ECS 235B, Lecture 2

Januar v 9, 2019

Access Control Matrix

Attributes

e gttribute: variable of a specific data type associated with an entity

 att(o): set of attribute values associated with o, called the attribute
value tuple of o

* Each attribute is written o0.a,, with value v drawn from set Vag,

* gttribute predicate: boolean expression built from attributes and
constants with appropriate operation and relation symbols
* Unary predicate: built from one attribute
* Binary predicate: built from two attributes

* Can have as many attributes in a predicate as needed
* Example: Alice.credit > $100.00

Attribute Based Access Control Matrix
(ABAM)

* Change access control matric so rows correspond to subject and its
attributes, and object and its attributes

* Note access control matrix discussed previously is special case
* Just make the attribute sets be empty

Primitive Operations

* enter,delete as before

 create subject s with attribute tuple att(s): create subject s with
given attribute tuple; additionally, add an identity attribute with a
unique value

* create object o with attribute tuple att(o): create object o with given

attribute tuple; additionally, add an identity attribute with a unique
value

* destroy as before except it also deletes. the associated attribute tuple
* update attribute o.a;: update att(o) = (v4, ..., v, ..., v,) to att(o)’ = (v,

7

4 V4
.y Vi, o, v,), Wwhere v, v € Va, and v; # v,

Commands

* Like previous commands, except that conditions may include attribute
predicates

* Let p give g r rights over f, if p owns f and value of p’s attribute
jobcode is between 3 and 5 inclusive

command grantereadefileeattributee3to5(p, £, q)
if own in A[p, f] and 3 = p.jobcode and p.jobcode = 5
then
enter r into A[qg, f];
end

Foundational Results

Overview

» Safety Question

* HRU Model

* Take-Grant Protection Model
 SPM, ESPM

* Multiparent joint creation
* Expressive power
* Typed Access Matrix Model
* Comparing properties of models

What Is “Secure”?

* Adding a generic right r where there was not one is “leaking”
* In what follows, a right leaks if it was not present initially
 Alternately: not present in the previous state (not discussed here)

* If a system S, beginning in initial state s,, cannot leak right r, it is safe
with respect to the right r

* Otherwise it is called unsafe with respect to the right r

Safety Question

* Is there an algorithm for determining whether a protection system S
with initial state s, is safe with respect to a generic right r?

* Here, “safe” = “secure” for an abstract model

Mono-Operational Commands

* Answer: yes
 Sketch of proof:

Consider minimal sequence of commands ¢y, ..., ¢, to leak the right.
e Can omit delete, destroy
* Can merge all creates into one

Worst case: insert every right into every entry; with s subjects and o objects
initially, and n rights, upper bound is k < n(s+1)(o0+1)

General Case

* Answer: no
 Sketch of proof:

Reduce halting problem to safety problem
Turing Machine review:

* Infinite tape in one direction

 States K, symbols M; distinguished blank b

* Transition function o(k, m) = (k’, m’, L) means in state k, symbol m on tape
location replaced by symbol m’, head moves to left one square, and enters
state k'

* Halting state is g; TM halts when it enters this state

Mapping

1 2 3 4

Al B| C|D
VN
head

Current state is k

ﬁ s; | S, | S, S,
s; | A |own
S5 B |own
S3 Ck own
54 D end

Mapping

1 2 3 4
A B X | D
head

After o(k, C) = (k1, X, R)
where k is the current
state and k; the next state

ﬁ S S, | S3 Sa
S1 A own
S5 B own
S3 X own
54 D k,end

Command Mapping

* 0(k, C) = (ky, X, R) at intermediate becomes

command C; -(S3,5,)
if own in A[s;,s,] and k in A[s;, s;]
and C in A[s;,S;5]
then
delete k from A[s;,s5;5];
delete C from A[s;,s5;5];
enter X into A[s;,S5];
enter k; into A[s,,s,];
end

Mapping

head

After 6(/(1, D) = (kz, Y, R)
where k; is the current
state and k, the next state

ﬁ s
S1 A own
S5 B own
S3 X own
54 Y own
Ss b k, end

Command Mapping

* 0(ky, D) = (k,, Y, R) at end becomes

command crightmost, .(s,,ss)
if end in A[s,,s,] and k; in A[s,,s,]
and D in A[s,,s,]
then
delete end from A[s,,s,];
delete k; from A[s,,s,];
delete D from A[s,,s,];
enter Y into A[s,,s,];
create subject s:;
enter own into A[s,,s:];
enter end into A[s.,s:];
enter k, into A[s;,S:];
end

Rest of Proof

* Protection system exactly simulatesa TM
e Exactly 1 end right in ACM
* 1 right in entries corresponds to state
* Thus, at most 1 applicable command

* If TM enters state g;, then right has leaked

* If safety question decidable, then represent TM as above and
determine if g;leaks

* Implies halting problem decidable

* Conclusion: safety question undecidable

Other Results

Set of unsafe systems is recursively enumerable

Delete create primitive; then safety question is complete in P-SPACE

Delete destroy, delete primitives; then safety question is undecidable
e Systems are monotonic

Safety question for biconditional protection systems is decidable
» Safety question for monoconditional, monotonic protection systems is decidable

e Safety question for monoconditional protection systems with create, enter,
delete (and no destroy) is decidable.

Take-Grant Protection Model

* A specific (not generic) system
e Set of rules for state transitions

 Safety decidable, and in time linear with the size of the system

* Goal: find conditions under which rights can be transferred from one
entity to another in the system

System

O objects (files, ...)
® subjects (users, processes, ...)
® don't care (either a subject or an object)

GFH,G apply a rewriting rule x (witness) to G to get G’

GF'G apply a sequence of rewriting rules (witness) to G to get G’

R={tg,nrw,..} setofrights

Rules

More Rules

create ® F e— .®

remove —> ® - —" .®

These four rules are called the de jure rules

Symmetry

1. x creates (tg to new) v
2. z takes (g to v) from x

3.zgrants (atoy) tov
4. x takes (oo to y) from v

Similar result for grant

Islands

* tg-path: path of distinct vertices connected by edges labeled t or g
e Call them “tg-connected”

* island: maximal tg-connected subject-only subgraph
* Any right one vertex has can be shared with any other vertex

Initial, Terminal Spans

* jnitial span from xtoy
* X subject
* tg-path between x, y with word in {_t)*E)} U{v}
* Means X can give rightsithastoy

e terminal span from xtoy
* X subject
* tg-path between x, y with word in {?‘ tu{v}
* Means X can acquire any rights y has

Bridges

* bridge: tg-path between subjects x, y, with associated word in
(T, T, Db, gt)
* rights can be transferred between the two endpoints
* not an island as intermediate vertices are objects

t t ¥
® O——@—L0O ®
\")"}

u Vv X Vi

* islands {p,u} {w} {ys'}
e bridges UvW; WXy
e initial span p (associated word v)

e terminal span s's (associated word t)

caneshare Predicate

Definition:

* caneshare(r, X, Yy, G,) if, and only if, there is a sequence of protection
graphs Gy, ..., G, such that G, * G, using only de jure rules and in G,
there is an edge from x to y labeled r.

caneshare Theorem

* caneshare(r, X, Yy, Gy) if, and only if, there is an edge from xtoy
labeled rin G, or the following hold simultaneously:
* Thereisansin G, with an s-to-y edge labeled r
* There is a subject x’ = x or initially spans to x
* There is a subject s’ =s or terminally spansto s
* There are islands /,,..., I, connected by bridges, and X" in/; and s' in /,

Outline of Proof

s has r rights over y

s’ acquires r rights overy from s
e Definition of terminal span

x" acquires r rights over y from s’
* Repeated application of sharing among vertices in islands, passing rights
along bridges
X' gives r rights over y to x
* Definition of initial span

Example Interpretation

* ACM is generic
* Can be applied in any situation

* Take-Grant has specific rules, rights
* Can be applied in situations matching rules, rights

* Question: what states can evolve from a system that is modeled using
the Take-Grant Model?

Take-Grant Generated Systems

* Theorem: G, protection graph with 1 vertex, no edges; R set of rights.
Then G, H* G iff:
* G finite directed graph consisting of subjects, objects, edges
* Edges labeled from nonempty subsets of R
e At least one vertex in G has no incoming edges

Outline of Proof

—>: By construction; G final graph in theorem
* Lletxy, ..., X, besubjectsinG
* Let x, have noincoming edges

* Now construct G”as follows:
1. Do “x, creates (o U { g } to) new subject x.”
2. Forall (x; x;) where x; has a rights over x;, do
“x; grants (a to x;) to x;”
3. Let [} be rights x; has over x; in G. Do
“x, removes ((a U {g}-pto)x”

e Now G’is desired G

Outline of Proof

<: Let v be initial subject, and G, -* G

* Inspection of rules gives:
e Gisfinite
* Gisadirected graph
* Subjects and objects only
* All edges labeled with nonempty subsets of R

e Limits of rules:
e None allow vertices to be deletedsovin G

* None add incoming edges to vertices without incoming edges, so v has no
incoming edges

Example: Shared Buffer

P U
g rw O
S b
rw
g :O
q woy

 Goal: p, qto communicate through shared buffer b controlled by
trusted entity s
1. screates ({r, w}to new object) b
2. sgrants ({r, w}tob)top
3. sgrants({r, w}tob)toq

