
May 12: Information Flow

•  Static (compile-time) mechanisms
•  Dynamic (run-time) mechanisms

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #1

Array Elements

•  Information flowing out:
... := a[i]

Value of i, a[i] both affect result, so class is
lub{ a[i], i }

•  Information flowing in:
a[i] := ...

•  Only value of a[i] affected, so class is a[i]

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #2

Assignment Statements

x := y + z;

•  Information flows from y, z to x, so this
requires lub(y, z) ≤ x

More generally:
y := f(x1, ..., xn)

•  the relation lub(x1, …, xn) ≤ y must hold

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #3

Compound Statements

x := y + z; a := b * c – x;

•  First statement: lub(y, z) ≤ x
•  Second statement: lub(b, c, x) ≤ a
•  So, both must hold (i.e., be secure)
More generally:

S1; ...; Sn;

•  Each individual Si must be secure
May 12, 2017 ECS 235B Spring Quarter 2017 Slide #4

Conditional Statements
if x + y < z then a := b else d := b * c – x;

•  The statement executed reveals information about
x, y, z, so lub(x, y, z) ≤ glb(a, d)

More generally:
if f(x1, ..., xn) then S1 else S2; end

•  S1, S2 must be secure
•  lub(x1, …, xn) ≤
 glb(y | y target of assignment in S1, S2)

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #5

Iterative Statements
while i < n do begin

a[i] := b[i]; i := i + 1; end

•  Same ideas as for “if”, but must terminate
More generally:

while f(x1, ..., xn) do S;

•  Loop must terminate;
•  S must be secure
•  lub(x1, …, xn) ≤
 glb(y | y target of assignment in S)
May 12, 2017 ECS 235B Spring Quarter 2017 Slide #6

Goto Statements

•  No assignments
– Hence no explicit flows

•  Need to detect implicit flows
•  Basic block is sequence of statements that

have one entry point and one exit point
– Control in block always flows from entry point

to exit point

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #7

Example Program
proc tm(x: array[1..10][1..10] of int class {x};
 var y: array[1..10][1..10] of int class {y});
var i, j: int {i};
begin
b1 i := 1;
b2 L2: if i > 10 then goto L7;
b3 j := 1;
b4 L4: if j > 10 then goto L6;
b5 y[j][i] := x[i][j]; j := j + 1; goto L4;
b6 L6: i := i + 1; goto L2;
b7 L7:
end;

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #8

Flow of Control

b1 b2 b7

b6
b3

b4

b5

i > n

i ≤ n

j > n

j ≤ n

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #9

IFDs
•  Idea: when two paths out of basic block, implicit

flow occurs
–  Because information says which path to take

•  When paths converge, either:
–  Implicit flow becomes irrelevant; or
–  Implicit flow becomes explicit

•  Immediate forward dominator of a basic block b
(written IFD(b)) is the first basic block lying on all
paths of execution passing through b

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #10

IFD Example

•  In previous procedure:
–  IFD(b1) = b2 one path
–  IFD(b2) = b7 b2→b7 or b2→b3→b6→b2→b7

–  IFD(b3) = b4 one path
–  IFD(b4) = b6 b4→b6 or b4→b5→b6

–  IFD(b5) = b4 one path
–  IFD(b6) = b2 one path

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #11

Requirements
•  Bi is the set of basic blocks along an execution

path from bi to IFD(bi)
–  Analogous to statements in conditional statement

•  xi1, …, xin variables in expression selecting which
execution path containing basic blocks in Bi used
–  Analogous to conditional expression

•  Requirements for being secure:
–  All statements in each basic blocks are secure
–  lub(xi1, …, xin) ≤ glb{ y | y target of assignment in Bi }

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #12

Example of Requirements

•  Within each basic block:
b1: Low ≤ i b3: Low ≤ j b6: lub{ Low, i } ≤ i
b5: lub(x[i][j], i, j) ≤ y[j][i]; lub(Low, j) ≤ j
–  Combining, lub(x[i][j], i, j) ≤ y[j][i]
–  From declarations, true when lub(x, i) ≤ y

•  B2 = {b3, b4, b5, b6}
–  Assignments to i, j, y[j][i]; conditional is i ≤ 10
–  Requires i ≤ glb(i, j, y[j][i])
–  From declarations, true when i ≤ y

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #13

Example (continued)

•  B4 = { b5 }
– Assignments to j, y[j][i]; conditional is j ≤ 10
– Requires j ≤ glb(j, y[j][i])
– From declarations, means i ≤ y

•  Result:
– Combine lub(x, i) ≤ y; i ≤ y; i ≤ y
– Requirement is lub(x, i) ≤ y

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #14

Procedure Calls
tm(a, b);

From previous slides, to be secure, lub(x, i) ≤ y must hold
•  In call, x corresponds to a, y to b
•  Means that lub(a, i) ≤ b, or a ≤ b
More generally:
proc pn(i1, ..., im: int; var o1, ..., on: int)
begin S end;

•  S must be secure
•  For all j and k, if ij ≤ ok, then xj ≤ yk
•  For all j and k, if oj ≤ ok, then yj ≤ yk

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #15

Exceptions
proc copy(x: int class { x };
 var y: int class Low)
var sum: int class { x };
 z: int class Low;
begin
 y := z := sum := 0;
 while z = 0 do begin
 sum := sum + x;
 y := y + 1;
 end
end

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #16

Exceptions (cont)

•  When sum overflows, integer overflow trap
–  Procedure exits
–  Value of x is MAXINT/y
–  Info flows from y to x, but x ≤ y never checked

•  Need to handle exceptions explicitly
–  Idea: on integer overflow, terminate loop
on integer_overflow_exception sum do z := 1;

–  Now info flows from sum to z, meaning sum ≤ z
–  This is false (sum = { x } dominates z = Low)

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #17

Infinite Loops
proc copy(x: int 0..1 class { x };
 var y: int 0..1 class Low)
begin
 y := 0;
 while x = 0 do
 (* nothing *);
 y := 1;
end
•  If x = 0 initially, infinite loop
•  If x = 1 initially, terminates with y set to 1
•  No explicit flows, but implicit flow from x to y

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #18

Semaphores

Use these constructs:
wait(x): if x = 0 then block until x > 0; x := x – 1;
signal(x): x := x + 1;

–  x is semaphore, a shared variable
– Both executed atomically

Consider statement
wait(sem); x := x + 1;

•  Implicit flow from sem to x
– Certification must take this into account!

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #19

Flow Requirements
•  Semaphores in signal irrelevant

–  Don’t affect information flow in that process
•  Statement S is a wait

–  shared(S): set of shared variables read
•  Idea: information flows out of variables in shared(S)

–  fglb(S): glb of assignment targets following S
–  So, requirement is shared(S) ≤ fglb(S)

•  begin S1; . . . Sn end
–  All Si must be secure
–  For all i, shared(Si) ≤ fglb(Si)

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #20

Example
begin
 x := y + z; (* S1 *)
 wait(sem); (* S2 *)
 a := b * c – x; (* S3 *)
end

•  Requirements:
–  lub(y, z) ≤ x
–  lub(b, c, x) ≤ a
–  sem ≤ a

•  Because fglb(S2) = a and shared(S2) = sem

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #21

Concurrent Loops

•  Similar, but wait in loop affects all statements in
loop
–  Because if flow of control loops, statements in loop

before wait may be executed after wait
•  Requirements

–  Loop terminates
–  All statements S1, …, Sn in loop secure
–  lub(shared(S1), …, shared(Sn) } ≤ glb(t1, …, tm)

•  Where t1, …, tm are variables assigned to in loop

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #22

Loop Example
while i < n do begin
 a[i] := item; (* S1 *)
 wait(sem); (* S2 *)
 i := i + 1; (* S3 *)
end

•  Conditions for this to be secure:
–  Loop terminates, so this condition met
–  S1 secure if lub(i, item) ≤ a[i]
–  S2 secure if sem ≤ i and sem ≤ a[i]
–  S3 trivially secure

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #23

cobegin/coend
cobegin
 x := y + z; (* S1 *)
 a := b * c – y; (* S2 *)
coend
•  No information flow among statements

–  For S1, lub(y, z) ≤ x
–  For S2, lub(b, c, y) ≤ a

•  Security requirement is both must hold
–  So this is secure if lub(y, z) ≤ x ∧ lub(b, c, y) ≤ a

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #24

Soundness

•  Above exposition intuitive
•  Can be made rigorous:

– Express flows as types
– Equate certification to correct use of types
– Checking for valid information flows same as

checking types conform to semantics imposed
by security policy

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #25

Execution-Based Mechanisms

•  Detect and stop flows of information that violate
policy
–  Done at run time, not compile time

•  Obvious approach: check explicit flows
–  Problem: assume for security, x ≤ y

if x = 1 then y := a;
–  When x ≠ 1, x = High, y = Low, a = Low, appears okay

—but implicit flow violates condition!

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #26

Fenton’s Data Mark Machine

•  Each variable has an associated class
•  Program counter (PC) has one too
•  Idea: branches are assignments to PC, so

you can treat implicit flows as explicit flows
•  Stack-based machine, so everything done in

terms of pushing onto and popping from a
program stack

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #27

Instruction Description

•  skip means instruction not executed
•  push(x, x) means push variable x and its

security class x onto program stack
•  pop(x, x) means pop top value and security

class from program stack, assign them to
variable x and its security class x
respectively

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #28

Instructions
•  x := x + 1 (increment)

–  Same as:
if PC ≤ x then x := x + 1 else skip

•  if x = 0 then goto n else x := x – 1 (branch
and save PC on stack)
–  Same as:
if x = 0 then begin
push(PC, PC); PC := lub{PC, x}; PC := n;

 end else if PC ≤ x then
x := x - 1

else
skip;

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #29

More Instructions
•  if’ x = 0 then goto n else x := x – 1

(branch without saving PC on stack)
–  Same as:
if x = 0 then
if x ≤ PC then PC := n else skip
else
if PC ≤ x then x := x - 1 else skip

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #30

More Instructions

•  return (go to just after last if)
–  Same as:
pop(PC, PC);

•  halt (stop)
–  Same as:
if program stack empty then halt

–  Note stack empty to prevent user obtaining information
from it after halting

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #31

Example Program
1  if x = 0 then goto 4 else x := x - 1
2  if z = 0 then goto 6 else z := z - 1
3  halt
4  z := z + 1
5  return
6  y := y + 1
7  return
•  Initially x = 0 or x = 1, y = 0, z = 0
•  Program copies value of x to y

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #32

Example Execution
x y z PC PC stack check
1 0 0 1 Low —
0 0 0 2 Low — Low ≤ x
0 0 0 6 z (3, Low)
0 1 0 7 z (3, Low) PC ≤ y
0 1 0 3 Low —

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #33

Handling Errors

•  Ignore statement that causes error, but
continue execution
–  If aborted or a visible exception taken, user

could deduce information
– Means errors cannot be reported unless user has

clearance at least equal to that of the
information causing the error

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #34

Variable Classes

•  Up to now, classes fixed
– Check relationships on assignment, etc.

•  Consider variable classes
– Fenton’s Data Mark Machine does this for PC
– On assignment of form y := f(x1, …, xn), y

changed to lub(x1, …, xn)
– Need to consider implicit flows, also

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #35

Example Program
// Copy value from x to y; initially, x is 0 or 1
proc copy(x: int class { x };
 var y: int class { y })
var z: int class variable { Low };
begin

y := 0;
z := 0;
if x = 0 then z := 1;
if z = 0 then y := 1;

end;

•  z changes when z assigned to
•  Assume y < x

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #36

Analysis of Example
•  x = 0

–  z := 0 sets z to Low
–  if x = 0 then z := 1 sets z to 1 and z to x
–  So on exit, y = 0

•  x = 1
–  z := 0 sets z to Low
–  if z = 0 then y := 1 sets y to 1 and checks that

lub{Low, z} ≤ y
–  So on exit, y = 1

•  Information flowed from x to y even though y < x
May 12, 2017 ECS 235B Spring Quarter 2017 Slide #37

Handling This (1)

•  Fenton’s Data Mark Machine detects
implicit flows violating certification rules

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #38

Handling This (2)

•  Raise class of variables assigned to in conditionals
even when branch not taken

•  Also, verify information flow requirements even
when branch not taken

•  Example:
–  In if x = 0 then z := 1, z raised to x whether or not

x = 0
–  Certification check in next statement, that z ≤ y, fails, as

z = x from previous statement, and y ≤ x

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #39

Handling This (3)

•  Change classes only when explicit flows occur,
but all flows (implicit as well as explicit) force
certification checks

•  Example
–  When x = 0, first “if” sets z to Low then checks x ≤ z
–  When x = 1, first “if” checks that x ≤ z
–  This holds if and only if x = Low

•  Not possible as y < x = Low and there is no such class

May 12, 2017 ECS 235B Spring Quarter 2017 Slide #40

