ECS 235B, Lecture 3

January 11, 2019

can•*steal* Predicate

Definition:

- *can*•*steal(r, x, y, G₀) if, and only if, there is no edge from x to y labeled* r in G_0 , and the following hold simultaneously:
	- There is edge from **x** to **y** labeled *r* in G_n
	- There is a sequence of rule applications ρ_1 , …, ρ_n such that $G_{i-1} \vdash G_i$ using ρ_i
	- For all vertices **v**, **w** in G_{i-1} , if there is an edge from **v** to **y** in G_0 labeled *r*, then φ_i is **not** of the form "**v** grants (*r* to **y**) to **w**"

Example

- *can•steal*(α , **s**, **w**, G_0):
- 1. **u** grants (*t* to **v**) to **s**
- 2. **s** takes (*t* to **u**) from **v**
- α α α **w** 3. **s** takes (α to **w**) from **u**

can•*steal* Theorem

• *can•steal(r, x, y, G₀)* if, and only if, the following hold simultaneously:

a) There is no edge from **x** to **y** labeled *r* in G_0

- b) There exists a subject x' such that $x' = x$ or x' initially spans to x
- c) There exists a vertex **s** with an edge labeled α to **y** in G_0

d) can•*share*(*t*, **x**¢ , **s**, *G*0) holds

- \Rightarrow : Assume conditions hold
- **x** subject
	- **x** gets *t* rights to **s**, then takes α to **y** from **s**
- **x** object
	- *can*•*share*(*t*, **x**¢ , **s**, *G*0) holds
	- If **x'** has no α edge to **y** in G_0 , **x'** takes (α to **y**) from **s** and grants it to **x**
	- If **x**^{\prime} has a edge to **y** in G_0 , **x**^{\prime} creates surrogate **x**^{\prime}, gives it (*t* to **s**) and (*g* to **x**^{\prime}); then x'' takes (α to y) and grants it to x

 \Leftarrow : Assume *can*•*steal*(α , **x**, **y**, G_0) holds

- First two conditions immediate from definition of *can*•*steal*, *can*•*share*
- Third condition immediate from theorem of conditions for *can*•*share*
- Fourth condition: ρ minimal length sequence of rule applications deriving G_n from G_0 ; *i* smallest index such that $G_{i-1} \vdash G_i$ by rule ρ_i and adding α from some **p** to **y** in G_i
	- What is ρ_i ?

- Not remove or create rule
	- **y** exists already
- Not grant rule
	- G_i first graph in which edge labeled α to **y** is added, so by definition of *can*•*share*, cannot be grant
- take rule: so *can*•*share*(*t*, **p**, **s**, G_0) holds
	- So is subject **s**¢ such that **s**¢ = **s** or terminally spans to **s**
	- Sequence of islands with $x' \in I_1$ and $s' \in I_n$
- Derive witness to *can*•*share*(*t*, **x'**, **s**, G_0) that does not use "**s** grants (α to **y**) to" anyone

Conspiracy

- Minimum number of actors to generate a witness for *can•share*(α , **x**, **y**, G_0)
- Access set describes the "reach" of a subject
- Deletion set is set of vertices that cannot be involved in a transfer of rights
- Build *conspiracy graph* to capture how rights flow, and derive actors from it

Example

Access Set

- *Access set A(***y***) with focus* **y**: set of vertices:
	- { **y** }
	- { **x** | **y** initially spans to **x** }
	- { **x**¢ | **y** terminally spans to **x** }
- Idea is that focus can give rights to, or acquire rights from, a vertex in this set

Example

Deletion Set

- Deletion set $\delta(\mathbf{y}, \mathbf{y}')$: contains those vertices in $A(\mathbf{y}) \cap A(\mathbf{y}')$ such that:
	- **y** initially spans to **z** and **y**¢ terminally spans to **z**;
	- **y** terminally spans to **z** and **y**¢ initially spans to **z**;
	- $z = y$
	- $z = y'$
- Idea is that rights can be transferred between **y** and **y**¢ if this set nonempty

Example

• $\delta(c, e) = \{ d \}$

Conspiracy Graph

- Abstracted graph *H* from G_0 :
	- Each subject $\mathbf{x} \in G_0$ corresponds to a vertex $h(\mathbf{x}) \in H$
	- If $\delta(\mathbf{x}, \mathbf{y}) \neq \emptyset$, there is an edge between $h(\mathbf{x})$ and $h(\mathbf{y})$ in H
- Idea is that if *h*(**x**), *h*(**y**) are connected in *H*, then rights can be transferred between **x** and **y** in G_0

Results

- *I*(**x**): *h*(**x**), all vertices *h*(**y**) such that **y** initially spans to **x**
- *T*(**x**): *h*(**x**), all vertices *h*(**y**) such that **y** terminally spans to **x**
- Theorem: *can*•*share*(α , **x**, **y**, G_0) iff there exists a path from some $h(\mathbf{p})$ in *I*(**x**) to some *h*(**q**) in *T*(**y**)
- Theorem: *l* vertices on shortest path between *h*(**p**), *h*(**q**) in above theorem; *l* conspirators necessary and sufficient to witness

- $I(x) = {h(x)}, T(z) = {h(e)}$
- Path between $h(\mathbf{x})$, $h(\mathbf{e})$ so *can*•*share*(*r*, \mathbf{x} , \mathbf{z} , G_0)
- Shortest path between *h*(**x**), *h*(**e**) has 4 vertices
- Þ Conspirators are **e**, **c**, **b**, **x**

Example: Witness

- 1. **e** grants (*r* to **z**) to **d**
- 2. **c** takes (*r* to **z**) from **d**
- 3. **c** grants (*r* to **z**) to **b**

5. **x** takes (*r* to **z**) from **a** 4. **b** grants (*r* to **z**) to **a**

Key Question

- Characterize class of models for which safety is decidable
	- Existence: Take-Grant Protection Model is a member of such a class
	- Universality: In general, question undecidable, so for some models it is not decidable
- What is the dividing line?

Schematic Protection Model

• Type-based model

- Protection type: entity label determining how control rights affect the entity
	- Set at creation and cannot be changed
- Ticket: description of a single right over an entity
	- Entity has sets of tickets (called a *domain*)
	- Ticket is **X**/*r*, where **X** is entity and *r* right
- Functions determine rights transfer
	- Link: are source, target "connected"?
	- Filter: is transfer of ticket authorized?

Link Predicate

- Idea: *link*_i(X, Y) if X can assert some control right over Y
- Conjunction of disjunction of:
	- $X/z \in dom(X)$
	- $X/z \in dom(Y)$
	- $Y/z \in dom(X)$
	- $Y/z \in dom(Y)$
	- **true**

Examples

• Take-Grant:

 $link(X, Y) = Y/g \in dom(X) \vee X/t \in dom(Y)$

• Broadcast:

link(X , Y) = $X/b \in dom(X)$

• Pull:

 $link(X, Y) = Y/p \in dom(Y)$

Filter Function

- Range is set of copyable tickets
	- Entity type, right
- Domain is subject pairs
- Copy a ticket **X**/*r*:*c* from *dom*(**Y**) to *dom*(**Z**)
	- X / $rc \in dom(Y)$
	- *linki* (**Y**, **Z**)
	- $\tau(Y)/r$: $c \in f_i(\tau(Y), \tau(Z))$
- One filter function per link function

Example

- $f(\tau(Y), \tau(Z)) = T \times R$
	- Any ticket can be transferred (if other conditions met)
- $f(\tau(Y), \tau(Z)) = T \times RI$
	- Only tickets with inert rights can be transferred (if other conditions met)
- $f(\tau(Y), \tau(Z)) = \varnothing$
	- No tickets can be transferred

Example

- Take-Grant Protection Model
	- $TS = \{ \text{ subjects } \}, TO = \{ \text{ objects } \}$
	- $RC = \{ tc, qc \}, RI = \{ rc, wc \}$
	- $link(p, q) = p/t \in dom(q) \vee q/g \in dom(p)$
	- f (*subject*, *subject*) = { *subject*, *object* } \times { *tc*, *gc*, *rc*, *wc* }

Create Operation

- Must handle type, tickets of new entity
- Relation *cc*(*a*, *b*) [*cc* for *can-create*]
	- Subject of type *a* can create entity of type *b*
- Rule of acyclic creates:

Types

- *cr*(*a*, *b*): tickets created when subject of type *a* creates entity of type *b* [*cr* for *create-rule*]
- **B** object: $cr(a, b) \subseteq \{ b/r : c \in \mathbb{R} \}$
	- **A** gets **B**/*r*:*c* iff *b*/*r*:*c* \in *cr*(*a*, *b*)
- **B** subject: *cr*(*a*, *b*) has two subsets
	- $cr_P(a, b)$ added to **A**, $cr_C(a, b)$ added to **B**
	- **A** gets **B**/*r*:*c* if *b*/*r*:*c* \in *cr*_{*p*}(*a*, *b*)
	- **B** gets A/r :*c* if a/r :*c* \in *cr_c*(*a*, *b*)

Non-Distinct Types

cr(*a*, *a*): who gets what?

- *self*/*r*:*c* are tickets for creator
- *a*/*r*:*c* tickets for created

cr(*a*, *a*) = { *a*/*r*:*c*, *self*/*r*:*c* | *r*:*c* \in *R*}

Attenuating Create Rule

cr(*a*, *b*) attenuating if:

1. *cr*_{*c*}(*a*, *b*) \subseteq *cr*_{*p*}(*a*, *b*) and

2.
$$
a/r:c \in cr_p(a, b) \Rightarrow self/r:c \in cr_p(a, b)
$$

Example: Owner-Based Policy

- Users can create files, creator can give itself any inert rights over file
	- *cc* = { (*user* , *file*) }
	- *cr*(*user*, *file*) = { *file*/*r*:*c* | $r \in R1$ }
- Attenuating, as graph is acyclic, loop free

Example: Take-Grant

- Say subjects create subjects (type *s*), objects (type *o*), but get only inert rights over latter
	- $cc = \{ (s, s), (s, o) \}$
	- $cr_C(a, b) = \emptyset$
	- $cr_{P}(s, s) = \{s/tc, s/gc, s/rc, s/wc\}$
	- $cr_P(s, o) = \{s/rc, s/wc\}$
- Not attenuating, as no *self* tickets provided; *subject* creates *subject*

Safety Analysis

- Goal: identify types of policies with tractable safety analyses
- Approach: derive a state in which additional entries, rights do not affect the analysis; then analyze this state
	- Called a *maximal state*

Definitions

- System begins at initial state
- Authorized operation causes *legal transition*
- Sequence of legal transitions moves system into final state
	- This sequence is a *history*
	- Final state is *derivable* from history, initial state

More Definitions

- States represented by *^h*
- Set of subjects *SUBh*, entities *ENTh*
- Link relation in context of state *h* is *linkh*
- Dom relation in context of state *h* is *domh*

pathh(X,Y)

- **X**, **Y** connected by one link or a sequence of links
- Formally, either of these hold:
	- for some *i*, *linki ^h*(**X**, **Y**); or
	- there is a sequence of subjects X_0 , ..., X_n such that $link_i^h(X, X_0)$, $link_i^h(X_n, Y)$, and for $k = 1, ..., n$, $link_i^h(X_{k-1}, X_k)$
- If multiple such paths, refer to *pathj ^h*(**X**, **Y**)

Capacity *cap*(*pathh*(X,Y))

- Set of tickets that can flow over *pathh*(**X**,**Y**)
	- If $link_i^h$ (X,Y): set of tickets that can be copied over the link (i.e., $f_i(\tau(X), \tau(Y))$)
	- Otherwise, set of tickets that can be copied over *all* links in the sequence of links making up the *path*^h(X,Y)
- Note: all tickets (except those for the final link) *must* be copyable

Flow Function

- Idea: capture flow of tickets around a given state of the system
- Let there be *m pathh*s between subjects **X** and **Y** in state *h*. Then *flow function*

flowh: SUBh \times *SUBh* \rightarrow 2^{*T* \times *R*}

is:

$$
flow^h(\mathbf{X}, \mathbf{Y}) = \bigcup_{i=1,\dots,m} cap(path_i^h(\mathbf{X}, \mathbf{Y}))
$$

Properties of Maximal State

- Maximizes flow between all pairs of subjects
	- State is called ***
	- Ticket in *flow**(**X**,**Y**) means there exists a sequence of operations that can copy the ticket from **X** to **Y**
- Questions
	- Is maximal state unique?
	- Does every system have one?

Formal Definition

- Definition: $g \leq_0 h$ holds iff for all $X, Y \in SUB^0, flow^g(X,Y) \subseteq flow^h(X,Y)$.
	- Note: if $g \leq_0 h$ and $h \leq_0 g$, then g , h equivalent
	- Defines set of equivalence classes on set of derivable states
- Definition: for a given system, state *m* is maximal iff *h* ≤₀ *m* for every derivable state *h*
- Intuition: flow function contains all tickets that can be transferred from one subject to another
	- All maximal states in same equivalence class

Maximal States

- Lemma. Given arbitrary finite set of states *H*, there exists a derivable state *m* such that for all $h \in H$, $h \leq_0 m$
- Outline of proof: induction
	- Basis: $H = \emptyset$; trivially true
	- Step: $|H'| = n + 1$, where $H' = G \cup \{h\}$. By IH, there is a $g \in G$ such that $x \leq_0 g$ for all $x \in G$.

- M interleaving histories of *g*, *h* which:
	- Preserves relative order of transitions in *g*, *h*
	- Omits second create operation if duplicated
- *M* ends up at state *m*
- If $path^g(X,Y)$ for $X, Y \in SUB^g, path^m(X,Y)$
	- So $g \leq_0 m$
- If $path^h(X,Y)$ for $X, Y \in SUB^h$, $path^m(X,Y)$
	- So $h \leq_0 m$
- Hence *m* maximal state in *H*¢

Answer to Second Question

- Theorem: every system has a maximal state *
- Outline of proof: *K* is set of derivable states containing exactly one state from each equivalence class of derivable states
	- Consider X, Y in *SUB*⁰. Flow function's range is $2^{T\times R}$, so can take at most $2^{T\times R}$ values. As there are $|SUB^0|^2$ pairs of subjects in *SUB*⁰, at most $2^{|T \times R|}$ $|SUB^0|^2$ distinct equivalence classes; so *K* is finite
- Result follows from lemma

Safety Question

• In this model:

Is it possible to have a derivable state with **X**/*r*:*c* in *dom*(**A**), or does there exist a subject **B** with ticket **X**/*rc* in the initial state or which can demand **X**/*rc* and $\tau(X)/r$:*c* in *flow**(**B**,**A**)?

- To answer: construct maximal state and test
	- Consider acyclic attenuating schemes; how do we construct maximal state?

Intuition

- Consider state *h*.
- State *u* corresponds to *h* but with minimal number of new entities created such that maximal state *m* can be derived with no create operations
	- So if in history from *h* to *m*, subject **X** creates two entities of type *a*, in *u* only one would be created; surrogate for both
- *m* can be derived from *u* in polynomial time, so if *u* can be created by adding a finite number of subjects to *h*, safety question decidable.