ECS 235B, Lecture 2

January 9, 2019

Access Control Matrix

Attributes

- *attribute*: variable of a specific data type associated with an entity
- *att*(*o*): set of attribute values associated with *o*, called the *attribute value tuple* of *o*
	- Each attribute is written *o.a_i*, with value v drawn from set Va_i
- *attribute predicate*: boolean expression built from attributes and constants with appropriate operation and relation symbols
	- Unary predicate: built from one attribute
	- Binary predicate: built from two attributes
	- Can have as many attributes in a predicate as needed
	- Example: *Alice.credit* ≥ \$100.00

Attribute Based Access Control Matrix (ABAM)

- Change access control matric so rows correspond to subject and its attributes, and object and its attributes
- Note access control matrix discussed previously is special case
	- Just make the attribute sets be empty

Primitive Operations

- **enter**,**delete** as before
- **create subject** *s* **with attribute tuple** *att*(*s*): create subject *s* with given attribute tuple; additionally, add an identity attribute with a unique value
- **create object** *o* **with attribute tuple** *att*(*o*): create object *o* with given attribute tuple; additionally, add an identity attribute with a unique value
- **destroy** as before except it also deletes. the associated attribute tuple
- **update attribute** *o.a_i*: update $att(o) = (v_1, ..., v_i, ..., v_n)$ to $att(o)' = (v_1,$..., *v_i*, ..., *v*_n), where *v*_i, *v*_i['] ∈ *Va*_i, and *v*_i ≠ *v*_i[']

Commands

- Like previous commands, except that conditions may include attribute predicates
- Let *p* give *q r* rights over *f*, if *p* owns *f* and value of *p*'s attribute *jobcode* is between 3 and 5 inclusive

```
command grant•read•file•attribute•3to5(p, f, q)
```

```
if own in A[p, f] and 3 \leq p. jobcode and p. jobcode \leq 5then
```

```
enter r into A[q, f];
end
```
Foundational Results

Overview

- Safety Question
- HRU Model
- Take-Grant Protection Model
- SPM, ESPM
	- Multiparent joint creation
- Expressive power
- Typed Access Matrix Model
- Comparing properties of models

What Is "Secure"?

- Adding a generic right *r* where there was not one is "leaking"
	- In what follows, a right leaks if it was not present *initially*
	- Alternately: not present *in the previous state* (not discussed here)
- If a system *S*, beginning in initial state s_0 , cannot leak right *r*, it is *safe with respect to the right r*
	- Otherwise it is called *unsafe with respect to the right r*

Safety Question

- Is there an algorithm for determining whether a protection system *S* with initial state s_0 is safe with respect to a generic right r ?
	- Here, "safe" = "secure" for an abstract model

Mono-Operational Commands

- Answer: *yes*
- Sketch of proof:

Consider minimal sequence of commands c_1 , ..., c_k to leak the right.

- Can omit **delete**, **destroy**
- Can merge all **create**s into one

Worst case: insert every right into every entry; with *s* subjects and *o* objects initially, and *n* rights, upper bound is $k \leq n(s+1)(o+1)$

General Case

- Answer: *no*
- Sketch of proof:

Reduce halting problem to safety problem

Turing Machine review:

- Infinite tape in one direction
- States *K*, symbols *M*; distinguished blank *b*
- Transition function $\delta(k, m) = (k', m', L)$ means in state *k*, symbol *m* on tape location replaced by symbol m', head moves to left one square, and enters state *k*¢
- \bullet Halting state is q_f ; TM halts when it enters this state

Mapping

Mapping

Command Mapping

• $\delta(k, C) = (k_1, X, R)$ at intermediate becomes

```
command c_{k,C}(s_3,s_4)if own in A[s_3, s_4] and k in A[s_3, s_3]and C in A[S_3, S_3]then
 delete k from A[s_3, s_3];
 delete C from A[s_3, s_3];
 enter X into A[s_3, s_3];
 enter k_1 into A[S_4, S_4];
end
```
Mapping

Command Mapping

• $\delta(k_1, D) = (k_2, Y, R)$ at end becomes

```
command crightmost<sub>k,C</sub>(s_4, s_5)
if end in A[s_4, s_4] and k_1 in A[s_4, s_4]and D in A[s_4,s_4]then
 delete end from
A
[
s
4
,
s
4];
 delete
k
1 from
A
[
s
4
,
s
4];
 delete D from
A
[
s
4
,
s
4];
 enter Y into
A
[
s
4
,
s
4];
 create subject
s
5
;
 enter own into A[s_4,s_5];
 enter end into
A
[
s
5
,
s
5];
 enter k_2 into A[S_5, S_5];
end
```
Rest of Proof

- Protection system exactly simulates a TM
	- Exactly 1 *end* right in ACM
	- 1 right in entries corresponds to state
	- Thus, at most 1 applicable command
- If TM enters state q_f , then right has leaked
- If safety question decidable, then represent TM as above and determine if q_f leaks
	- Implies halting problem decidable
- Conclusion: safety question undecidable

Other Results

- Set of unsafe systems is recursively enumerable
- Delete **create** primitive; then safety question is complete in **P-SPACE**
- Delete **destroy**, **delete** primitives; then safety question is undecidable
	- Systems are monotonic
- Safety question for biconditional protection systems is decidable
- Safety question for monoconditional, monotonic protection systems is decidable
- Safety question for monoconditional protection systems with **create**, **enter**, **delete** (and no **destroy**) is decidable.

Take-Grant Protection Model

- A specific (not generic) system
	- Set of rules for state transitions
- Safety decidable, and in time linear with the size of the system
- Goal: find conditions under which rights can be transferred from one entity to another in the system

System

- O objects (files, ...)
- subjects (users, processes, ...)
- \otimes don't care (either a subject or an object)
- $G \vdash_{x} G'$ apply a rewriting rule *x* (witness) to *G* to get *G'*
- $G \vdash^* G'$ apply a sequence of rewriting rules (witness) to G to get G' $R = \{ t, q, r, w, ... \}$ set of rights

Rules

More Rules

These four rules are called the *de jure* rules

Symmetry

3. *z* grants (α to \boldsymbol{y}) to \boldsymbol{v} 1. *x* creates (*tg* to new) *v* 2. *z* takes (*g* to *v*) from *x* 4. *x* takes (α to y) from v

Similar result for grant

Islands

- *tg*-path: path of distinct vertices connected by edges labeled *t* or *g*
	- Call them "tg-connected"
- island: maximal *tg*-connected subject-only subgraph
	- Any right one vertex has can be shared with any other vertex

Initial, Terminal Spans

- *initial span* from **x** to **y**
	- **x** subject
	- *tg*-path between **x**, **y** with word in $\{\overrightarrow{t^*g}\}\cup\set{v}$ \rightarrow
	- Means **x** can give rights it has to **y**
- *terminal span* from **x** to **y**
	- **x** subject
	- *tg*-path between **x**, **y** with word in $\{\overline{t^*}\} \cup \{\nu\}$ \overrightarrow{A}
	- Means **x** can acquire any rights **y** has

Bridges

- bridge: *tg*-path between subjects **x**, **y**, with associated word in $\{\, {\mathfrak t}^*,\, {\mathfrak t}^*,\, {\vec {\mathfrak t}}^*\, {\overline{{\mathfrak g}}} \, {\overline{{\mathfrak t}}}^*,\, {\vec {\mathfrak t}}^*\, {\overline{{\mathfrak g}}} \, {\overline{{\mathfrak t}}}^*\, \}$ → → →
▲ ▲ → →★★★★ →★★
	- rights can be transferred between the two endpoints
	- *not* an island as intermediate vertices are objects

Example

can•share Predicate

Definition:

• *can*•*share(r, x, y, G₀)* if, and only if, there is a sequence of protection graphs G_0 , ..., G_n such that $G_0 \rightharpoonup^* G_n$ using only *de jure* rules and in G_n there is an edge from **x** to **y** labeled *r*.

can•*share* Theorem

- *can*•*share(r, x, y, G₀) if, and only if, there is an edge from x to y* labeled r in G_0 , or the following hold simultaneously:
	- There is an **s** in G_0 with an **s**-to-**y** edge labeled r
	- There is a subject **x**¢ = **x** or initially spans to **x**
	- There is a subject **s**¢ = **s** or terminally spans to **s**
	- There are islands $I_1,..., I_k$ connected by bridges, and \mathbf{x}' in I_1 and \mathbf{s}' in I_k

Outline of Proof

- **s** has *r* rights over **y**
- **s**¢ acquires *r* rights over **y** from **s**
	- Definition of terminal span
- **x**¢ acquires *r* rights over **y** from **s**¢
	- Repeated application of sharing among vertices in islands, passing rights along bridges
- **x**¢ gives *r* rights over **y** to **x**
	- Definition of initial span

Example Interpretation

- ACM is generic
	- Can be applied in any situation
- Take-Grant has specific rules, rights
	- Can be applied in situations matching rules, rights
- Question: what states can evolve from a system that is modeled using the Take-Grant Model?

Take-Grant Generated Systems

- Theorem: G_0 protection graph with 1 vertex, no edges; R set of rights. Then G_0 ⊢^{*} G iff:
	- *G* finite directed graph consisting of subjects, objects, edges
	- Edges labeled from nonempty subsets of *R*
	- At least one vertex in *G* has no incoming edges

Outline of Proof

 \Rightarrow : By construction; G final graph in theorem

- Let \mathbf{x}_1 , ..., \mathbf{x}_n be subjects in G
- Let x_1 have no incoming edges
- Now construct *G'* as follows:
	- 1. Do " \mathbf{x}_1 creates ($\alpha \cup \{ g \}$ to) new subject \mathbf{x}_i "
	- 2. For all (**x***ⁱ* , **x***j*) where **x***ⁱ* has a rights over **x***^j* , do " \mathbf{x}_1 grants (α to \mathbf{x}_j) to \mathbf{x}_i "
	- 3. Let β be rights \mathbf{x}_i has over \mathbf{x}_i in *G*. Do " \mathbf{x}_1 removes (($\alpha \cup \{ g \}$ – β to) \mathbf{x}_j "
- Now *G*¢ is desired *G*

Outline of Proof

Ü: Let **v** be initial subject, and *G*⁰ ⊢* *G*

- Inspection of rules gives:
	- *G* is finite
	- *G* is a directed graph
	- Subjects and objects only
	- All edges labeled with nonempty subsets of *R*
- Limits of rules:
	- None allow vertices to be deleted so **v** in *G*
	- None add incoming edges to vertices without incoming edges, so **v** has no incoming edges

Example: Shared Buffer

- Goal: **p**, **q** to communicate through shared buffer **b** controlled by trusted entity **s**
	- 1. **s** creates ($\{r, w\}$ to new object) **b**
	- 2. s grants ($\{r, w\}$ to **b**) to **p**
	- 3. **s** grants ({*r*, *w*} to **b**) to **q**