ECS 235B, Lecture 3

Januar y 11, 2019

canesteal Predicate

Definition:

* canesteal(r, X, y, G,) if, and only if, there is no edge from x to y labeled
rin Gy, and the following hold simultaneously:
* There is edge from x to y labeled rin G,
* There is a sequence of rule applications py, ..., p, such that G,_; + G; using p;

* For all verticesv, win G._,, if there is an edge from vtoy in G, labeled r, then
p; is not of the form “v grants (rtoy) tow”

Example

canesteal(a, s, w, G):
l.ugrants (ttov)tos

2. s takes (t to u) from v

3. s takes (o to w) from u

canesteal Theorem

* canesteal(r, X, Yy, Gy) if, and only if, the following hold
simultaneously:
a) There is no edge from x to y labeled r in G,
b) There exists a subject x’ such that x’ = x or x’ initially spans to x
c) There exists a vertex s with an edge labeled ac toy in G,
d) caneshare(t, X', s, G,) holds

Outline of Proof

—: Assume conditions hold

* X subject
e x gets trights to s, then takes a toy from s

* X object
* caneshare(t, X', s, Gy) holds
* If X" has no a edge toy in G, x’ takes (oo to y) from s and grants it to x

* If X" has a edge toyin G, X’ creates surrogate x, gives it (t to s) and (g to x"');
then x'’ takes (o to y) and grants it to x

Outline of Proof

<: Assume canesteal(a, X, y, G,) holds

* First two conditions immediate from definition of canesteal,
caneshare

 Third condition immediate from theorem of conditions for caneshare

* Fourth condition: p minimal length sequence of rule applications
deriving G, from Gg; i smallest index such that G,_; F G, by rule p; and

adding o from some ptoyin G;
* Whatis p,?

Outline of Proof

* Not remove or create rule
e y exists already

Not grant rule

* G;first graph in which edge labeled o to y is added, so by definition of caneshare, cannot be
grant

take rule: so caneshare(t, p, s, Gy) holds
e Sois subject s’ such that s’ =s or terminally spanstos
e Sequence of islands withx' € I; and s’ € I,

Derive witness to caneshare(t, X', s, Gy) that does not use “s grants (a to y) to”
anyone

Conspiracy

 Minimum number of actors to generate a witness for
caneshare(a, X, Yy, Gy)
* Access set describes the “reach” of a subject

e Deletion set is set of vertices that cannot be involved in a transfer of
rights

* Build conspiracy graph to capture how rights flow, and derive actors
from it

Access Set

» Access set A(y) with focus y: set of vertices:
*{yl}

 {x | yinitially spansto x }
e {x' | yterminally spanstox}

* |dea is that focus can give rights to, or acquire rights from, a vertex in
this set

Example

o— t O g °- g ° t

X a b C

o— ' o o o

yﬁ f‘ h \IJ j

* A(x)={x,a} e Ale)={e,d,i,j}
*A(b)={b,a} e Aly)={vy}
*Alc)={c, b, d} e A(f)={f, vy}

*Ald)=1d} * A(h)=1{h,f,i}

Deletion Set

* Deletion set o(y, y'): contains those vertices in A(y) N A(y’) such that:
* yinitially spans to z and y’ terminally spans to z;
* y terminally spans to z and y' initially spans to z;
e z=y
o 7 = y'
* |dea is that rights can be transferred between y and y' if this set non-
empty

Example

Q;»Q<L.b< S o -o
.y;—.f< i * ° »9<—g<3
*o(x,b)={a} e o(d,e)={d}
*o(b,c)={b} e oy, f)={y}
*o(c,d)={d} e o(h,f)={f}

*o(c,e)={d}

Conspiracy Graph

* Abstracted graph H from G:
* Each subject x € G, corresponds to a vertex h(x) € H
e If O(x, y) # J, there is an edge between h(x) and h(y) in H

* [dea is that if h(x), h(y) are connected in H, then rights can be
transferred between x and y in G,

Example

g t
®- O———e- ®
X a b C
t g g g
o ®- -@- ~O
y f h i j
@ @-
h(x) h(b) h(c) h(d)
h(e)
- o- -@

Results

* /(x): h(x), all vertices h(y) such that y initially spans to x
* T(x): h(x), all vertices h(y) such that y terminally spans to x

* Theorem: caneshare(a, X, y, G,) iff there exists a path from some h(p)
in /(x) to some h(q) in T(y)

* Theorem: [vertices on shortest path between h(p), h(q) in above
theorem; / conspirators necessary and sufficient to witness

Example: Conspirators

@ @-
h(x) h(b) h(c) h(d)
h(e)

o o °
h(y) h(h)

* l(x) ={ h(x) }, T(z) ={ h(e) }
* Path between h(x), h(e) so canesharelr, x, z, G,)
e Shortest path between h(x), h(e) has 4 vertices
—> Conspirators are e, ¢, b, x

Example: Witness

t ri g
o— U=
X r

t g
@- ®
y f

l.egrants(rtoz)tod

4.b grants (rtoz)to a

2. c takes (rto z) fromd 5. X takes (r to z) from a

3.cgrants(rtoz)tob

Key Question

e Characterize class of models for which safety is decidable
e Existence: Take-Grant Protection Model is a member of such a class

* Universality: In general, question undecidable, so for some models it is not
decidable

* What is the dividing line?

Schematic Protection Model

* Type-based model

* Protection type: entity label determining how control rights affect the entity
* Set at creation and cannot be changed
* Ticket: description of a single right over an entity
* Entity has sets of tickets (called a domain)
» Ticket is X/r, where X is entity and r right
* Functions determine rights transfer
* Link: are source, target “connected”?
 Filter: is transfer of ticket authorized?

Link Predicate

* Idea: link,(X, Y) if X can assert some control right over Y

e Conjunction of disjunction of:
* X/z € dom(X)
e X/z € dom(Y)
* Y/z € dom(X)
* Y/z € dom(Y)
* true

Examples

* Take-Grant:

link(X,Y) =Y/g € dom(X) v X/t € dom(Y)
* Broadcast:

link(X, Y) = X/b € dom(X)

e Pull:
link(X,Y) =Y/p € dom(Y)

Filter Function

* Range is set of copyable tickets
* Entity type, right
* Domain is subject pairs
* Copy a ticket X/r:c from dom(Y) to dom(2)
e X/rc € dom(Y)
* link(Y, Z)
* t(Y)/ric € fi(t(Y), 1(Z))

* One filter function per link function

Example

* flr(Y), ©(Z)) =T xR

* Any ticket can be transferred (if other conditions met)

e f(t(Y), T(2)) = T x RI

* Only tickets with inert rights can be transferred (if other conditions met)

* flx(Y), 1(2)) = ©

 No tickets can be transferred

Example

e Take-Grant Protection Model
e TS ={subjects }, TO ={ objects }
e RC={tc,gc}, RI={rc, wc}
* link(p, q) = p/t € dom(q) v a/g € dom(p)
* f(subject, subject) = { subject, object } x { tc, gc, rc, wc }

Create Operation

* Must handle type, tickets of new entity

 Relation cc(a, b) [cc for can-create]
* Subject of type a can create entity of type b

 Rule of acyclic creates:

(@O—=0> (O—(

d s

Types

e cr(a, b): tickets created when subject of type a creates entity of type b
[cr for create-rule]

* B object: cr(a, b) c { b/r:c € RI'}
* Agets B/r:ciff b/r:c € cr(a, b)
e B subject: cr(a, b) has two subsets
* crp(a, b) added to A, crda, b) added to B
* AgetsB/r:cif b/r.c € cro(a, b)
* BgetsA/r:.cifa/r.c € crda, b)

Non-Distinct Types

cr(a, a): who gets what?
e self/r:c are tickets for creator
e a/r:c tickets for created

cr(a, a) ={a/r:, self/r.c | r:c € R}

Attenuating Create Rule

cr(a, b) attenuating if:
1. crda, b) ccrpla, b) and

2. a/r:c € crp(a, b) = self/r.c € crp(a, b)

Example: Owner-Based Policy

e Users can create files, creator can give itself any
inert rights over file

e cc={ (user, file)}
 cr(user, file) ={ file/r:c | r € RI }

e Attenuating, as graph is acyclic, loop free

(owner)—{_ fite)

Example: Take-Grant

* Say subjects create subjects (type s), objects (type 0), but
get only inert rights over latter

*cc={(s,5),(s,0)}
e cr(a, b)=0
« crpls, s) ={s/tc, s/gc, s/rc, s/wc'}
* crp(s, 0) ={s/rc, s/wc}
* Not attenuating, as no self tickets provided; subject creates
subject

.
()G

Safety Analysis

* Goal: identify types of policies with tractable safety analyses

* Approach: derive a state in which additional entries, rights do not
affect the analysis; then analyze this state

e Called a maximal state

Definitions

e System begins at initial state
* Authorized operation causes legal transition

e Sequence of legal transitions moves system into final state
* This sequence is a history
* Final state is derivable from history, initial state

More Definitions

* States represented by "
* Set of subjects SUB", entities ENT"
* Link relation in context of state h is link"

 Dom relation in context of state h is dom”

path"(X)Y)

* X, Y connected by one link or a sequence of links

* Formally, either of these hold:
* for some i, link"(X, Y); or

* there is a sequence of subjects X,, ..., X, such that link(X, X,), link/(X,,Y), and
fork=1, ..., n, link"(X,_;, X,)

* If multiple such paths, refer to path/(X, Y)

Capacity cap(path”(X,Y))

* Set of tickets that can flow over path”(X,Y)
* If link/(X,Y): set of tickets that can be copied over the link (i.e., f(t(X), t(Y)))

* Otherwise, set of tickets that can be copied over all links in the sequence of
links making up the path"(X,Y)

* Note: all tickets (except those for the final link) must be copyable

Flow Function

* |dea: capture flow of tickets around a given state of the system

* Let there be m path”s between subjects X and Y in state h. Then flow
function

flowh: SUB" x SUBM — 2R
IS:

flow"(X,Y) =\Up, m cap(path{(X,Y))

Properties of Maximal State

* Maximizes flow between all pairs of subjects
 State is called *
* Ticket in flow*(X,Y) means there exists a sequence of operations that can
copy the ticket from Xto Y
* Questions
* |s maximal state unique?
* Does every system have one?

Formal Definition

* Definition: g <, h holds iff for all X, Y € SUBO, flow9(X,Y) < flow"(X,Y).
* Note: if g <, hand h £, g, then g, h equivalent
* Defines set of equivalence classes on set of derivable states

* Definition: for a given system, state m is maximal iff h <, m for every
derivable state h

* Intuition: flow function contains all tickets that can be transferred
from one subject to another
* All maximal states in same equivalence class

Maximal States

* Lemma. Given arbitrary finite set of states H, there exists a derivable
state m such that forallh e H, h <, m

e Qutline of proof: induction
e Basis: H = J; trivially true

e Step: |H'| =n+1,where H' =G U {h}. By IH, thereisa g € Gsuchthatx<,g
forall x € G.

Outline of Proof

* M interleaving histories of g, h which:
* Preserves relative order of transitionsin g, h
* Omits second create operation if duplicated

* M ends up at state m
* If path9(X,Y) for X, Y € SUBY, path™(X,Y)
*Sog<sym

* If path"(X,Y) for X, Y € SUB", path™(X,Y)

*Sohgym

* Hence m maximal state in H’

Answer to Second Question

* Theorem: every system has a maximal state *

e Outline of proof: K is set of derivable states containing exactly one
state from each equivalence class of derivable states

* Consider X, Y in SUBC. Flow function’s range is 2™R, so can take at most 2/l
values. As there are |SUB?|? pairs of subjects in SUB?, at most 2I™RI | SUB?|2
distinct equivalence classes; so K'is finite

e Result follows from lemma

Safety Question

* In this model:

s it possible to have a derivable state with X/r:c in dom(A), or does there exist
a subject B with ticket X/rc in the initial state or which can demand X/rc and
t(X)/r:c in flow*(B,A)?
 To answer: construct maximal state and test
* Consider acyclic attenuating schemes; how do we construct maximal state?

Intultion

e Consider state h.

e State u corresponds to h but with minimal number of new entities
created such that maximal state m can be derived with no create
operations

* Soif in history from h to m, subject X creates two entities of type a, in u only
one would be created; surrogate for both

* m can be derived from u in polynomial time, so if u can be created by
adding a finite number of subjects to h, safety question decidable.

