
ECS 235B, Lecture 2
January 9, 2019

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 1

Access Control Matrix

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 2

Attributes

• attribute: variable of a specific data type associated with an entity
• att(o): set of attribute values associated with o, called the attribute

value tuple of o
• Each attribute is written o.ai, with value v drawn from set Vai

• attribute predicate: boolean expression built from attributes and
constants with appropriate operation and relation symbols
• Unary predicate: built from one attribute
• Binary predicate: built from two attributes
• Can have as many attributes in a predicate as needed
• Example: Alice.credit ≥ $100.00

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 3

Attribute Based Access Control Matrix
(ABAM)
• Change access control matric so rows correspond to subject and its

attributes, and object and its attributes
• Note access control matrix discussed previously is special case
• Just make the attribute sets be empty

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 4

Primitive Operations

• enter,delete as before
• create subject s with attribute tuple att(s): create subject s with

given attribute tuple; additionally, add an identity attribute with a
unique value
• create object o with attribute tuple att(o): create object o with given

attribute tuple; additionally, add an identity attribute with a unique
value
• destroy as before except it also deletes. the associated attribute tuple
• update attribute o.ai: update att(o) = (v1, ..., vi, ..., vn) to att(o)’ = (v1,

..., vi’, ..., vn), where vi, vi’ ∈ Vai, and vi ≠ vi’

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 5

Commands

• Like previous commands, except that conditions may include attribute
predicates
• Let p give q r rights over f, if p owns f and value of p’s attribute
jobcode is between 3 and 5 inclusive
command grant•read•file•attribute•3to5(p, f, q)
if own in A[p, f] and 3 ≤ p.jobcode and p.jobcode ≤ 5
then
enter r into A[q, f];

end

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 6

Foundational Results

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 7

Overview

• Safety Question
• HRU Model
• Take-Grant Protection Model
• SPM, ESPM
• Multiparent joint creation

• Expressive power
• Typed Access Matrix Model
• Comparing properties of models

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 8

What Is “Secure”?

• Adding a generic right r where there was not one is “leaking”
• In what follows, a right leaks if it was not present initially
• Alternately: not present in the previous state (not discussed here)

• If a system S, beginning in initial state s0, cannot leak right r, it is safe
with respect to the right r
• Otherwise it is called unsafe with respect to the right r

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 9

Safety Question

• Is there an algorithm for determining whether a protection system S
with initial state s0 is safe with respect to a generic right r?
• Here, “safe” = “secure” for an abstract model

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 10

Mono-Operational Commands

• Answer: yes
• Sketch of proof:

Consider minimal sequence of commands c1, …, ck to leak the right.
• Can omit delete, destroy
• Can merge all creates into one
Worst case: insert every right into every entry; with s subjects and o objects
initially, and n rights, upper bound is k ≤ n(s+1)(o+1)

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 11

General Case

• Answer: no
• Sketch of proof:

Reduce halting problem to safety problem
Turing Machine review:
• Infinite tape in one direction
• States K, symbols M; distinguished blank b
• Transition function d(k, m) = (k¢, m¢, L) means in state k, symbol m on tape

location replaced by symbol m¢, head moves to left one square, and enters
state k¢
• Halting state is qf; TM halts when it enters this state

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 12

Mapping

A B C D …

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

C k

D end

own

own

ownCurrent state is k

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 13

Mapping

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

D k1 end

own

own

own
After d(k, C) = (k1, X, R)
where k is the current
state and k1 the next state

A B X D …

1 2 3 4

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 14

Command Mapping

• d(k, C) = (k1, X, R) at intermediate becomes

command ck,C(s3,s4)
if own in A[s3,s4] and k in A[s3,s3]

and C in A[s3,s3]
then
delete k from A[s3,s3];
delete C from A[s3,s3];
enter X into A[s3,s3];
enter k1 into A[s4,s4];

end

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 15

Mapping

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

Y

own

own

own
After d(k1, D) = (k2, Y, R)
where k1 is the current
state and k2 the next state

s5

s5

own

b k2 end

A B X Y …

1 2 3 4

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 16

Command Mapping
• d(k1, D) = (k2, Y, R) at end becomes

command crightmostk,C(s4,s5)
if end in A[s4,s4] and k1 in A[s4,s4]

and D in A[s4,s4]
then
delete end from A[s4,s4];
delete k1 from A[s4,s4];
delete D from A[s4,s4];
enter Y into A[s4,s4];
create subject s5;
enter own into A[s4,s5];
enter end into A[s5,s5];
enter k2 into A[s5,s5];

end
January 9, 2019 ECS 235B, Foundations of Computer and Information Security 17

Rest of Proof

• Protection system exactly simulates a TM
• Exactly 1 end right in ACM
• 1 right in entries corresponds to state
• Thus, at most 1 applicable command

• If TM enters state qf, then right has leaked
• If safety question decidable, then represent TM as above and

determine if qf leaks
• Implies halting problem decidable

• Conclusion: safety question undecidable

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 18

Other Results

• Set of unsafe systems is recursively enumerable
• Delete create primitive; then safety question is complete in P-SPACE
• Delete destroy, delete primitives; then safety question is undecidable
• Systems are monotonic

• Safety question for biconditional protection systems is decidable
• Safety question for monoconditional, monotonic protection systems is decidable
• Safety question for monoconditional protection systems with create, enter,
delete (and no destroy) is decidable.

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 19

Take-Grant Protection Model

• A specific (not generic) system
• Set of rules for state transitions

• Safety decidable, and in time linear with the size of the system
• Goal: find conditions under which rights can be transferred from one

entity to another in the system

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 20

System

¡ objects (files, …)
l subjects (users, processes, …)
Ä don't care (either a subject or an object)

G⊢x G¢ apply a rewriting rule x (witness) to G to get G¢

G⊢* G¢ apply a sequence of rewriting rules (witness) to G to get G¢
R = { t, g, r, w, … } set of rights

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 21

Rules

Ä

t a t a

a

take

g a a

a

grant

l

g

Ä

Ä

Ä

Ä Ä Ä Ä

l

ll ⊢

⊢

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 22

More Rules

create

a

a

remove a – b

l l

l l ÄÄ

Ä⊢
⊢

These four rules are called the de jure rules

l

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 23

a

3. z grants (a to y) to v

Symmetry

t a
Äl

l

⊢t
a

Äl

lz

x y

Similar result for grant

z

yx

v
¡

tg

1. x creates (tg to new) v

g

2. z takes (g to v) from x

aa

4. x takes (a to y) from v

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 24

Islands

• tg-path: path of distinct vertices connected by edges labeled t or g
• Call them “tg-connected”

• island: maximal tg-connected subject-only subgraph
• Any right one vertex has can be shared with any other vertex

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 25

Initial, Terminal Spans

• initial span from x to y
• x subject
• tg-path between x, y with word in { t*g } È { n }
• Means x can give rights it has to y

• terminal span from x to y
• x subject
• tg-path between x, y with word in { t* } È { n }
• Means x can acquire any rights y has

®

®®

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 26

Bridges

• bridge: tg-path between subjects x, y, with associated word in
{ t*, t*, t*g t*, t*g t* }

• rights can be transferred between the two endpoints
• not an island as intermediate vertices are objects

® ® ® ¬¬ ®® ¬

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 27

Example

lp

u v w x y

s¢
s

q

t

t t

t r

gg

g

• islands { p, u } { w } { y, s¢ }
• bridges uvw; wxy
• initial span p (associated word n)
• terminal span s¢s (associated word t)®

l l l

l

¡

¡¡

¡

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 28

can•share Predicate

Definition:
• can•share(r, x, y, G0) if, and only if, there is a sequence of protection

graphs G0, …, Gn such that G0 ⊢* Gn using only de jure rules and in Gn
there is an edge from x to y labeled r.

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 29

can•share Theorem

• can•share(r, x, y, G0) if, and only if, there is an edge from x to y
labeled r in G0, or the following hold simultaneously:
• There is an s in G0 with an s-to-y edge labeled r
• There is a subject x¢ = x or initially spans to x
• There is a subject s¢ = s or terminally spans to s
• There are islands I1,…, Ik connected by bridges, and x¢ in I1 and s¢ in Ik

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 30

Outline of Proof

• s has r rights over y
• s¢ acquires r rights over y from s
• Definition of terminal span

• x¢ acquires r rights over y from s¢
• Repeated application of sharing among vertices in islands, passing rights

along bridges
• x¢ gives r rights over y to x
• Definition of initial span

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 31

Example Interpretation

• ACM is generic
• Can be applied in any situation

• Take-Grant has specific rules, rights
• Can be applied in situations matching rules, rights

• Question: what states can evolve from a system that is modeled using
the Take-Grant Model?

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 32

Take-Grant Generated Systems

• Theorem: G0 protection graph with 1 vertex, no edges; R set of rights.
Then G0 ⊢* G iff:
• G finite directed graph consisting of subjects, objects, edges
• Edges labeled from nonempty subsets of R
• At least one vertex in G has no incoming edges

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 33

Outline of Proof

Þ: By construction; G final graph in theorem
• Let x1, …, xn be subjects in G
• Let x1 have no incoming edges

• Now construct G¢ as follows:
1. Do “x1 creates (a È { g } to) new subject xi”
2. For all (xi, xj) where xi has a rights over xj, do

“x1 grants (a to xj) to xi”
3. Let b be rights xi has over xj in G. Do

“x1 removes ((a È { g } – b to) xj”
• Now G¢ is desired G

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 34

Outline of Proof

Ü: Let v be initial subject, and G0 ⊢* G
• Inspection of rules gives:
• G is finite
• G is a directed graph
• Subjects and objects only
• All edges labeled with nonempty subsets of R

• Limits of rules:
• None allow vertices to be deleted so v in G
• None add incoming edges to vertices without incoming edges, so v has no

incoming edges

January 9, 2019 ECS 235B, Foundations of Computer and Information Security 35

Example: Shared Buffer

• Goal: p, q to communicate through shared buffer b controlled by
trusted entity s

l

l

l

¡

¡

p

s

q v

urw

rw
g

g

¡ b

1. s creates ({r, w} to new object) b

rw

rw

s grants ({r, w} to b) to q3.
s grants ({r, w} to b) to p

rw

2.

January 9, 2019 ECS 235B, Foundations of Computer and Information Security Slide #3-36

