June 5: Composition of Policies

 Problem

e Deterministic Noninterference
e Nondeducibility

e Generalized Noninterference

e Restrictiveness
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Policy Composition

 Problem
— Policy composition
e Noninterference
— HIGH inputs affect LOW outputs

e Nondeducibility
— HIGH inputs can be determined from LOW outputs

e Restrictiveness

— When can policies be composed successtully
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Composition of Policies

 Two organizations have two security
policies
* They merge
— How do they combine security policies to
create one security policy?

— Can they create a coherent, consistent security
policy?
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The Problem

e Single system with 2 users
— Each has own virtual machine

— Holly at system high, Lara at system low so
they cannot communicate directly

e CPU shared between VMs based on load

— Forms a covert channel through which Holly,
Lara can communicate

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #4



Example Protocol

* Holly, Lara agree:
— Begin at noon
— Lara will sample CPU utilization every minute

— To send 1 bit, Holly runs program
e Raises CPU utilization to over 60%

— To send O bit, Holly does not run program
e CPU utilization will be under 40%

e Not “writing” in traditional sense

— But information flows from Holly to Lara
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Policy vs. Mechanism

e Can be hard to separate these

e In the abstract: CPU forms channel along which
information can be transmitted

— Violates *-property
— Not “writing in traditional sense
e Conclusions:

— Model does not give sufficient conditions to prevent
communication, or

— System 1s improperly abstracted; need a better
definition of “writing”
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Composition of Bell-LaPadula

e Why?
— Some standards require secure components to be connected to
form secure (distributed, networked) system

e (Question
— Under what conditions is this secure?

e Assumptions

— Implementation of systems precise with respect to each system’ s
security policy
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Issues

 Compose the lattices
 What 1s relationship among labels?

— If the same, trivial

— If different, new lattice must reflect the
relationships among the levels
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Example

(HIGH, {EAST, WEST))
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Analysis

e Assume S < HIGH < TS
e Assume SOUTH, EAST, WEST different

e Resulting lattice has:
— 4 clearances (LOW < S < HIGH < TS)
— 3 categories (SOUTH, EAST, WEST)
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Same Policies

e If we can change policies that components
must meet, composition is trivial (as above)

o If we cannot, we must show composition
meets the same policy as that of
components; this can be very hard
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Different Policies

e What does “secure” now mean?
 Which policy (components) dominates?
e Possible principles:

— Any access allowed by policy of a component
must be allowed by composition of components
(autonomy)

— Any access forbidden by policy of a component
must be forbidden by composition of
components (security)
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Implications

e Composite system satisfies security policy
of components as components’ policies
take precedence

* If something neither allowed nor forbidden
by principles, then:
— Allow 1t (Gong & Qian)
— Disallow 1t (Fail-Safe Defaults)
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Example

e System X: Bob can’ t access Alice’ s files

e System Y: Eve, Lilith can access each
other’ s files

e Composition policy:
— Bob can access Eve’ s files

— Lilith can access Alice’ s files

e Question: can Bob access Lilith’ s files?
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Solution (Gong & Qian)

e Notation:
—(a,b): acanread b’ s files
— AS(x): access set of system x
* Set-up:
- ASX) =
— AS(Y) = { (Eve, Lilith), (Lilith, Eve) }
— AS(XUY) = { (Bob, Eve), (Lilith, Alice),
(Eve, Lilith), (Lilith, Eve) }
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Solution (Gong & Qian)

e Compute transitive closure of AS(XUY):
— AS(XUY)*={
(Bob, Eve), (Bob, Lilith), (Bob, Alice),
(Eve, Lilith), (Eve, Alice),
(Lilith, Eve), (Lilith, Alice) }
e Delete accesses conflicting with policies of
components:
— Delete (Bob, Alice)

e (Bob, Lilith) in set, so Bob can access Lilith” s
files
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Idea

* Composition of policies allows accesses not mentioned by
original policies
e Generate all possible allowed accesses
— Computation of transitive closure

* Eliminate forbidden accesses
— Removal of accesses disallowed by individual access policies

* Everything else 1s allowed

* Note; determining if access allowed 1s of polynomial
complexity
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Interference

e Think of it as something used in
communication

— Holly/Lara example: Holly interferes with the
CPU utilization, and Lara detects 1it—
communication

* Plays role of writing (interfering) and
reading (detecting the interference)
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Model

e System as state machine
— Subjects S ={ s, }
— States 2 ={ 0; }
— Outputs O={ o, }
— Commands Z={z }

— State transition commands C =95 x Z

e Note: no inputs

— Encode either as selection of commands or in state transition
commands
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Functions

e State transition function 7: Cx2—2X

— Describes effect of executing command ¢ in
state O

e Output function P: Cx2Z—0

— Output of machine when executng command ¢
in state s

 Initial state 18 O,
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Example

e Users Heidi (high), Lucy (low)

e 2 bits of state, H (high) and L (Iow)
— System state 1s (H, L) where H, L are 0, 1

e 2 commands: xor0, xorl do xor with O, 1

— Operations affect both state bits regardless of
whether Heidi or Lucy 1ssues it
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Example: 2-bit Machine

e §={ Heidi, Lucy }

* 2={(00),(0,1),(1,0),(1,1) }
e C={xo0r0,xorl }

xorQ

xorl

Input States (H, L)
(0,0) (0,1) (1,0) (1,1)

(0,0) 0,1) (1,0) (1,1)

(1,1) (1,0) 0,1) (0,0)
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Outputs and States

e T'1s inductive 1n first argument, as
I(cy, 0y) = Oy; (¢ 15 Opy) = T(cy,1(c;,07)

e Let C* be set of possible sequences of
commands 1n C

o T%*: (C*x2—2 and
c,=Cy...c, = T%(c,,0,) =1(c,,...,1(cy,0;)...)

e P similar; define P* similarly

June 5,2017 ECS 235B Spring Quarter 2017 Slide #23



Projection

* T%(c,,0,) sequence of state transitions

* P*(c,,0,) corresponding outputs

e proj(s, c,, O;) set of outputs in P*(c,,0,) that
subject s authorized to see

— In same order as they occur in P*(c,0,)
— Projection of outputs for s

e Intuition: list of outputs after removing
outputs that s cannot see
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Purge

e GC S, G a group of subjects
e AC Z, A aset of commands

* 1t (c,) subsequence of ¢, with all elements
(s,2), s € G deleted

* 1,(c,) subsequence of ¢, with all elements
(5,2), 2 € A deleted

* 7 4(c,) subsequence of ¢, with all elements
(5,2),s € G and z € A deleted
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Example: 2-bit Machine

e Leto,=(0,1)
e 3 commands applied:
— Heidi applies xor0

— Lucy applies xorl
— Heidi applies xorl

* ¢, = ((Heidixor0),(Lucy xorl),(Heidixor0))

e Outputis 011001
— Shorthand for sequence (0,1)(1,0)(0,1)
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Example

e proj(Heidi, ¢, 0,) =011001

* proj(Lucy, ¢, 0y) = 101

® T ey (Cy) = (Heid1,xor0), (Heid1,xor1)

* T ey rori(€5) = (Heidixor0), (Heidi,xor 1)

* .4 (¢,) = (Lucyxorl)

K4
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Example

® T ey roro(Cs) = (Heidixor0) (Lucy ,xor 1),
(Heid1,xor 1)

* J-':He:idi,xo;’O(cs) = TCXOI’O(CS) = (Lucy AOF / )’
(Heidi, xorl)

. WHeidi wor1(€y) = (Heidi, xor0), (Lucy, xorl)
(c,) = (Heid1, xor0)

xor]
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Noninterference

e Intuition: Set of outputs Lucy can see corresponds
to set of inputs she can see, there 1s no interference

e Formally: G,G'CS,G#G';AC Z; Usersin G
executing commands in A are noninterfering with
users in G’ iff for all ¢, € C*, and for all s € G,

prOj(S, Csa Oi) =pr0j(S9 TCGA(CS)a Oi)
— Written A,G :| G’
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Example

e Let ¢, = ((Heidi,xor0),(Lucy xorl),(Heidixorl))
and 0, = (0, 1)

e Take G={Heidi },G'={Lucy }, A=

* TTy.q(c,) = (Lucyxorl)
— So proj(Lucy, my..4(c,), 05) =0

e proj(Lucy, c,, 0y) = 101

e So { Heid1 } :I { Lucy } 1s false

— Makes sense; commands issued to change H bit also
affect L bit
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Example

e Same as before, but Heidi’ s commands affect H
bit only, Lucy’ s the L bit only

* Outputis 00,1,
* TTy.q(c,) = (Lucyxorl)
— So proj(Lucy, my;g(c,), 0p) =0
e proj(Lucy, c,, 0y) =0
e So { Heid1 } :I { Lucy } 1s true

— Makes sense; commands 1ssued to change H bit now do
not affect L bit
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Security Policy

e Partitions systems into authorized,
unauthorized states

e Authorized states have no forbidden
Iinterferences

* Hence a security policy 1s a set of
noninterference assertions

— See previous definition
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Alternative Development

e System X is a set of protection domains D =
{d,,....d, }

e When command c executed, it 1s executed
in protection domain dom(c)

e (Give alternate versions of definitions shown
previously
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Output-Consistency

e c&€(C,dom(c)ED
o ~dom(c) equivalence relation on states of system X
o ~dom(©) output-consistent if

o, ~%m) g, = P(c,0,) = P(c, 0})

* Intuition: states are output-consistent if for subjects in
dom(c), projections of outputs for both states after ¢ are the
same
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Security Policy

e D={d,,...,d, },d; aprotection domain
e r: DxD areflexive relation
* Then r defines a security policy

e Intuition: defines how information can flow
around a system

— d;ird; means info can flow from d; to d,

— drd; as info can flow within a domain
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Projection Function

e 1’ analogue of m, earlier

 Commands, subjects absorbed into protection
domains

e deD,ce(C,c,eC*

e ' (V)=V

e ' (c,c) =1 [c)c if dom(c)rd

e ' (c,c) =7 (c,) otherwise

e Intuition: if executing ¢ interferes with d, then c 1s
visible; otherwise, as if ¢ never executed
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Noninterference-Secure

e System has set of protection domains D

e System is noninterference-secure with respect to policy r if
P*(c, T*(c,, 0y)) = P*(c, T*(«' (c,), Oy))

* Intuition: if executing ¢, causes the same transitions for

subjects in domain d as does its projection with respect to
domain d, then no information flows in violation of the

policy
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L.emma

e Let T*(c,, 0,) ~ T*(xt' (c.), 0,) for ¢ € C

o If ~d output-consistent, then system is
noninterference-secure with respect to
policy r
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Proof

e d=dom(c)forcEe C
* By definition of output-consistent,
T*(c,, 0y) ~* T*(' [c,), Op)
implies
P*(c,T*(c,, 0y)) = P*(c,T*(x' (c,), Oy))

e This 1s definition of noninterference-secure
with respect to policy r
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Unwinding Theorem

* Links security of sequences of state
transition commands to security of
individual state transition commands

e Allows you to show a system design 1s ML
secure by showing it matches specs from
which certain lemmata derived

— Says nothing about security of system, because
of implementation, operation, etc. 1ssues
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Locally Respects

e ris apolicy

e System X locally respects r if dom(c) being
noninterfering with d € D implies o, ~ T(c,
o,)

e Intuition: applying ¢ under policy r to
system X has no effect on domain d when X
locally respects r
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Transition-Consistent

e rpolicy,de D

e If 6, ~4 o, implies T(c,c,) ~ T(c, 0,),
system X transition-consistent under r

e Intuition: command c does not affect
equivalence of states under policy r
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L.emma

e c,c,€C,deD
* For policy r, dom(c,)rd and dom(c,)rd
e Then
T*(c,c,,0) = 1(c,,1(c,,0)) = T(c,,1(c;,0))

e Intuition: if info can flow from domains of
commands into d, then order doesn’ t affect
result of applying commands
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Unwinding Theorem

* Links security of sequences of state
transition commands to security of
individual state transition commands

e Allows you to show a system design 1s ML
secure by showing it matches specs from
which certain lemmata derived

— Says nothing about security of system, because
of implementation, operation, etc. 1ssues
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Locally Respects

e ris apolicy

e System X locally respects r if dom(c) being
noninterfering with d € D implies o, ~ T(c,
o,)

e Intuition: applying ¢ under policy r to
system X has no effect on domain d when X
locally respects r
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Transition-Consistent

e rpolicy,de D

e If 6, ~4 o, implies T(c,c,) ~ T(c, 0,),
system X transition-consistent under r

e Intuition: command c does not affect
equivalence of states under policy r
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L.emma

e c,c,€C,deD
* For policy r, dom(c,)rd and dom(c,)rd
e Then
T*(c,c,,0) = 1(c,,1(c,,0)) = T(c,,1(c;,0))

e Intuition: if info can flow from domains of
commands into d, then order doesn’ t affect
result of applying commands
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Theorem

e rpolicy, X system that 1s output consistent,
transition consistent, locally respects r

e X noninterference-secure with respect to policy r

e Significance: basis for analyzing systems claiming
to enforce noninterference policy

— Establish conditions of theorem for particular set of
commands, states with respect to some policy, set of
protection domains

— Noninterference security with respect to r follows
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Proof

* Must show 0, ~¢ o, implies
T*(c,, 0,) ~! TH(U (c,), O)
* Induct on length of c,

e Basis: ¢, =v,s0 T*(c,,0) =0; ' (V) =V;
claim holds

* Hypothesis: ¢, =c¢, ... ¢,; then claim holds
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Induction Step

» Consider c,c,,,. Assume o, ~* 0, and look
/
at (st (c.c,.1), O)

e ) cases:

— dom(c,,, )rd holds
— dom(c,,, )rd does not hold
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dom(c,,,)rd Holds

T*(n,d(cscnﬂ)’ Gb) — T*(n,d(cs )Cn+1’ Gb)

=T(Cpsy, TH( (c5), OF))
— by definition of 7* and 7’

d
* T(Cn+1’ Oa) ~ T(Cn+1’ Ob)
— as X transition-consistent and o, ~¢ O,

° T(Cn+1 9T*(CS 9Ga))NdT(Cn+1 9T>k (ﬂj,d(cs ) ’ Ob))

— by transition-consistency and IH
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dom(c,,,)rd Holds

T(Cn+1 ’T*(Cs ’Oa))NdT(Cn+1 ’T* (n,d(cs )Cn+1 ’ Gb))
— by substitution from earlier equality

T(Cn+1 ’T*(Cs ’Oa))NdT(Cn+1 ’T* (n,d(cs )Cn+1 ’ Gb))
— by definition of 7*

e proving hypothesis
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dom(c,,)rd Does Not Hold

(1 (csCpi1), Op) = TH( [cy), O)
— by definition of &',
T*(Cs’ Ob) = T*(ﬂ:,d(cscrﬁl)’ Ob)
— by above and IH
T(c 1> TH(cy, 0,)) ~ T*(cy, O,)
— as X locally respects r, so o ~¢ T(c,, , O) for any ©
T(Cn+1 ’T*(Cs ’Oa))NdT(Cn+1 ’T* (n,d(cs )Cn+1 ’ Ob))
— substituting back
e proving hypothesis
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Finishing Proof

e Take 0, =0, = 0, so from claim proved by
induction,

T*(c,, ) ~ TH( (c,), Oy)
e By previous lemma, as X (and so ~%) output

consistent, then X 1S noninterference-secure
with respect to policy r
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Access Control Matrix

 Example of interpretation
e (G1ven: access control information

* Question: are given conditions enough to
provide noninterference security?

e Assume: system in a particular state

— Encapsulates values in ACM
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ACM Model

e Objects L=41,,....,[, }
— Locations in memory
* Values V={v,,....,v, }

— Values that L can assume
* Setof states2={0,...,0, }
* Set of protection domains D ={ d, ..., d; }

June 5,2017 ECS 235B Spring Quarter 2017 Slide #56



Functions

e value: Lx>—V

— returns value v stored in location [ when system in state O
o read: D—2V

— returns set of objects observable from domain d
o write: D—2V

— returns set of objects observable from domain d
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Interpretation of ACM

e Functions represent ACM
— Subject s in domain d, object o

— rEAls, o] if o € read(d)
— wE Als, o] if 0o € write(d)
* Equivalence relation:
(o, ~dom©) g, ]<>[ VI, € read(d)
| value(l,, 6,) = value(l;, 0,) ] ]

— You can read the exactly the same locations in both
states
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Enforcing Policy r

e 5 requirements

— 3 general ones describing dependence of
commands on rights over input and output

e Hold for all ACMs and policies
— 2 that are specific to some security policies

e Hold for most policies
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