ECS 235B, Lecture 3

January 11, 2019

can•steal Predicate

Definition:

- can steal(r, x, y, G₀) if, and only if, there is no edge from x to y labeled r in G₀, and the following hold simultaneously:
 - There is edge from \mathbf{x} to \mathbf{y} labeled r in G_n
 - There is a sequence of rule applications $\rho_1, ..., \rho_n$ such that $G_{i-1} \vdash G_i$ using ρ_i
 - For all vertices v, w in G_{i-1}, if there is an edge from v to y in G₀ labeled r, then ρ_i is not of the form "v grants (r to y) to w"

Example

- $can \bullet steal(\alpha, \mathbf{s}, \mathbf{w}, G_0)$:
- 1. **u** grants (*t* to **v**) to **s**
- 2. **s** takes (*t* to **u**) from **v**
- 3. **s** takes (α to **w**) from **u**

can•steal Theorem

- can•steal(r, x, y, G₀) if, and only if, the following hold simultaneously:
 - a) There is no edge from **x** to **y** labeled r in G_0
 - b) There exists a subject \mathbf{x}' such that $\mathbf{x}' = \mathbf{x}$ or \mathbf{x}' initially spans to \mathbf{x}
 - c) There exists a vertex **s** with an edge labeled α to **y** in G_0
 - d) can•share($t, \mathbf{x}', \mathbf{s}, G_0$) holds

- \Rightarrow : Assume conditions hold
- **x** subject
 - **x** gets *t* rights to **s**, then takes α to **y** from **s**
- **x** object
 - $can \bullet share(t, \mathbf{x'}, \mathbf{s}, G_0)$ holds
 - If **x'** has no α edge to **y** in G_0 , **x'** takes (α to **y**) from **s** and grants it to **x**
 - If x' has a edge to y in G₀, x' creates surrogate x'', gives it (t to s) and (g to x''); then x'' takes (α to y) and grants it to x

 \Leftarrow : Assume *can*•*steal*(α , **x**, **y**, *G*₀) holds

- First two conditions immediate from definition of can steal, can share
- Third condition immediate from theorem of conditions for *can*•*share*
- Fourth condition: ρ minimal length sequence of rule applications deriving G_n from G_0 ; *i* smallest index such that $G_{i-1} \vdash G_i$ by rule ρ_i and adding α from some **p** to **y** in G_i
 - What is ρ_i ?

- Not remove or create rule
 - y exists already
- Not grant rule
 - G_i first graph in which edge labeled α to y is added, so by definition of can•share, cannot be grant
- take rule: so *can*•*share*(*t*, **p**, **s**, *G*₀) holds
 - So is subject s' such that s' = s or terminally spans to s
 - Sequence of islands with $\mathbf{x'} \in I_1$ and $\mathbf{s'} \in I_n$
- Derive witness to can share(t, x', s, G₀) that does not use "s grants (α to y) to" anyone

Conspiracy

- Minimum number of actors to generate a witness for can•share(α, x, y, G₀)
- Access set describes the "reach" of a subject
- Deletion set is set of vertices that cannot be involved in a transfer of rights
- Build *conspiracy graph* to capture how rights flow, and derive actors from it

Example

Access Set

- Access set A(y) with focus y: set of vertices:
 - { **y** }
 - { **x** | **y** initially spans to **x** }
 - { **x'** | **y** terminally spans to **x** }
- Idea is that focus can give rights to, or acquire rights from, a vertex in this set

Example

Deletion Set

- Deletion set $\delta(\mathbf{y}, \mathbf{y'})$: contains those vertices in $A(\mathbf{y}) \cap A(\mathbf{y'})$ such that:
 - y initially spans to z and y' terminally spans to z;
 - **y** terminally spans to **z** and **y'** initially spans to **z**;
 - z = y
 - z = y'
- Idea is that rights can be transferred between y and y' if this set nonempty

Example

Conspiracy Graph

- Abstracted graph *H* from *G*₀:
 - Each subject $\mathbf{x} \in G_0$ corresponds to a vertex $h(\mathbf{x}) \in H$
 - If $\delta(\mathbf{x}, \mathbf{y}) \neq \emptyset$, there is an edge between $h(\mathbf{x})$ and $h(\mathbf{y})$ in H
- Idea is that if h(x), h(y) are connected in H, then rights can be transferred between x and y in G₀

Results

- *I*(**x**): *h*(**x**), all vertices *h*(**y**) such that **y** initially spans to **x**
- T(x): h(x), all vertices h(y) such that y terminally spans to x
- Theorem: can share(α, x, y, G₀) iff there exists a path from some h(p) in l(x) to some h(q) in T(y)
- Theorem: I vertices on shortest path between h(p), h(q) in above theorem; I conspirators necessary and sufficient to witness

- $I(\mathbf{x}) = \{ h(\mathbf{x}) \}, T(\mathbf{z}) = \{ h(\mathbf{e}) \}$
- Path between h(x), h(e) so can share(r, x, z, G₀)
- Shortest path between $h(\mathbf{x})$, $h(\mathbf{e})$ has 4 vertices
- ⇒ Conspirators are **e**, **c**, **b**, **x**

Example: Witness

- 1. **e** grants (*r* to **z**) to **d**
- 2. **c** takes (*r* to **z**) from **d**
- 3. **c** grants (*r* to **z**) to **b**

4. **b** grants (*r* to **z**) to **a**5. **x** takes (*r* to **z**) from **a**

Key Question

- Characterize class of models for which safety is decidable
 - Existence: Take-Grant Protection Model is a member of such a class
 - Universality: In general, question undecidable, so for some models it is not decidable
- What is the dividing line?

Schematic Protection Model

• Type-based model

- Protection type: entity label determining how control rights affect the entity
 - Set at creation and cannot be changed
- Ticket: description of a single right over an entity
 - Entity has sets of tickets (called a *domain*)
 - Ticket is **X**/*r*, where **X** is entity and *r* right
- Functions determine rights transfer
 - Link: are source, target "connected"?
 - Filter: is transfer of ticket authorized?

Link Predicate

- Idea: *link_i*(**X**, **Y**) if **X** can assert some control right over **Y**
- Conjunction of disjunction of:
 - $X/z \in dom(X)$
 - $X/z \in dom(Y)$
 - $\mathbf{Y}/z \in dom(\mathbf{X})$
 - $\mathbf{Y}/z \in dom(\mathbf{Y})$
 - true

Examples

• Take-Grant:

 $link(X, Y) = Y/g \in dom(X) \lor X/t \in dom(Y)$

• Broadcast:

 $link(X, Y) = X/b \in dom(X)$

• Pull:

 $link(X, Y) = Y/p \in dom(Y)$

Filter Function

- Range is set of copyable tickets
 - Entity type, right
- Domain is subject pairs
- Copy a ticket X/r:c from dom(Y) to dom(Z)
 - $X/rc \in dom(Y)$
 - *link_i*(**Y**, **Z**)
 - $\tau(\mathbf{Y})/r:c \in f_i(\tau(\mathbf{Y}), \tau(\mathbf{Z}))$
- One filter function per link function

Example

- $f(\tau(\mathbf{Y}), \tau(\mathbf{Z})) = T \times R$
 - Any ticket can be transferred (if other conditions met)
- $f(\tau(\mathbf{Y}), \tau(\mathbf{Z})) = T \times RI$
 - Only tickets with inert rights can be transferred (if other conditions met)
- $f(\tau(\mathbf{Y}), \tau(\mathbf{Z})) = \emptyset$
 - No tickets can be transferred

Example

- Take-Grant Protection Model
 - TS = { subjects }, TO = { objects }
 - *RC* = { *tc*, *gc* }, *RI* = { *rc*, *wc* }
 - $link(\mathbf{p}, \mathbf{q}) = \mathbf{p}/t \in dom(\mathbf{q}) \lor \mathbf{q}/g \in dom(\mathbf{p})$
 - f(subject, subject) = { subject, object } × { tc, gc, rc, wc }

Create Operation

- Must handle type, tickets of new entity
- Relation cc(a, b) [cc for can-create]
 - Subject of type *a* can create entity of type *b*
- Rule of acyclic creates:

Types

- cr(a, b): tickets created when subject of type a creates entity of type b
 [cr for create-rule]
- **B** object: $cr(a, b) \subseteq \{ b/r: c \in RI \}$
 - A gets B/r:c iff $b/r:c \in cr(a, b)$
- B subject: cr(a, b) has two subsets
 - $cr_P(a, b)$ added to **A**, $cr_C(a, b)$ added to **B**
 - A gets $\mathbf{B}/r:c$ if $b/r:c \in cr_P(a, b)$
 - **B** gets $\mathbf{A}/r:c$ if $a/r:c \in cr_c(a, b)$

Non-Distinct Types

cr(a, a): who gets what?

- *self/r*:*c* are tickets for creator
- *a*/*r*:*c* tickets for created

 $cr(a, a) = \{ a/r:c, self/r:c \mid r:c \in R \}$

Attenuating Create Rule

cr(a, b) attenuating if:

1. $cr_{c}(a, b) \subseteq cr_{P}(a, b)$ and

2.
$$a/r:c \in cr_P(a, b) \Rightarrow self/r:c \in cr_P(a, b)$$

Example: Owner-Based Policy

- Users can create files, creator can give itself any inert rights over file
 - cc = { (user , file) }
 - $cr(user, file) = \{ file/r:c \mid r \in RI \}$
- Attenuating, as graph is acyclic, loop free

Example: Take-Grant

- Say subjects create subjects (type *s*), objects (type *o*), but get only inert rights over latter
 - cc = { (s, s), (s, o) }
 - $cr_c(a, b) = \emptyset$
 - $cr_P(s, s) = \{s/tc, s/gc, s/rc, s/wc\}$
 - $cr_P(s, o) = \{s/rc, s/wc\}$
- Not attenuating, as no self tickets provided; subject creates subject

Safety Analysis

- Goal: identify types of policies with tractable safety analyses
- Approach: derive a state in which additional entries, rights do not affect the analysis; then analyze this state
 - Called a maximal state

Definitions

- System begins at initial state
- Authorized operation causes legal transition
- Sequence of legal transitions moves system into final state
 - This sequence is a *history*
 - Final state is *derivable* from history, initial state

More Definitions

- States represented by ^h
- Set of subjects SUB^h, entities ENT^h
- Link relation in context of state *h* is *link^h*
- Dom relation in context of state *h* is *dom^h*

path^h(X,Y)

- X, Y connected by one link or a sequence of links
- Formally, either of these hold:
 - for some *i*, *link*^{*h*}_{*i*}(**X**, **Y**); or
 - there is a sequence of subjects X₀, ..., X_n such that link^h_i(X, X₀), link^h_i(X_n,Y), and for k = 1, ..., n, link^h_i(X_{k-1}, X_k)
- If multiple such paths, refer to path_i^h(X, Y)

Capacity cap(path^h(X,Y))

- Set of tickets that can flow over *path*^h(X,Y)
 - If $link_i^h(\mathbf{X},\mathbf{Y})$: set of tickets that can be copied over the link (i.e., $f_i(\tau(\mathbf{X}), \tau(\mathbf{Y}))$)
 - Otherwise, set of tickets that can be copied over all links in the sequence of links making up the path^h(X,Y)
- Note: all tickets (except those for the final link) *must* be copyable

Flow Function

- Idea: capture flow of tickets around a given state of the system
- Let there be *m path^hs* between subjects **X** and **Y** in state *h*. Then *flow function*

flow^h: $SUB^h \times SUB^h \rightarrow 2^{T \times R}$

is:

$$flow^h(\mathbf{X},\mathbf{Y}) = \bigcup_{i=1,...,m} cap(path_i^h(\mathbf{X},\mathbf{Y}))$$

Properties of Maximal State

- Maximizes flow between all pairs of subjects
 - State is called *
 - Ticket in *flow**(X,Y) means there exists a sequence of operations that can copy the ticket from X to Y
- Questions
 - Is maximal state unique?
 - Does every system have one?

Formal Definition

- Definition: $g \leq_0 h$ holds iff for all $\mathbf{X}, \mathbf{Y} \in SUB^0$, $flow^g(\mathbf{X}, \mathbf{Y}) \subseteq flow^h(\mathbf{X}, \mathbf{Y})$.
 - Note: if $g \leq_0 h$ and $h \leq_0 g$, then g, h equivalent
 - Defines set of equivalence classes on set of derivable states
- Definition: for a given system, state m is maximal iff h ≤₀ m for every derivable state h
- Intuition: flow function contains all tickets that can be transferred from one subject to another
 - All maximal states in same equivalence class

Maximal States

- Lemma. Given arbitrary finite set of states H, there exists a derivable state m such that for all h ∈ H, h ≤₀ m
- Outline of proof: induction
 - Basis: $H = \emptyset$; trivially true
 - Step: |H'| = n + 1, where $H' = G \cup \{h\}$. By IH, there is a $g \in G$ such that $x \leq_0 g$ for all $x \in G$.

- M interleaving histories of *g*, *h* which:
 - Preserves relative order of transitions in g, h
 - Omits second create operation if duplicated
- *M* ends up at state *m*
- If $path^{g}(\mathbf{X},\mathbf{Y})$ for $\mathbf{X}, \mathbf{Y} \in SUB^{g}$, $path^{m}(\mathbf{X},\mathbf{Y})$
 - So $g \leq_0 m$
- If $path^h(X,Y)$ for $X, Y \in SUB^h$, $path^m(X,Y)$
 - So $h \leq_0 m$
- Hence *m* maximal state in *H*'

Answer to Second Question

- Theorem: every system has a maximal state *
- Outline of proof: *K* is set of derivable states containing exactly one state from each equivalence class of derivable states
 - Consider X, Y in SUB⁰. Flow function's range is 2^{T×R}, so can take at most 2^{|T×R|} values. As there are |SUB⁰|² pairs of subjects in SUB⁰, at most 2^{|T×R|} |SUB⁰|² distinct equivalence classes; so K is finite
- Result follows from lemma

Safety Question

• In this model:

Is it possible to have a derivable state with X/r:c in dom(A), or does there exist a subject **B** with ticket X/rc in the initial state or which can demand X/rc and $\tau(X)/r:c$ in flow*(**B**,**A**)?

- To answer: construct maximal state and test
 - Consider acyclic attenuating schemes; how do we construct maximal state?

Intuition

- Consider state *h*.
- State u corresponds to h but with minimal number of new entities created such that maximal state m can be derived with no create operations
 - So if in history from h to m, subject X creates two entities of type a, in u only one would be created; surrogate for both
- *m* can be derived from *u* in polynomial time, so if *u* can be created by adding a finite number of subjects to *h*, safety question decidable.