## ECS 235B, Lecture 2

January 9, 2019

## Access Control Matrix

#### Attributes

- *attribute*: variable of a specific data type associated with an entity
- att(o): set of attribute values associated with o, called the attribute value tuple of o
  - Each attribute is written *o.a<sub>i</sub>*, with value v drawn from set *Va<sub>i</sub>*
- *attribute predicate*: boolean expression built from attributes and constants with appropriate operation and relation symbols
  - Unary predicate: built from one attribute
  - Binary predicate: built from two attributes
  - Can have as many attributes in a predicate as needed
  - Example: *Alice.credit*  $\geq$  \$100.00

# Attribute Based Access Control Matrix (ABAM)

- Change access control matric so rows correspond to subject and its attributes, and object and its attributes
- Note access control matrix discussed previously is special case
  - Just make the attribute sets be empty

#### Primitive Operations

- enter, delete as before
- create subject s with attribute tuple att(s): create subject s with given attribute tuple; additionally, add an identity attribute with a unique value
- create object o with attribute tuple att(o): create object o with given attribute tuple; additionally, add an identity attribute with a unique value
- destroy as before except it also deletes. the associated attribute tuple
- update attribute  $o.a_i$ : update  $att(o) = (v_1, ..., v_i, ..., v_n)$  to  $att(o)' = (v_1, ..., v_i', ..., v_n)$ , where  $v_i, v_i' \in Va_i$ , and  $v_i \neq v_i'$

#### Commands

- Like previous commands, except that conditions may include attribute predicates
- Let *p* give *q r* rights over *f*, if *p* owns *f* and value of *p*'s attribute *jobcode* is between 3 and 5 inclusive

```
command grant•read•file•attribute•3to5(p, f, q)
```

```
if own in A[p, f] and 3 \le p.jobcode and p.jobcode \le 5 then
```

```
enter r into A[q, f];
end
```

## Foundational Results

#### Overview

- Safety Question
- HRU Model
- Take-Grant Protection Model
- SPM, ESPM
  - Multiparent joint creation
- Expressive power
- Typed Access Matrix Model
- Comparing properties of models

#### What Is "Secure"?

- Adding a generic right r where there was not one is "leaking"
  - In what follows, a right leaks if it was not present *initially*
  - Alternately: not present *in the previous state* (not discussed here)
- If a system *S*, beginning in initial state *s*<sub>0</sub>, cannot leak right *r*, it is *safe* with respect to the right *r* 
  - Otherwise it is called *unsafe with respect to the right r*

#### Safety Question

- Is there an algorithm for determining whether a protection system *S* with initial state *s*<sub>0</sub> is safe with respect to a generic right *r*?
  - Here, "safe" = "secure" for an abstract model

#### Mono-Operational Commands

- Answer: yes
- Sketch of proof:

Consider minimal sequence of commands  $c_1, ..., c_k$  to leak the right.

- Can omit delete, destroy
- Can merge all creates into one

Worst case: insert every right into every entry; with *s* subjects and *o* objects initially, and *n* rights, upper bound is  $k \le n(s+1)(o+1)$ 

#### General Case

- Answer: no
- Sketch of proof:

Reduce halting problem to safety problem

Turing Machine review:

- Infinite tape in one direction
- States K, symbols M; distinguished blank b
- Transition function δ(k, m) = (k', m', L) means in state k, symbol m on tape location replaced by symbol m', head moves to left one square, and enters state k'
- Halting state is  $q_f$ ; TM halts when it enters this state

#### Mapping



#### Mapping



#### Command Mapping

•  $\delta(k, C) = (k_1, X, R)$  at intermediate becomes

```
command c_{k,C}(s_3, s_4)
if own in A[s_3, s_4] and k in A[s_3, s_3]
and C in A[s_3, s_3]
then
delete k from A[s_3, s_3];
delete C from A[s_3, s_3];
enter X into A[s_3, s_3];
enter k_1 into A[s_4, s_4];
end
```

#### Mapping



#### Command Mapping

•  $\delta(k_1, D) = (k_2, Y, R)$  at end becomes

```
command crightmost<sub>k,C</sub>(s_4, s_5)
if end in A[s_4, s_4] and k_1 in A[s_4, s_4]
   and D in A[s_4, s_4]
then
 delete end from A[s_4, s_4];
 delete k_1 from A[s_4, s_4];
 delete D from A[s_4, s_4];
 enter Y into A[s_4, s_4];
 create subject s_5;
 enter own into A[s_4, s_5];
 enter end into A[s_5, s_5];
 enter k_2 into A[s_5, s_5];
end
```

#### Rest of Proof

- Protection system exactly simulates a TM
  - Exactly 1 end right in ACM
  - 1 right in entries corresponds to state
  - Thus, at most 1 applicable command
- If TM enters state  $q_f$ , then right has leaked
- If safety question decidable, then represent TM as above and determine if q<sub>f</sub> leaks
  - Implies halting problem decidable
- Conclusion: safety question undecidable

#### Other Results

- Set of unsafe systems is recursively enumerable
- Delete create primitive; then safety question is complete in P-SPACE
- Delete destroy, delete primitives; then safety question is undecidable
  - Systems are monotonic
- Safety question for biconditional protection systems is decidable
- Safety question for monoconditional, monotonic protection systems is decidable
- Safety question for monoconditional protection systems with create, enter, delete (and no destroy) is decidable.

#### Take-Grant Protection Model

- A specific (not generic) system
  - Set of rules for state transitions
- Safety decidable, and in time linear with the size of the system
- Goal: find conditions under which rights can be transferred from one entity to another in the system

#### System

- O objects (files, ...)
- subjects (users, processes, ...)
- ⊗ don't care (either a subject or an object)
- $G \vdash_x G'$  apply a rewriting rule x (witness) to G to get G'
- $G \vdash^* G'$  apply a sequence of rewriting rules (witness) to G to get G'  $R = \{t, g, r, w, ...\}$  set of rights

#### Rules



#### More Rules



#### These four rules are called the *de jure* rules

#### Symmetry





*x* creates (*tg* to new) *v z* takes (*g* to *v*) from *x z* grants (α to *y*) to *v x* takes (α to *y*) from *v*

Similar result for grant

#### Islands

- tg-path: path of distinct vertices connected by edges labeled t or g
  - Call them "tg-connected"
- island: maximal tg-connected subject-only subgraph
  - Any right one vertex has can be shared with any other vertex

#### Initial, Terminal Spans

- *initial span* from **x** to **y** 
  - **x** subject
  - *tg*-path between **x**, **y** with word in  $\{\overrightarrow{t}*\overrightarrow{g}\} \cup \{v\}$
  - Means **x** can give rights it has to **y**
- *terminal span* from **x** to **y** 
  - **x** subject
  - *tg*-path between **x**, **y** with word in  $\{\vec{t}^*\} \cup \{v\}$
  - Means **x** can acquire any rights **y** has

### Bridges

- bridge: *tg*-path between subjects **x**, **y**, with associated word in  $\{\vec{t}^*, \vec{t}^*, \vec{t}$ 
  - rights can be transferred between the two endpoints
  - not an island as intermediate vertices are objects

#### Example



#### can•share Predicate

Definition:

• can • share( $r, \mathbf{x}, \mathbf{y}, G_0$ ) if, and only if, there is a sequence of protection graphs  $G_0, ..., G_n$  such that  $G_0 \vdash^* G_n$  using only *de jure* rules and in  $G_n$  there is an edge from  $\mathbf{x}$  to  $\mathbf{y}$  labeled r.

#### can•share Theorem

- can share(r, x, y, G<sub>0</sub>) if, and only if, there is an edge from x to y labeled r in G<sub>0</sub>, or the following hold simultaneously:
  - There is an **s** in G<sub>0</sub> with an **s**-to-**y** edge labeled r
  - There is a subject **x**' = **x** or initially spans to **x**
  - There is a subject **s**' = **s** or terminally spans to **s**
  - There are islands  $I_1, ..., I_k$  connected by bridges, and **x'** in  $I_1$  and **s'** in  $I_k$

#### Outline of Proof

- **s** has *r* rights over **y**
- s' acquires r rights over y from s
  - Definition of terminal span
- x' acquires r rights over y from s'
  - Repeated application of sharing among vertices in islands, passing rights along bridges
- **x'** gives *r* rights over **y** to **x** 
  - Definition of initial span

#### Example Interpretation

- ACM is generic
  - Can be applied in any situation
- Take-Grant has specific rules, rights
  - Can be applied in situations matching rules, rights
- Question: what states can evolve from a system that is modeled using the Take-Grant Model?

#### Take-Grant Generated Systems

- Theorem:  $G_0$  protection graph with 1 vertex, no edges; R set of rights. Then  $G_0 \vdash^* G$  iff:
  - *G* finite directed graph consisting of subjects, objects, edges
  - Edges labeled from nonempty subsets of *R*
  - At least one vertex in *G* has no incoming edges

#### Outline of Proof

 $\Rightarrow$ : By construction; G final graph in theorem

- Let  $\mathbf{x}_1, ..., \mathbf{x}_n$  be subjects in G
- Let **x**<sub>1</sub> have no incoming edges
- Now construct *G*′as follows:
  - 1. Do " $\mathbf{x}_1$  creates ( $\alpha \cup \{g\}$  to) new subject  $\mathbf{x}_i$ "
  - For all (x<sub>i</sub>, x<sub>j</sub>) where x<sub>i</sub> has a rights over x<sub>j</sub>, do
     "x<sub>1</sub> grants (α to x<sub>j</sub>) to x<sub>i</sub>"
  - 3. Let  $\beta$  be rights  $\mathbf{x}_i$  has over  $\mathbf{x}_j$  in G. Do " $\mathbf{x}_1$  removes (( $\alpha \cup \{g\} - \beta$  to)  $\mathbf{x}_j$ "
- Now G' is desired G

#### Outline of Proof

⇐: Let **v** be initial subject, and  $G_0 \vdash^* G$ 

- Inspection of rules gives:
  - G is finite
  - G is a directed graph
  - Subjects and objects only
  - All edges labeled with nonempty subsets of *R*
- Limits of rules:
  - None allow vertices to be deleted so **v** in *G*
  - None add incoming edges to vertices without incoming edges, so v has no incoming edges

#### Example: Shared Buffer



- Goal: p, q to communicate through shared buffer b controlled by trusted entity s
  - 1. **s** creates ( {*r*, *w*} to new object) **b**
  - 2. **s** grants ( {*r*, *w*} to **b**) to **p**
  - 3. **s** grants ( {*r*, *w*} to **b**) to **q**