_i is the set of basic blocks along an execution path from b_i to $\mathrm{IFD}(b_i)$
	- Analogous to statements in conditional statement
- x_{i1}, \ldots, x_{in} variables in expression selecting which execution path containing basic blocks in B_i used
	- Analogous to conditional expression
- Requirements for being secure:
	- All statements in each basic blocks are secure
	- $-$ *lub*($x_{i1}, ..., x_{in} \le$ glb{ γ | γ target of assignment in B_i }

Example of Requirements

• Within each basic block:

 b_1 : *Low* $\leq i$ b_2 : *Low* $\leq j$ b_6 : lub{ *Low*, i } $\leq i$ b_5 : $lub(x[i][j], i, j) \leq y[j][i]; lub(Low, j) \leq j$

- $-$ Combining, $lub(\underline{x[i][j]}, \underline{i}, \underline{j}) \leq \underline{y[j][i]}$
- From declarations, true when $lub(x, i) \le y$
- $B_2 = \{b_3, b_4, b_5, b_6\}$
	- $-$ Assignments to *i*, *j*, $y[j][i]$; conditional is $i \le 10$
	- Requires *i* ≤ *glb*(*i*, *j*, *y*[*j*][*i*])
	- $-$ From declarations, true when $i \leq y$

Example (continued)

- $B_4 = \{ b_5 \}$
	- $-$ Assignments to *j*, $y[j][i]$; conditional is $j \le 10$
	- $-$ Requires $j \leq glb(j, y[j][i])$
	- From declarations, means *i* ≤ *y*
- Result:
	- $-$ Combine *lub* $(x, i) \le y$; $i \le y$; $i \le y$
	- Requirement is $lub(x, i) \leq y$

Procedure Calls

tm(*a*, *b*);

From previous slides, to be secure, $lub(x, i) \le y$ must hold

- In call, *x* corresponds to *a*, *y* to *b*
- Means that $lub(a, i) \leq b$, or $a \leq b$

More generally:

proc $pn(i_1, \ldots, i_m: \text{int}; \text{var } o_1, \ldots, o_n: \text{int})$ begin *S* end;

- *S* must be secure
- For all *j* and *k*, if $\underline{i_j} \leq \underline{o_k}$, then $\underline{x_j} \leq \underline{y_k}$
- For all *j* and *k*, if $\omega_i \leq \omega_k$, then $y_i \leq y_k$

Exceptions

```
proc copy(x: int class { x }; var y: int class Low)
var sum: int class { x };
     z: int class Low;
begin
      y := z := sum := 0;
     while z = 0 do begin
           sum := sum + x;
           y := y + 1;
      end
```
end

Exceptions (*cont*)

- When sum overflows, integer overflow trap
	- Procedure exits
	- Value of *x* is MAXINT/*y*
	- Info flows from *y* to *x*, but $x \leq y$ never checked
- Need to handle exceptions explicitly
	- Idea: on integer overflow, terminate loop
		- **on** integer_overflow_exception *sum* **do** *z* := 1;
	- Now info flows from *sum* to *z*, meaning $\frac{sum}{2}$
	- This is false (*sum* = { x } dominates $z = Low$)

May 10, 2017 *ECS 235B Spring Quarter 2017* Slide #60

Infinite Loops

```
proc copy(x: int 0..1 class { x };
           var y: int 0..1 class Low)
```

```
begin
```

```
 y := 0;
 while x = 0 do
       (* nothing *);
 y := 1;
```
end

- If $x = 0$ initially, infinite loop
- If *x* = 1 initially, terminates with *y* set to 1
- No explicit flows, but implicit flow from *x* to *y*

Semaphores

Use these constructs: wait(*x*): **if** $x = 0$ then *block until* $x > 0$; $x := x - 1$; $signal(x): x := x + 1;$

– *x* is semaphore, a shared variable

– Both executed atomically

Consider statement

wait(*sem*); *x* := *x* + 1;

• Implicit flow from *sem* to *x*

– Certification must take this into account!

Flow Requirements

- Semaphores in *signal* irrelevant – Don't affect information flow in that process
- Statement *S* is a wait
	- *shared*(*S*): set of shared variables read
		- Idea: information flows out of variables in shared(*S*)
	- *fglb*(*S*): *glb* of assignment targets *following S*
	- So, requirement is *shared*(*S*) ≤ *fglb*(*S*)
- begin S_1 ; $\ldots S_n$ end
	- $-$ All S_i must be secure
	- $-$ For all *i*, *shared*(*S*_{*i*})</sub> \leq *fglb*(*S*_{*i*})

Example

begin

 $x := y + z;$ (* S_1 *) wait(*sem*); (* S_2 *) *a* := *b* * *c* – *x*; (* S_3 *)

end

- Requirements:
	- $-$ *lub*(*y*, *z*) \leq *x*
	- $-$ *lub*(*b*, *c*, *x*) \leq *a*
	- $-$ *sem* $\leq a$
		- Because $fglb(S_2) = \underline{a}$ and $shared(S_2) = sem$

Concurrent Loops

- Similar, but wait in loop affects *all* statements in loop
	- Because if flow of control loops, statements in loop before wait may be executed after wait
- Requirements
	- Loop terminates
	- $-$ All statements S_1, \ldots, S_n in loop secure
	- $-$ *lub*($\underline{shared}(S_1), \ldots, \underline{shared}(S_n) \leq \underline{glob}(t_1, \ldots, t_m)$
		- Where t_1, \ldots, t_m are variables assigned to in loop

May 10, 2017 *ECS 235B Spring Quarter 2017* Slide #65

Loop Example

while *i* < *n* **do begin** $a[i] := item;$ (* S_1 *) wait(*sem*); (* S_2 *) $i := i + 1;$ (* S_3 *)

end

- Conditions for this to be secure:
	- Loop terminates, so this condition met
	- $-S_1$ secure if $lub(i, item) \leq a[i]$
	- $-S_2$ secure if *sem* $\leq i$ and *sem* $\leq a[i]$
	- S_3 trivially secure

cobegin/*coend*

cobegin

 $x := y + z;$ (* S_1 *) $a := b * c - y;$ (* S_2 *)

coend

- No information flow among statements
	- $-$ For S_1 , *lub*($\underline{y}, \underline{z}$) $\leq \underline{x}$
	- $-$ For S_2 , *lub*(*b*, *c*, *y*) $\le a$
- Security requirement is both must hold
	- So this is secure if *lub*(*y*, *z*) ≤ *x* ∧ *lub*(*b*, *c*, *y*) ≤ *a*

Soundness

- Above exposition intuitive
- Can be made rigorous:
	- Express flows as types
	- Equate certification to correct use of types
	- Checking for valid information flows same as checking types conform to semantics imposed by security policy

Execution-Based Mechanisms

- Detect and stop flows of information that violate policy
	- Done at run time, not compile time
- Obvious approach: check explicit flows
	- $-$ Problem: assume for security, $x \le y$

if $x = 1$ then $y := a$;

– When *x* ≠ 1, <u>*x*</u> = High, *y* = Low, \underline{a} = Low, appears okay —but implicit flow violates condition!

Fenton's Data Mark Machine

- Each variable has an associated class
- Program counter (PC) has one too
- Idea: branches are assignments to PC, so you can treat implicit flows as explicit flows
- Stack-based machine, so everything done in terms of pushing onto and popping from a program stack

Instruction Description

- *skip* means instruction not executed
- $push(x, x)$ means push variable *x* and its security class *x* onto program stack
- *pop*(*x*, *x*) means pop top value and security class from program stack, assign them to variable *x* and its security class *x* respectively

Instructions

• $x := x + 1$ (increment)

– Same as:

if *PC* ≤ *x* then *x* := *x* + 1 else *skip*

• if $x = 0$ then goto *n* else $x := x - 1$ (branch and save PC on stack)

– Same as:

```
if x = 0 then begin
      push(PC, PC); PC := lub{PC, x}; PC := n;
     end else if PC \leq x then
      x := x - 1else
      skip;
May 10, 2017 ECS 235B Spring Quarter 2017 Slide #72
```
More Instructions

- if' $x = 0$ then goto *n* else $x := x 1$ (branch without saving PC on stack)
	- Same as:

if $x = 0$ then if $x \leq PC$ then *PC* := *n* else *skip* else

if $PC \leq x$ then $x := x - 1$ else skip

More Instructions

- return (go to just after last *if*)
	- Same as:
		- pop(*PC*, *PC*);
- halt (stop)
	- Same as:
		- if *program stack empty* then *halt*
	- Note stack empty to prevent user obtaining information from it after halting

Example Program

- **if** *x* = 0 **then goto** 4 **else** *x* := *x* 1 **if** *z* = 0 **then goto** 6 **else** *z* := *z* - 1 **halt** *z* := *z* + 1 **return**
- *y* := *y* + 1

return

- Initially $x = 0$ or $x = 1$, $y = 0$, $z = 0$
- Program copies value of *x* to *y*

Example Execution

Handling Errors

- Ignore statement that causes error, but continue execution
	- If aborted or a visible exception taken, user could deduce information
	- Means errors cannot be reported unless user has clearance at least equal to that of the information causing the error

Variable Classes

- Up to now, classes fixed
	- Check relationships on assignment, etc.
- Consider variable classes
	- Fenton's Data Mark Machine does this for *PC*
	- On assignment of form $y := f(x_1, ..., x_n), y$ changed to $lub(\underline{x}_1, ..., \underline{x}_n)$
	- Need to consider implicit flows, also

Example Program

```
// Copy value from x to y; initially, x is 0 or 1
proc copy(x: int class { x }; var y: int class { y })
var z: int class variable { Low };
begin
  y := 0;
  z := 0;
  if x = 0 then z := 1;
  if z = 0 then y := 1;
end;
```
- *z* changes when *z* assigned to
- Assume $y < x$

Analysis of Example

- $x = 0$
	- $z := 0$ sets *z* to Low
	- $-$ if $x = 0$ then $z := 1$ sets z to 1 and z to x
	- $-$ So on exit, $y = 0$
- $x = 1$
	- $z := 0$ sets *z* to Low
	- if *z* = 0 then *y* := 1 sets *y* to 1 and checks that lab {Low, *z*} \leq *y*
	- $-$ So on exit, $y = 1$
- Information flowed from *x* to *y* even though *y* < *x*

May 10, 2017 *ECS 235B Spring Quarter 2017* Slide #80

Handling This (1)

• Fenton's Data Mark Machine detects implicit flows violating certification rules

Handling This (2)

- Raise class of variables assigned to in conditionals even when branch not taken
- Also, verify information flow requirements even when branch not taken
- Example:
	- $-$ In **if** $x = 0$ **then** $z := 1, z$ raised to *x* whether or not $x = 0$
	- Certification check in next statement, that $z \leq y$, fails, as $z = x$ from previous statement, and $y \le x$

May 10, 2017 *ECS 235B Spring Quarter 2017* Slide #82

Handling This (3)

- Change classes only when explicit flows occur, but *all* flows (implicit as well as explicit) force certification checks
- Example
	- When $x = 0$, first "if" sets *z* to Low then checks $x \leq z$
	- When $x = 1$, first "if" checks that $x \le z$
	- This holds if and only if *x* = Low
		- Not possible as $y < x =$ Low and there is no such class