
May 10: Information Flow

•  Entropy
•  Entropy and information flow
•  Non-lattice information flow policies
•  Static (compile-time) mechanisms
•  Dynamic (run-time) mechanisms

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #1

Information Flow

•  How do we define and measure it?
– Entropy

•  So, let’s review entropy

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #2

Entropy

•  Uncertainty of a value, as measured in bits
•  Example: X value of fair coin toss; X could

be heads or tails, so 1 bit of uncertainty
– Therefore entropy of X is H(X) = 1

•  Formal definition: random variable X,
values x1, …, xn; so Σi p(X = xi) = 1
H(X) = –Σi p(X = xi) lg p(X = xi)

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #3

Heads or Tails?

•  H(X) = – p(X = heads) lg p(X = heads)
– p(X = tails) lg p(X = tails)

 = – (1/2) lg (1/2) – (1/2) lg (1/2)
 = – (1/2) (–1) – (1/2) (–1) = 1

•  Confirms previous intuitive result

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #4

n-Sided Fair Die

H(X) = –Σi p(X = xi) lg p(X = xi)
As p(X = xi) = 1/n, this becomes
H(X) = –Σi (1/n) lg (1/ n) = –n(1/n) (–lg n)
so
H(X) = lg n
which is the number of bits in n, as expected

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #5

Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul
W represents the winner. What is its entropy?

–  w1 = Ann, w2 = Pam, w3 = Paul
–  p(W= w1) = p(W= w2) = 2/5, p(W= w3) = 1/5

•  So H(W) = –Σi p(W = wi) lg p(W = wi)
= – (2/5) lg (2/5) – (2/5) lg (2/5) – (1/5) lg (1/5)
= – (4/5) + lg 5 ≈ 1.52

•  If all equally likely to win, H(W) = lg 3 = 1.58

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #6

Joint Entropy

•  X takes values from { x1, …, xn }
– Σi p(X = xi) = 1

•  Y takes values from { y1, …, ym }
– Σi p(Y = yi) = 1

•  Joint entropy of X, Y is:
– H(X, Y) = –Σj Σi p(X=xi, Y=yj) lg p(X=xi, Y=yj)

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #7

Example

X: roll of fair die, Y: flip of coin
p(X=1, Y=heads) = p(X=1) p(Y=heads) = 1/12

– As X and Y are independent
H(X, Y) = –Σj Σi p(X=xi, Y=yj) lg p(X=xi, Y=yj)
 = –2 [6 [(1/12) lg (1/12)]] = lg 12

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #8

Conditional Entropy

•  X takes values from { x1, …, xn }
–  Σi p(X=xi) = 1

•  Y takes values from { y1, …, ym }
–  Σi p(Y=yi) = 1

•  Conditional entropy of X given Y=yj is:
–  H(X | Y=yj) = –Σi p(X=xi | Y=yj) lg p(X=xi | Y=yj)

•  Conditional entropy of X given Y is:
–  H(X | Y) = –Σj p(Y=yj) Σi p(X=xi | Y=yj) lg p(X=xi | Y=yj)

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #9

Example
•  X roll of red die, Y sum of red, blue roll
•  Note p(X=1 | Y=2) = 1, p(X=i | Y=2) = 0 for i ≠ 1

–  If the sum of the rolls is 2, both dice were 1
•  H(X|Y=2) = –Σi p(X=xi | Y=2) lg p(X=xi | Y=2) = 0
•  Note p(X=i , Y=7) = 1/6

–  If the sum of the rolls is 7, the red die can be any of 1,
…, 6 and the blue die must be 7–roll of red die

•  H(X|Y=7) = –Σi p(X=xi | Y=7) lg p(X=xi | Y=7)
 = –6 (1/6) lg (1/6) = lg 6

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #10

Perfect Secrecy

•  Cryptography: knowing the ciphertext does
not decrease the uncertainty of the plaintext

•  M = { m1, …, mn } set of messages
•  C = { c1, …, cn } set of messages
•  Cipher ci = E(mi) achieves perfect secrecy if

H(M | C) = H(M)

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #11

Entropy and Information Flow

•  Idea: info flows from x to y as a result of a
sequence of commands c if you can deduce
information about x before c from the value
in y after c

•  Formally:
–  s time before execution of c, t time after
– H(xs | yt) < H(xs | ys)
–  If no y at time s, then H(xs | yt) < H(xs)

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #12

Example 1

•  Command is x := y + z; where:
–  0 ≤ y ≤ 7, equal probability
–  z = 1 with prob. 1/2, z = 2 or 3 with prob. 1/4 each

•  s state before command executed; t, after; so
–  H(ys) = H(yt) = –8(1/8) lg (1/8) = 3
–  H(zs) = H(zt) = –(1/2) lg (1/2) –2(1/4) lg (1/4) = 1.5

•  If you know xt, ys can have at most 3 values, so
H(ys | xt) = –3(1/3) lg (1/3) = lg 3

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #13

Example 2
•  Command is

–  if x = 1 then y := 0 else y := 1;
where:
–  x, y equally likely to be either 0 or 1

•  H(xs) = 1 as x can be either 0 or 1 with equal
probability

•  H(xs | yt) = 0 as if yt = 1 then xs = 0 and vice versa
–  Thus, H(xs | yt) = 0 < 1 = H(xs)

•  So information flowed from x to y

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #14

Implicit Flow of Information

•  Information flows from x to y without an
explicit assignment of the form y := f(x)
–  f(x) an arithmetic expression with variable x

•  Example from previous slide:
–  if x = 1 then y := 0
else y := 1;

•  So must look for implicit flows of
information to analyze program

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #15

Notation

•  x means class of x
–  In Bell-LaPadula based system, same as “label

of security compartment to which x belongs”
•  x ≤ y means “information can flow from an

element in class of x to an element in class
of y”
– Or, “information with a label placing it in class

x can flow into class y”
May 10, 2017 ECS 235B Spring Quarter 2017 Slide #16

Information Flow Policies

Information flow policies are usually:
•  reflexive

– So information can flow freely among members
of a single class

•  transitive
– So if information can flow from class 1 to class

2, and from class 2 to class 3, then information
can flow from class 1 to class 3

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #17

Non-Transitive Policies

•  Betty is a confident of Anne
•  Cathy is a confident of Betty

– With transitivity, information flows from Anne
to Betty to Cathy

•  Anne confides to Betty she is having an
affair with Cathy’s spouse
– Transitivity undesirable in this case, probably

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #18

Transitive Non-Lattice Policies
•  2 faculty members co-PIs on a grant

–  Equal authority; neither can overrule the other
•  Grad students report to faculty members
•  Undergrads report to grad students
•  Information flow relation is:

–  Reflexive and transitive
•  But some elements (people) have no “least upper

bound” element
–  What is it for the faculty members?

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #19

Confidentiality Policy Model
•  Lattice model fails in previous 2 cases
•  Generalize: policy I = (SCI, ≤I, joinI):

–  SCI set of security classes
–  ≤I ordering relation on elements of SCI
–  joinI function to combine two elements of SCI

•  Example: Bell-LaPadula Model
–  SCI set of security compartments
–  ≤I ordering relation dom
–  joinI function lub

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #20

Confinement Flow Model

•  (I, O, confine, →)
–  I = (SCI, ≤I, joinI)
–  O set of entities
–  →: O×O with (a, b) ∈ → (written a → b) iff

information can flow from a to b
–  for a ∈ O, confine(a) = (aL, aU) ∈ SCI×SCI with aL ≤I aU

•  Interpretation: for a ∈ O, if x ≤I aU, info can flow from x to a,
and if aL ≤I x, info can flow from a to x

•  So aL lowest classification of info allowed to flow out of a, and
aU highest classification of info allowed to flow into a

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #21

Assumptions, etc.

•  Assumes: object can change security classes
– So, variable can take on security class of its

data
•  Object x has security class x currently
•  Note transitivity not required
•  If information can flow from a to b, then b

dominates a under ordering of policy I:
(∀ a, b ∈ O)[a → b ⇒ aL ≤I bU]

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #22

Example 1
•  SCI = { U, C, S, TS }, with U ≤I C, C ≤I S, and

S ≤I TS
•  a, b, c ∈ O

–  confine(a) = [C, C]
–  confine(b) = [S, S]
–  confine(c) = [TS, TS]

•  Secure information flows: a → b, a → c, b → c
–  As aL ≤I bU, aL ≤I cU, bL ≤I cU
–  Transitivity holds

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #23

Example 2
•  SCI, ≤I as in Example 1
•  x, y, z ∈ O

–  confine(x) = [C, C]
–  confine(y) = [S, S]
–  confine(z) = [C, TS]

•  Secure information flows: x → y, x → z, y → z,
z → x, z → y
–  As xL ≤I yU, xL ≤I zU, yL ≤I zU, zL ≤I xU, zL ≤I yU
–  Transitivity does not hold

•  y → z and z → x, but y → x is false, because yL ≤I xU is false

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #24

Transitive Non-Lattice Policies

•  Q = (SQ, ≤Q) is a quasi-ordered set when ≤Q
is transitive and reflexive over SQ

•  How to handle information flow?
– Define a partially ordered set containing quasi-

ordered set
– Add least upper bound, greatest lower bound to

partially ordered set
–  It’s a lattice, so apply lattice rules!

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #25

In Detail …
•  ∀x ∈ SQ: let f(x) = { y | y ∈ SQ ∧ y ≤Q x }

–  Define SQP = { f(x) | x ∈ SQ }
–  Define ≤QP = { (x, y) | x, y ∈ SQ ∧ x ⊆ y }

•  SQP partially ordered set under ≤QP
•  f preserves order, so y ≤Q x iff f(x) ≤QP f(y)

•  Add upper, lower bounds
–  SQPʹ = SQP ∪ { SQ, ∅ }
–  Upper bound ub(x, y) = { z | z ∈ SQP ∧ x ⊆ z ∧ y ⊆ z }
–  Least upper bound lub(x, y) = ∩ub(x, y)

•  Lower bound, greatest lower bound defined analogously

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #26

And the Policy Is …

•  Now (SQPʹ, ≤QP) is lattice
•  Information flow policy on quasi-ordered

set emulates that of this lattice!

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #27

Non-Transitive Flow Policies

•  Government agency information flow policy
(on next slide)

•  Entities public relations officers PRO,
analysts A, spymasters S
–  confine(PRO) = { public, analysis }
–  confine(A) = { analysis, top-level }
–  confine(S) = { covert, top-level }

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #28

Information Flow
•  By confinement flow

model:
–  PRO ≤ A, A ≤ PRO
–  PRO ≤ S
–  A ≤ S, S ≤ A

•  Data cannot flow to
public relations
officers; not transitive
–  S ≤ A, A ≤ PRO
–  S ≤ PRO is false

top-level

analysis covert

public

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #29

Transforming Into Lattice

•  Rough idea: apply a special mapping to generate a
subset of the power set of the set of classes
–  Done so this set is partially ordered
–  Means it can be transformed into a lattice

•  Can show this mapping preserves ordering relation
–  So it preserves non-orderings and non-transitivity of

elements corresponding to those of original set

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #30

Dual Mapping

•  R = (SCR, ≤R, joinR) reflexive info flow policy
•  P = (SP, ≤P) ordered set

–  Define dual mapping functions lR, hR: SCR→SP
•  lR(x) = { x }
•  hR(x) = { y | y ∈ SCR ∧ y ≤R x }

–  SP contains subsets of SCR; ≤P subset relation
–  Dual mapping function order preserving iff

(∀a, b ∈ SCR)[a ≤R b ⇔ lR(a) ≤P hR(b)]

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #31

Theorem

Dual mapping from reflexive info flow policy
R to ordered set P order-preserving
Proof sketch: all notation as before
(⇒) Let a ≤R b. Then a ∈ lR(a), a ∈ hR(b), so
lR(a) ⊆ hR(b), or lR(a) ≤P hR(b)
(⇐) Let lR(a) ≤P hR(b). Then lR(a) ⊆ hR(b).
But lR(a) = { a }, so a ∈ hR(b), giving a ≤R b

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #32

Info Flow Requirements

•  Interpretation: let confine(x) = { xL, xU },
consider class y
–  Information can flow from x to element of y iff

xL ≤R y, or lR(xL) ⊆ hR(y)
–  Information can flow from element of y to x iff

y ≤R xU, or lR(y) ⊆ hR(xU)

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #33

Revisit Government Example

•  Information flow policy is R
•  Flow relationships among classes are:

public ≤R public
public ≤R analysis analysis ≤R analysis
public ≤R covert covert ≤R covert
public ≤R top-level covert ≤R top-level
analysis ≤R top-level top-level ≤R top-level

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #34

Dual Mapping of R

•  Elements lR, hR:
lR(public) = { public }
hR(public = { public }
lR(analysis) = { analysis }
hR(analysis) = { public, analysis }
lR(covert) = { covert }
hR(covert) = { public, covert }
lR(top-level) = { top-level }
hR(top-level) = { public, analysis, covert, top-level }

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #35

confine

•  Let p be entity of type PRO, a of type A, s
of type S

•  In terms of P (not R), we get:
–  confine(p) = [{ public }, { public, analysis }]
–  confine(a) = [{ analysis },

{ public, analysis, covert, top-level }]
–  confine(s) = [{ covert },

{ public, analysis, covert, top-level }]

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #36

And the Flow Relations Are …

•  p → a as lR(p) ⊆ hR(a)
–  lR(p) = { public }
–  hR(a) = { public, analysis, covert, top-level }

•  Similarly: a → p, p → s, a → s, s → a
•  But s → p is false as lR(s) ⊄ hR(p)

–  lR(s) = { covert }
–  hR(p) = { public, analysis }

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #37

Analysis

•  (SP, ≤P) is a lattice, so it can be analyzed
like a lattice policy

•  Dual mapping preserves ordering, hence
non-ordering and non-transitivity, of
original policy
– So results of analysis of (SP, ≤P) can be mapped

back into (SCR, ≤R, joinR)

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #38

Compiler-Based Mechanisms
•  Detect unauthorized information flows in a

program during compilation
•  Analysis not precise, but secure

–  If a flow could violate policy (but may not), it is
unauthorized

–  No unauthorized path along which information could
flow remains undetected

•  Set of statements certified with respect to an
information flow policy if the flows in the set of
statements do not violate that policy

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #39

Example

if x = 1 then y := a;
else y := b;

•  Info flows from x and a to y, or from x and b
to y

•  Certified only if x ≤ y and a ≤ y and b ≤ y
– Note flows for both branches must be true

unless compiler can determine that one branch
will never be taken

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #40

Declarations

•  Notation:
x: int class { A, B }

 means x is an integer variable with security
class at least lub{ A, B }, so lub{ A, B } ≤ x

•  Distinguished classes Low, High
– Constants are always Low

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #41

Input Parameters

•  Parameters through which data passed into
procedure

•  Class of parameter is class of actual
argument

ip: type class { ip }

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #42

Output Parameters

•  Parameters through which data passed out of
procedure
–  If data passed in, called “input/output parameter”

•  As information can flow from input parameters to
output parameters, class must include this:
op: type class { r1, ..., rn }

where ri is class of ith input or input/output
argument

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #43

Example

proc sum(x: int class { A };
var out: int class { A, B });

begin
out := out + x;

end;

•  Require x ≤ out and out ≤ out

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #44

Array Elements

•  Information flowing out:
... := a[i]

Value of i, a[i] both affect result, so class is
lub{ a[i], i }

•  Information flowing in:
a[i] := ...

•  Only value of a[i] affected, so class is a[i]

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #45

Assignment Statements

x := y + z;

•  Information flows from y, z to x, so this
requires lub(y, z) ≤ x

More generally:
y := f(x1, ..., xn)

•  the relation lub(x1, …, xn) ≤ y must hold

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #46

Compound Statements

x := y + z; a := b * c – x;

•  First statement: lub(y, z) ≤ x
•  Second statement: lub(b, c, x) ≤ a
•  So, both must hold (i.e., be secure)
More generally:

S1; ...; Sn;

•  Each individual Si must be secure
May 10, 2017 ECS 235B Spring Quarter 2017 Slide #47

Conditional Statements
if x + y < z then a := b else d := b * c – x;

•  The statement executed reveals information about
x, y, z, so lub(x, y, z) ≤ glb(a, d)

More generally:
if f(x1, ..., xn) then S1 else S2; end

•  S1, S2 must be secure
•  lub(x1, …, xn) ≤
 glb(y | y target of assignment in S1, S2)

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #48

Iterative Statements
while i < n do begin

a[i] := b[i]; i := i + 1; end

•  Same ideas as for “if”, but must terminate
More generally:

while f(x1, ..., xn) do S;

•  Loop must terminate;
•  S must be secure
•  lub(x1, …, xn) ≤
 glb(y | y target of assignment in S)
May 10, 2017 ECS 235B Spring Quarter 2017 Slide #49

Goto Statements

•  No assignments
– Hence no explicit flows

•  Need to detect implicit flows
•  Basic block is sequence of statements that

have one entry point and one exit point
– Control in block always flows from entry point

to exit point

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #50

Example Program
proc tm(x: array[1..10][1..10] of int class {x};
 var y: array[1..10][1..10] of int class {y});
var i, j: int {i};
begin
b1 i := 1;
b2 L2: if i > 10 then goto L7;
b3 j := 1;
b4 L4: if j > 10 then goto L6;
b5 y[j][i] := x[i][j]; j := j + 1; goto L4;
b6 L6: i := i + 1; goto L2;
b7 L7:
end;

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #51

Flow of Control

b1 b2 b7

b6
b3

b4

b5

i > n

i ≤ n

j > n

j ≤ n

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #52

IFDs
•  Idea: when two paths out of basic block, implicit

flow occurs
–  Because information says which path to take

•  When paths converge, either:
–  Implicit flow becomes irrelevant; or
–  Implicit flow becomes explicit

•  Immediate forward dominator of a basic block b
(written IFD(b)) is the first basic block lying on all
paths of execution passing through b

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #53

IFD Example

•  In previous procedure:
–  IFD(b1) = b2 one path
–  IFD(b2) = b7 b2→b7 or b2→b3→b6→b2→b7

–  IFD(b3) = b4 one path
–  IFD(b4) = b6 b4→b6 or b4→b5→b6

–  IFD(b5) = b4 one path
–  IFD(b6) = b2 one path

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #54

Requirements
•  Bi is the set of basic blocks along an execution

path from bi to IFD(bi)
–  Analogous to statements in conditional statement

•  xi1, …, xin variables in expression selecting which
execution path containing basic blocks in Bi used
–  Analogous to conditional expression

•  Requirements for being secure:
–  All statements in each basic blocks are secure
–  lub(xi1, …, xin) ≤ glb{ y | y target of assignment in Bi }

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #55

Example of Requirements

•  Within each basic block:
b1: Low ≤ i b3: Low ≤ j b6: lub{ Low, i } ≤ i
b5: lub(x[i][j], i, j) ≤ y[j][i]; lub(Low, j) ≤ j
–  Combining, lub(x[i][j], i, j) ≤ y[j][i]
–  From declarations, true when lub(x, i) ≤ y

•  B2 = {b3, b4, b5, b6}
–  Assignments to i, j, y[j][i]; conditional is i ≤ 10
–  Requires i ≤ glb(i, j, y[j][i])
–  From declarations, true when i ≤ y

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #56

Example (continued)

•  B4 = { b5 }
– Assignments to j, y[j][i]; conditional is j ≤ 10
– Requires j ≤ glb(j, y[j][i])
– From declarations, means i ≤ y

•  Result:
– Combine lub(x, i) ≤ y; i ≤ y; i ≤ y
– Requirement is lub(x, i) ≤ y

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #57

Procedure Calls
tm(a, b);

From previous slides, to be secure, lub(x, i) ≤ y must hold
•  In call, x corresponds to a, y to b
•  Means that lub(a, i) ≤ b, or a ≤ b
More generally:
proc pn(i1, ..., im: int; var o1, ..., on: int)
begin S end;

•  S must be secure
•  For all j and k, if ij ≤ ok, then xj ≤ yk
•  For all j and k, if oj ≤ ok, then yj ≤ yk

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #58

Exceptions
proc copy(x: int class { x };
 var y: int class Low)
var sum: int class { x };
 z: int class Low;
begin
 y := z := sum := 0;
 while z = 0 do begin
 sum := sum + x;
 y := y + 1;
 end
end

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #59

Exceptions (cont)

•  When sum overflows, integer overflow trap
–  Procedure exits
–  Value of x is MAXINT/y
–  Info flows from y to x, but x ≤ y never checked

•  Need to handle exceptions explicitly
–  Idea: on integer overflow, terminate loop
on integer_overflow_exception sum do z := 1;

–  Now info flows from sum to z, meaning sum ≤ z
–  This is false (sum = { x } dominates z = Low)

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #60

Infinite Loops
proc copy(x: int 0..1 class { x };
 var y: int 0..1 class Low)
begin
 y := 0;
 while x = 0 do
 (* nothing *);
 y := 1;
end
•  If x = 0 initially, infinite loop
•  If x = 1 initially, terminates with y set to 1
•  No explicit flows, but implicit flow from x to y

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #61

Semaphores

Use these constructs:
wait(x): if x = 0 then block until x > 0; x := x – 1;
signal(x): x := x + 1;

–  x is semaphore, a shared variable
– Both executed atomically

Consider statement
wait(sem); x := x + 1;

•  Implicit flow from sem to x
– Certification must take this into account!

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #62

Flow Requirements
•  Semaphores in signal irrelevant

–  Don’t affect information flow in that process
•  Statement S is a wait

–  shared(S): set of shared variables read
•  Idea: information flows out of variables in shared(S)

–  fglb(S): glb of assignment targets following S
–  So, requirement is shared(S) ≤ fglb(S)

•  begin S1; . . . Sn end
–  All Si must be secure
–  For all i, shared(Si) ≤ fglb(Si)

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #63

Example
begin
 x := y + z; (* S1 *)
 wait(sem); (* S2 *)
 a := b * c – x; (* S3 *)
end

•  Requirements:
–  lub(y, z) ≤ x
–  lub(b, c, x) ≤ a
–  sem ≤ a

•  Because fglb(S2) = a and shared(S2) = sem

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #64

Concurrent Loops

•  Similar, but wait in loop affects all statements in
loop
–  Because if flow of control loops, statements in loop

before wait may be executed after wait
•  Requirements

–  Loop terminates
–  All statements S1, …, Sn in loop secure
–  lub(shared(S1), …, shared(Sn) } ≤ glb(t1, …, tm)

•  Where t1, …, tm are variables assigned to in loop

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #65

Loop Example
while i < n do begin
 a[i] := item; (* S1 *)
 wait(sem); (* S2 *)
 i := i + 1; (* S3 *)
end

•  Conditions for this to be secure:
–  Loop terminates, so this condition met
–  S1 secure if lub(i, item) ≤ a[i]
–  S2 secure if sem ≤ i and sem ≤ a[i]
–  S3 trivially secure

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #66

cobegin/coend
cobegin
 x := y + z; (* S1 *)
 a := b * c – y; (* S2 *)
coend
•  No information flow among statements

–  For S1, lub(y, z) ≤ x
–  For S2, lub(b, c, y) ≤ a

•  Security requirement is both must hold
–  So this is secure if lub(y, z) ≤ x ∧ lub(b, c, y) ≤ a

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #67

Soundness

•  Above exposition intuitive
•  Can be made rigorous:

– Express flows as types
– Equate certification to correct use of types
– Checking for valid information flows same as

checking types conform to semantics imposed
by security policy

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #68

Execution-Based Mechanisms

•  Detect and stop flows of information that violate
policy
–  Done at run time, not compile time

•  Obvious approach: check explicit flows
–  Problem: assume for security, x ≤ y

if x = 1 then y := a;
–  When x ≠ 1, x = High, y = Low, a = Low, appears okay

—but implicit flow violates condition!

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #69

Fenton’s Data Mark Machine

•  Each variable has an associated class
•  Program counter (PC) has one too
•  Idea: branches are assignments to PC, so

you can treat implicit flows as explicit flows
•  Stack-based machine, so everything done in

terms of pushing onto and popping from a
program stack

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #70

Instruction Description

•  skip means instruction not executed
•  push(x, x) means push variable x and its

security class x onto program stack
•  pop(x, x) means pop top value and security

class from program stack, assign them to
variable x and its security class x
respectively

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #71

Instructions
•  x := x + 1 (increment)

–  Same as:
if PC ≤ x then x := x + 1 else skip

•  if x = 0 then goto n else x := x – 1 (branch
and save PC on stack)
–  Same as:
if x = 0 then begin
push(PC, PC); PC := lub{PC, x}; PC := n;

 end else if PC ≤ x then
x := x - 1

else
skip;

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #72

More Instructions
•  if’ x = 0 then goto n else x := x – 1

(branch without saving PC on stack)
–  Same as:
if x = 0 then
if x ≤ PC then PC := n else skip
else
if PC ≤ x then x := x - 1 else skip

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #73

More Instructions

•  return (go to just after last if)
–  Same as:
pop(PC, PC);

•  halt (stop)
–  Same as:
if program stack empty then halt

–  Note stack empty to prevent user obtaining information
from it after halting

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #74

Example Program
1  if x = 0 then goto 4 else x := x - 1
2  if z = 0 then goto 6 else z := z - 1
3  halt
4  z := z + 1
5  return
6  y := y + 1
7  return
•  Initially x = 0 or x = 1, y = 0, z = 0
•  Program copies value of x to y

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #75

Example Execution
x y z PC PC stack check
1 0 0 1 Low —
0 0 0 2 Low — Low ≤ x
0 0 0 6 z (3, Low)
0 1 0 7 z (3, Low) PC ≤ y
0 1 0 3 Low —

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #76

Handling Errors

•  Ignore statement that causes error, but
continue execution
–  If aborted or a visible exception taken, user

could deduce information
– Means errors cannot be reported unless user has

clearance at least equal to that of the
information causing the error

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #77

Variable Classes

•  Up to now, classes fixed
– Check relationships on assignment, etc.

•  Consider variable classes
– Fenton’s Data Mark Machine does this for PC
– On assignment of form y := f(x1, …, xn), y

changed to lub(x1, …, xn)
– Need to consider implicit flows, also

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #78

Example Program
// Copy value from x to y; initially, x is 0 or 1
proc copy(x: int class { x };
 var y: int class { y })
var z: int class variable { Low };
begin

y := 0;
z := 0;
if x = 0 then z := 1;
if z = 0 then y := 1;

end;

•  z changes when z assigned to
•  Assume y < x

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #79

Analysis of Example
•  x = 0

–  z := 0 sets z to Low
–  if x = 0 then z := 1 sets z to 1 and z to x
–  So on exit, y = 0

•  x = 1
–  z := 0 sets z to Low
–  if z = 0 then y := 1 sets y to 1 and checks that

lub{Low, z} ≤ y
–  So on exit, y = 1

•  Information flowed from x to y even though y < x
May 10, 2017 ECS 235B Spring Quarter 2017 Slide #80

Handling This (1)

•  Fenton’s Data Mark Machine detects
implicit flows violating certification rules

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #81

Handling This (2)

•  Raise class of variables assigned to in conditionals
even when branch not taken

•  Also, verify information flow requirements even
when branch not taken

•  Example:
–  In if x = 0 then z := 1, z raised to x whether or not

x = 0
–  Certification check in next statement, that z ≤ y, fails, as

z = x from previous statement, and y ≤ x

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #82

Handling This (3)

•  Change classes only when explicit flows occur,
but all flows (implicit as well as explicit) force
certification checks

•  Example
–  When x = 0, first “if” sets z to Low then checks x ≤ z
–  When x = 1, first “if” checks that x ≤ z
–  This holds if and only if x = Low

•  Not possible as y < x = Low and there is no such class

May 10, 2017 ECS 235B Spring Quarter 2017 Slide #83

