
June 5: Composition of Policies

•  Problem
•  Deterministic Noninterference
•  Nondeducibility
•  Generalized Noninterference
•  Restrictiveness

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #1

Policy Composition

•  Problem
–  Policy composition

•  Noninterference
–  HIGH inputs affect LOW outputs

•  Nondeducibility
–  HIGH inputs can be determined from LOW outputs

•  Restrictiveness
–  When can policies be composed successfully

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #2

Composition of Policies

•  Two organizations have two security
policies

•  They merge
– How do they combine security policies to

create one security policy?
– Can they create a coherent, consistent security

policy?

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #3

The Problem

•  Single system with 2 users
– Each has own virtual machine
– Holly at system high, Lara at system low so

they cannot communicate directly
•  CPU shared between VMs based on load

– Forms a covert channel through which Holly,
Lara can communicate

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #4

Example Protocol
•  Holly, Lara agree:

–  Begin at noon
–  Lara will sample CPU utilization every minute
–  To send 1 bit, Holly runs program

•  Raises CPU utilization to over 60%
–  To send 0 bit, Holly does not run program

•  CPU utilization will be under 40%

•  Not “writing” in traditional sense
–  But information flows from Holly to Lara

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #5

Policy vs. Mechanism
•  Can be hard to separate these
•  In the abstract: CPU forms channel along which

information can be transmitted
–  Violates *-property
–  Not “writing” in traditional sense

•  Conclusions:
–  Model does not give sufficient conditions to prevent

communication, or
–  System is improperly abstracted; need a better

definition of “writing”

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #6

Composition of Bell-LaPadula
•  Why?

–  Some standards require secure components to be connected to
form secure (distributed, networked) system

•  Question
–  Under what conditions is this secure?

•  Assumptions
–  Implementation of systems precise with respect to each system’s

security policy

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #7

Issues

•  Compose the lattices
•  What is relationship among labels?

–  If the same, trivial
–  If different, new lattice must reflect the

relationships among the levels

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #8

Example

LOW

(HIGH, {EAST}) (HIGH, {WEST})

(HIGH, {EAST, WEST})

LOW

(TS, {EAST}) (TS, {SOUTH})

(TS, {EAST, SOUTH})

(S, {EAST, SOUTH})

(S, {EAST}) (S, {SOUTH})

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #9

Analysis

•  Assume S < HIGH < TS
•  Assume SOUTH, EAST, WEST different
•  Resulting lattice has:

–  4 clearances (LOW < S < HIGH < TS)
–  3 categories (SOUTH, EAST, WEST)

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #10

Same Policies

•  If we can change policies that components
must meet, composition is trivial (as above)

•  If we cannot, we must show composition
meets the same policy as that of
components; this can be very hard

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #11

Different Policies

•  What does “secure” now mean?
•  Which policy (components) dominates?
•  Possible principles:

– Any access allowed by policy of a component
must be allowed by composition of components
(autonomy)

– Any access forbidden by policy of a component
must be forbidden by composition of
components (security)

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #12

Implications

•  Composite system satisfies security policy
of components as components’ policies
take precedence

•  If something neither allowed nor forbidden
by principles, then:
– Allow it (Gong & Qian)
– Disallow it (Fail-Safe Defaults)

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #13

Example

•  System X: Bob can’t access Alice’s files
•  System Y: Eve, Lilith can access each

other’s files
•  Composition policy:

– Bob can access Eve’s files
– Lilith can access Alice’s files

•  Question: can Bob access Lilith’s files?

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #14

Solution (Gong & Qian)

•  Notation:
–  (a, b): a can read b’s files
– AS(x): access set of system x

•  Set-up:
– AS(X) = ∅
– AS(Y) = { (Eve, Lilith), (Lilith, Eve) }
– AS(X∪Y) = { (Bob, Eve), (Lilith, Alice),

 (Eve, Lilith), (Lilith, Eve) }

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #15

Solution (Gong & Qian)
•  Compute transitive closure of AS(X∪Y):

–  AS(X∪Y)+ = {
(Bob, Eve), (Bob, Lilith), (Bob, Alice),
(Eve, Lilith), (Eve, Alice),
(Lilith, Eve), (Lilith, Alice) }

•  Delete accesses conflicting with policies of
components:
–  Delete (Bob, Alice)

•  (Bob, Lilith) in set, so Bob can access Lilith’s
files

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #16

Idea
•  Composition of policies allows accesses not mentioned by

original policies
•  Generate all possible allowed accesses

–  Computation of transitive closure
•  Eliminate forbidden accesses

–  Removal of accesses disallowed by individual access policies
•  Everything else is allowed
•  Note; determining if access allowed is of polynomial

complexity

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #17

Interference

•  Think of it as something used in
communication
– Holly/Lara example: Holly interferes with the

CPU utilization, and Lara detects it—
communication

•  Plays role of writing (interfering) and
reading (detecting the interference)

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #18

Model
•  System as state machine

–  Subjects S = { si }
–  States Σ = { σi }
–  Outputs O = { oi }
–  Commands Z = { zi }
–  State transition commands C = S × Z

•  Note: no inputs
–  Encode either as selection of commands or in state transition

commands

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #19

Functions

•  State transition function T: C×Σ→Σ
– Describes effect of executing command c in

state σ
•  Output function P: C×Σ→O

– Output of machine when executng command c
in state s

•  Initial state is σ0

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #20

Example

•  Users Heidi (high), Lucy (low)
•  2 bits of state, H (high) and L (low)

– System state is (H, L) where H, L are 0, 1
•  2 commands: xor0, xor1 do xor with 0, 1

– Operations affect both state bits regardless of
whether Heidi or Lucy issues it

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #21

Example: 2-bit Machine

•  S = { Heidi, Lucy }
•  Σ = { (0,0), (0,1), (1,0), (1,1) }
•  C = { xor0, xor1 }

Input States (H, L)
(0,0) (0,1) (1,0) (1,1)

xor0 (0,0) (0,1) (1,0) (1,1)
xor1 (1,1) (1,0) (0,1) (0,0)

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #22

Outputs and States

•  T is inductive in first argument, as
T(c0, σ0) = σ1; T(ci+1, σi+1) = T(ci+1,T(ci,σi))

•  Let C* be set of possible sequences of
commands in C

•  T*: C*×Σ→Σ and
cs = c0…cn ⇒ T*(cs,σi) = T(cn,…,T(c0,σi)…)

•  P similar; define P* similarly

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #23

Projection

•  T*(cs,σi) sequence of state transitions
•  P*(cs,σi) corresponding outputs
•  proj(s, cs, σi) set of outputs in P*(cs,σi) that

subject s authorized to see
–  In same order as they occur in P*(cs,σi)
– Projection of outputs for s

•  Intuition: list of outputs after removing
outputs that s cannot see

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #24

Purge

•  G ⊆ S, G a group of subjects
•  A ⊆ Z, A a set of commands
•  πG(cs) subsequence of cs with all elements

(s,z), s ∈ G deleted
•  πA(cs) subsequence of cs with all elements

(s,z), z ∈ A deleted
•  πG,A(cs) subsequence of cs with all elements

(s,z), s ∈ G and z ∈ A deleted
June 5, 2017 ECS 235B Spring Quarter 2017 Slide #25

Example: 2-bit Machine
•  Let σ0 = (0,1)
•  3 commands applied:

–  Heidi applies xor0
–  Lucy applies xor1
–  Heidi applies xor1

•  cs = ((Heidi,xor0),(Lucy,xor1),(Heidi,xor0))
•  Output is 011001

–  Shorthand for sequence (0,1)(1,0)(0,1)

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #26

Example

•  proj(Heidi, cs, σ0) = 011001
•  proj(Lucy, cs, σ0) = 101
•  πLucy(cs) = (Heidi,xor0), (Heidi,xor1)
•  πLucy,xor1(cs) = (Heidi,xor0), (Heidi,xor1)
•  πHeidi (cs) = (Lucy,xor1)

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #27

Example

•  πLucy,xor0(cs) = (Heidi,xor0),(Lucy,xor1),
(Heidi,xor1)

•  πHeidi,xor0(cs) = πxor0(cs) = (Lucy,xor1),
(Heidi, xor1)

•  πHeidi,xor1(cs) = (Heidi, xor0), (Lucy, xor1)
•  πxor1(cs) = (Heidi, xor0)

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #28

Noninterference
•  Intuition: Set of outputs Lucy can see corresponds

to set of inputs she can see, there is no interference
•  Formally: G, Gʹ ⊆ S, G ≠ Gʹ; A ⊆ Z; Users in G

executing commands in A are noninterfering with
users in Gʹ iff for all cs ∈ C*, and for all s ∈ Gʹ,

proj(s, cs, σi) = proj(s, πG,A(cs), σi)
–  Written A,G :| Gʹ

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #29

Example
•  Let cs = ((Heidi,xor0),(Lucy,xor1),(Heidi,xor1))

and σ0 = (0, 1)
•  Take G = { Heidi }, Gʹ = { Lucy }, A = ∅
•  πHeidi(cs) = (Lucy,xor1)

–  So proj(Lucy, πHeidi(cs), σ0) = 0
•  proj(Lucy, cs, σ0) = 101
•  So { Heidi } :| { Lucy } is false

–  Makes sense; commands issued to change H bit also
affect L bit

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #30

Example
•  Same as before, but Heidi’s commands affect H

bit only, Lucy’s the L bit only
•  Output is 0H0L1H
•  πHeidi(cs) = (Lucy,xor1)

–  So proj(Lucy, πHeidi(cs), σ0) = 0
•  proj(Lucy, cs, σ0) = 0
•  So { Heidi } :| { Lucy } is true

–  Makes sense; commands issued to change H bit now do
not affect L bit

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #31

Security Policy

•  Partitions systems into authorized,
unauthorized states

•  Authorized states have no forbidden
interferences

•  Hence a security policy is a set of
noninterference assertions
– See previous definition

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #32

Alternative Development

•  System X is a set of protection domains D =
{ d1, …, dn }

•  When command c executed, it is executed
in protection domain dom(c)

•  Give alternate versions of definitions shown
previously

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #33

Output-Consistency
•  c ∈ C, dom(c) ∈ D
•  ~dom(c) equivalence relation on states of system X
•  ~dom(c) output-consistent if
σa ~dom(c) σb ⇒ P(c, σa) = P(c, σb)

•  Intuition: states are output-consistent if for subjects in
dom(c), projections of outputs for both states after c are the
same

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #34

Security Policy

•  D = { d1, …, dn }, di a protection domain
•  r: D×D a reflexive relation
•  Then r defines a security policy
•  Intuition: defines how information can flow

around a system
–  dirdj means info can flow from di to dj

–  dirdi as info can flow within a domain

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #35

Projection Function
•  πʹ analogue of π, earlier
•  Commands, subjects absorbed into protection

domains
•  d ∈ D, c ∈ C, cs ∈ C*
•  πʹd(ν) = ν
•  πʹd(csc) = πʹd(cs)c if dom(c)rd
•  πʹd(csc) = πʹd(cs) otherwise
•  Intuition: if executing c interferes with d, then c is

visible; otherwise, as if c never executed
June 5, 2017 ECS 235B Spring Quarter 2017 Slide #36

Noninterference-Secure
•  System has set of protection domains D
•  System is noninterference-secure with respect to policy r if

P*(c, T*(cs, σ0)) = P*(c, T*(πʹd(cs), σ0))
•  Intuition: if executing cs causes the same transitions for

subjects in domain d as does its projection with respect to
domain d, then no information flows in violation of the
policy

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #37

Lemma

•  Let T*(cs, σ0) ~d T*(πʹd(cs), σ0) for c ∈ C
•  If ~d output-consistent, then system is

noninterference-secure with respect to
policy r

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #38

Proof

•  d = dom(c) for c ∈ C
•  By definition of output-consistent,

T*(cs, σ0) ~d T*(πʹd(cs), σ0)
implies

P*(c,T*(cs, σ0)) = P*(c,T*(πʹd(cs), σ0))
•  This is definition of noninterference-secure

with respect to policy r
June 5, 2017 ECS 235B Spring Quarter 2017 Slide #39

Unwinding Theorem

•  Links security of sequences of state
transition commands to security of
individual state transition commands

•  Allows you to show a system design is ML
secure by showing it matches specs from
which certain lemmata derived
– Says nothing about security of system, because

of implementation, operation, etc. issues

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #40

Locally Respects

•  r is a policy
•  System X locally respects r if dom(c) being

noninterfering with d ∈ D implies σa ~d T(c,
σa)

•  Intuition: applying c under policy r to
system X has no effect on domain d when X
locally respects r

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #41

Transition-Consistent

•  r policy, d ∈ D
•  If σa ~d σb implies T(c, σa) ~d T(c, σb),

system X transition-consistent under r
•  Intuition: command c does not affect

equivalence of states under policy r

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #42

Lemma

•  c1, c2 ∈ C, d ∈ D
•  For policy r, dom(c1)rd and dom(c2)rd
•  Then

T*(c1c2,σ) = T(c1,T(c2,σ)) = T(c2,T(c1,σ))
•  Intuition: if info can flow from domains of

commands into d, then order doesn’t affect
result of applying commands

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #43

Unwinding Theorem

•  Links security of sequences of state
transition commands to security of
individual state transition commands

•  Allows you to show a system design is ML
secure by showing it matches specs from
which certain lemmata derived
– Says nothing about security of system, because

of implementation, operation, etc. issues

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #44

Locally Respects

•  r is a policy
•  System X locally respects r if dom(c) being

noninterfering with d ∈ D implies σa ~d T(c,
σa)

•  Intuition: applying c under policy r to
system X has no effect on domain d when X
locally respects r

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #45

Transition-Consistent

•  r policy, d ∈ D
•  If σa ~d σb implies T(c, σa) ~d T(c, σb),

system X transition-consistent under r
•  Intuition: command c does not affect

equivalence of states under policy r

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #46

Lemma

•  c1, c2 ∈ C, d ∈ D
•  For policy r, dom(c1)rd and dom(c2)rd
•  Then

T*(c1c2,σ) = T(c1,T(c2,σ)) = T(c2,T(c1,σ))
•  Intuition: if info can flow from domains of

commands into d, then order doesn’t affect
result of applying commands

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #47

Theorem
•  r policy, X system that is output consistent,

transition consistent, locally respects r
•  X noninterference-secure with respect to policy r
•  Significance: basis for analyzing systems claiming

to enforce noninterference policy
–  Establish conditions of theorem for particular set of

commands, states with respect to some policy, set of
protection domains

–  Noninterference security with respect to r follows

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #48

Proof

•  Must show σa ~d σb implies
T*(cs, σa) ~d T*(πʹd(cs), σb)

•  Induct on length of cs

•  Basis: cs = ν, so T*(cs, σ) = σ; πʹd(ν) = ν;
claim holds

•  Hypothesis: cs = c1 … cn; then claim holds

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #49

Induction Step

•  Consider cscn+1. Assume σa ~d σb and look
at T*(πʹd(cscn+1), σb)

•  2 cases:
–  dom(cn+1)rd holds
–  dom(cn+1)rd does not hold

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #50

dom(cn+1)rd Holds

T*(πʹd(cscn+1), σb) = T*(πʹd(cs)cn+1, σb)
= T(cn+1, T*(πʹd(cs), σb))

–  by definition of T* and πʹd
•  T(cn+1, σa) ~d T(cn+1, σb)

–  as X transition-consistent and σa ~d σb

•  T(cn+1,T*(cs,σa))~dT(cn+1,T*(πʹd(cs), σb))
–  by transition-consistency and IH

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #51

dom(cn+1)rd Holds

T(cn+1,T*(cs,σa))~dT(cn+1,T*(πʹd(cs)cn+1, σb))
–  by substitution from earlier equality

T(cn+1,T*(cs,σa))~dT(cn+1,T*(πʹd(cs)cn+1, σb))
–  by definition of T*

•  proving hypothesis

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #52

dom(cn+1)rd Does Not Hold
T*(πʹd(cscn+1), σb) = T*(πʹd(cs), σb)

–  by definition of πʹd
T*(cs, σb) = T*(πʹd(cscn+1), σb)

–  by above and IH
T(cn+1, T*(cs, σa)) ~d T*(cs, σa)

–  as X locally respects r, so σ ~d T(cn+1, σ) for any σ
T(cn+1,T*(cs,σa))~dT(cn+1,T*(πʹd(cs)cn+1, σb))

–  substituting back
•  proving hypothesis

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #53

Finishing Proof

•  Take σa = σb = σ0, so from claim proved by
induction,

T*(cs, σ0) ~d T*(πʹd(cs), σ0)
•  By previous lemma, as X (and so ~d) output

consistent, then X is noninterference-secure
with respect to policy r

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #54

Access Control Matrix

•  Example of interpretation
•  Given: access control information
•  Question: are given conditions enough to

provide noninterference security?
•  Assume: system in a particular state

– Encapsulates values in ACM

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #55

ACM Model

•  Objects L = { l1, …, lm }
– Locations in memory

•  Values V = { v1, …, vn }
– Values that L can assume

•  Set of states Σ = { σ1, …, σk }
•  Set of protection domains D = { d1, …, dj }

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #56

Functions
•  value: L×Σ→V

–  returns value v stored in location l when system in state σ

•  read: D→2V

–  returns set of objects observable from domain d
•  write: D→2V

–  returns set of objects observable from domain d

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #57

Interpretation of ACM
•  Functions represent ACM

–  Subject s in domain d, object o
–  r ∈ A[s, o] if o ∈ read(d)
–  w ∈ A[s, o] if o ∈ write(d)

•  Equivalence relation:
[σa ~dom(c) σb]⇔[∀li ∈ read(d)

[value(li, σa) = value(li, σb)]]
–  You can read the exactly the same locations in both

states

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #58

Enforcing Policy r

•  5 requirements
–  3 general ones describing dependence of

commands on rights over input and output
•  Hold for all ACMs and policies

–  2 that are specific to some security policies
•  Hold for most policies

June 5, 2017 ECS 235B Spring Quarter 2017 Slide #59

