
May 24: Confinement

•  Confinement, non-VM isolation
– Program modification
– Covert channels

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #1

Compiling

•  Compiler enforces or validates constraints
– Type-safe language enforces them
– Certifying compiler validates them

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #2

Type Safety

•  Java is type-safe
–  Compiler enforces correct usage of types

•  C is not type-safe
–  Need to add semantics to make it safe

•  Example: CCured imposes type safety on C
–  Adds code to C programs so pointers point to 0 or

objects of right type
–  Handles dynamic pointers, too
–  Impacts performance

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #3

Certifying Compiler

•  Generates proof that program satisfies
specific security properties
– Before execution, proof is validated

•  Example: Touchstone validates type-safe
subset of C
– Checks all array references

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #4

Touchstone

•  Analyzes functions, annotating code with loop
invariants, preconditions, postconditions

•  It then generates validation code
–  Predicate for each function holds iff postconditions

hold
•  Theorem prover verifies proof automatically

–  Uses inference rules about array bounds
•  Performance impact of 30% to 150% on

standard C benchmarks
May 24, 2017 ECS 235B Spring Quarter 2017 Slide #5

Loading

•  Load libraries that apply confinement
constraints
– Sandboxing that is embedded in process rather

than a separate process
•  Aurasium (Android) prevents apps

exfiltrating sensitive data
– Two parts: tool, modified libraries

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #6

Aurasium
•  Tool inserts code to enforce given policies

when app uses Android resources
–  Like SMS messaging

•  Modified standard C libraries determine if
system call should be blocked based on policy

•  Problem: most apps signed
–  Verify signature, then modify app and resign with

Aurasium’s own certificate
•  On test, re0packed over 99% of apps known to

be malicious; negligable performance impact
May 24, 2017 ECS 235B Spring Quarter 2017 Slide #7

Sandboxes, VMs, and TCB

•  Sandboxes, VMs part of trusted computing
bases
– Failure: less protection than security officers,

users believe
–  “False sense of security”

•  Must ensure confinement mechanism
correctly implements desired security policy

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #8

Covert Channels

•  Shared resources as communication paths
•  Covert storage channel uses attribute of

shared resource
–  Disk space, message size, etc.

•  Covert timing channel uses temporal or
ordering relationship among accesses to
shared resource
–  Regulating CPU usage, order of reads on disk

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #9

Example Storage Channel
•  Processes p, q not allowed to communicate

–  But they share a file system!
•  Communications protocol:

–  p sends a bit by creating a file called 0 or 1, then a
second file called send

•  p waits until send is deleted before repeating to send another
bit

–  q waits until file send exists, then looks for file 0 or 1;
whichever exists is the bit

•  q then deletes 0, 1, and send and waits until send is recreated
before repeating to read another bit

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #10

Example Timing Channel
•  System has two VMs

–  Sending machine S, receiving machine R
•  To send:

–  For 0, S immediately relinquishes CPU
•  For example, run a process that instantly blocks

–  For 1, S uses full quantum
•  For example, run a CPU-intensive process

•  R measures how quickly it gets CPU
–  Uses real-time clock to measure intervals between access to shared

resource (CPU)

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #11

Example Covert Channel
•  Uses ordering of events; does not use clock
•  Two VMs sharing disk cylinders 100 to 200

–  SCAN algorithm schedules disk accesses
–  One VM is High (H), other is Low (L)

•  Idea: L will issue requests for blocks on cylinders 139 and
161 to be read
–  If read as 139, then 161, it’s a 1 bit
–  If read as 161, then 139, it’s a 0 bit

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #12

How It Works
•  L issues read for data on cylinder 150

–  Relinquishes CPU when done; arm now at 150
•  H runs, issues read for data on cylinder 140

–  Relinquishes CPU when done; arm now at 140
•  L runs, issues read for data on cylinders 139 and 161

–  Due to SCAN, reads 139 first, then 161
–  This corresponds to a 1

•  To send a 0, H would have issued read for data on cylinder
160

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #13

Analysis
•  Timing or storage?

–  Usual definition ⇒ storage (no timer, clock)
•  Modify example to include timer

–  L uses this to determine how long requests take to
complete

–  Time to seek to 139 < time to seek to 161 ⇒ 1;
otherwise, 0

•  Channel works same way
–  Suggests it’s a timing channel; hence our definition

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #14

Noisy vs. Noiseless

•  Noiseless: covert channel uses resource
available only to sender, receiver

•  Noisy: covert channel uses resource
available to others as well as to sender,
receiver
–  Idea is that others can contribute extraneous

information that receiver must filter out to
“read” sender’s communication

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #15

Key Properties

•  Existence: the covert channel can be used to
send/receive information

•  Bandwidth: the rate at which information
can be sent along the channel

•  Goal of analysis: establish these properties
for each channel
–  If you can eliminate the channel, great!
–  If not, reduce bandwidth as much as possible

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #16

Step #1: Detection

•  Manner in which resource is shared controls
who can send, receive using that resource
– Shared Resource Matrix Methodology
–  Information flow analysis
– Covert flow trees

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #17

SRMM
•  Shared Resource Matrix Methodology
•  Goal: identify shared channels, how they are

shared
•  Steps:

–  Identify all shared resources, their visible attributes
[rows]

–  Determine operations that reference (read), modify
(write) resource [columns]

–  Contents of matrix show how operation accesses the
resource

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #18

Example
•  Multilevel security model
•  File attributes:

–  existence, owner, label, size
•  File manipulation operations:

–  read, write, delete, create
–  create succeeds if file does not exist; gets creator as owner,

creator’s label
–  others require file exists, appropriate labels

•  Subjects:
–  High, Low

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #19

Shared Resource Matrix

read write delete create

existence R R R, M R, M

owner R M

label R R R M

size R M M M

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #20

Covert Storage Channel

•  Properties that must hold for covert storage
channel:
1.  Sending, receiving processes have access to

same attribute of shared object;
2.  Sender can modify that attribute;
3.  Receiver can reference that attribute; and
4.  Mechanism for starting processes, properly

sequencing their accesses to resource

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #21

Example
•  Consider attributes with both R, M in rows
•  Let High be sender, Low receiver
•  create operation both references, modifies existence

attribute
–  Low can use this due to semantics of create

•  Need to arrange for proper sequencing accesses to
existence attribute of file (shared resource)

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #22

Use of Channel
–  3 files: ready, done, 1bit
–  Low creates ready at High level
–  High checks that file exists

–  If so, to send 1, it creates 1bit; to send 0, skip
–  Delete ready, create done at High level

–  Low tries to create done at High level
–  On failure, High is done
–  Low tries to create 1bit at level High

–  Low deletes done, creates ready at High level

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #23

Covert Timing Channel
•  Properties that must hold for covert timing

channel:
1. Sending, receiving processes have access to same

attribute of shared object;
2. Sender, receiver have access to a time reference (wall

clock, timer, event ordering, …);
3. Sender can control timing of detection of change to that

attribute by receiver; and
4. Mechanism for starting processes, properly sequencing

their accesses to resource

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #24

Example
•  Revisit variant of KVM/370 channel

–  Sender, receiver can access ordering of requests by disk
arm scheduler (attribute)

–  Sender, receiver have access to the ordering of the
requests (time reference)

–  High can control ordering of requests of Low process
by issuing cylinder numbers to position arm
appropriately (timing of detection of change)

–  So whether channel can be exploited depends on
whether there is a mechanism to (1) start sender,
receiver and (2) sequence requests as desired

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #25

Uses of SRM Methodology
•  Applicable at many stages of software life cycle

model
–  Flexbility is its strength

•  Used to analyze Secure Ada Target
–  Participants manually constructed SRM from flow

analysis of SAT model
–  Took transitive closure
–  Found 2 covert channels

•  One used assigned level attribute, another assigned type
attribute

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #26

Summary
•  Methodology comprehensive but incomplete

–  How to identify shared resources?
–  What operations access them and how?

•  Incompleteness a benefit
–  Allows use at different stages of software engineering life cycle

•  Incompleteness a problem
–  Makes use of methodology sensitive to particular stage of software

development

May 24, 2017 ECS 235B Spring Quarter 2017 Slide #27

