
ECS 235B, Lecture 3
January 11, 2019

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 1

can•steal Predicate

Definition:
• can•steal(r, x, y, G0) if, and only if, there is no edge from x to y labeled
r in G0, and the following hold simultaneously:
• There is edge from x to y labeled r in Gn
• There is a sequence of rule applications r1, …, rn such that Gi–1 ⊢ Gi using ri
• For all vertices v, w in Gi–1, if there is an edge from v to y in G0 labeled r, then
ri is not of the form “v grants (r to y) to w”

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 2

Example

can•steal(a, s, w, G0):

¡

l
l

l

s
u

w

v

g

t

t

a
1. u grants (t to v) to s

t

2. s takes (t to u) from v
t

3. s takes (a to w) from ua

January 11, 2019 ECS 235B, Foundations of Computer and Information Security Slide #3-3

can•steal Theorem

• can•steal(r, x, y, G0) if, and only if, the following hold
simultaneously:

a) There is no edge from x to y labeled r in G0

b) There exists a subject x¢ such that x¢ = x or x¢ initially spans to x
c) There exists a vertex s with an edge labeled a to y in G0

d) can•share(t, x¢, s, G0) holds

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 4

Outline of Proof

Þ: Assume conditions hold
• x subject
• x gets t rights to s, then takes a to y from s

• x object
• can•share(t, x¢, s, G0) holds
• If x¢ has no a edge to y in G0, x¢ takes (a to y) from s and grants it to x
• If x¢ has a edge to y in G0, x¢ creates surrogate x¢¢, gives it (t to s) and (g to x¢¢);

then x¢¢ takes (a to y) and grants it to x

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 5

Outline of Proof

Ü: Assume can•steal(a, x, y, G0) holds
• First two conditions immediate from definition of can•steal,
can•share
• Third condition immediate from theorem of conditions for can•share
• Fourth condition: r minimal length sequence of rule applications

deriving Gn from G0; i smallest index such that Gi–1 ⊢ Gi by rule ri and
adding a from some p to y in Gi
• What is ri?

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 6

Outline of Proof

• Not remove or create rule
• y exists already

• Not grant rule
• Gi first graph in which edge labeled a to y is added, so by definition of can•share, cannot be

grant

• take rule: so can•share(t, p, s, G0) holds
• So is subject s¢ such that s¢ = s or terminally spans to s
• Sequence of islands with x¢ Î I1 and s¢ Î In

• Derive witness to can•share(t, x¢, s, G0) that does not use “s grants (a to y) to”
anyone

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 7

Conspiracy

• Minimum number of actors to generate a witness for
can•share(a, x, y, G0)

• Access set describes the “reach” of a subject
• Deletion set is set of vertices that cannot be involved in a transfer of

rights
• Build conspiracy graph to capture how rights flow, and derive actors

from it

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 8

Example

l ¡

l

l l

¡

l

l

l l

¡¡

x a b c d

y f h i j

e z

t

t

t

t

g

g g

g

g

g

r

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 9

Access Set

• Access set A(y) with focus y: set of vertices:
• { y }
• { x | y initially spans to x }
• { x¢ | y terminally spans to x }

• Idea is that focus can give rights to, or acquire rights from, a vertex in
this set

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 10

Example

• A(x) = { x, a } • A(e) = { e, d, i, j }
• A(b) = { b, a } • A(y) = { y }
• A(c) = { c, b, d } • A(f) = { f, y }
• A(d) = { d } • A(h) = { h, f, i }

l ¡

l

l l

¡

l

l

l l

¡¡

x a b c d

y f h i j

e z

t

t

t

t

g

g g

g

g

g

r

January 11, 2019 ECS 235B, Foundations of Computer and Information Security Slide #3-11

Deletion Set

• Deletion set d(y, y¢): contains those vertices in A(y) Ç A(y¢) such that:
• y initially spans to z and y¢ terminally spans to z;
• y terminally spans to z and y¢ initially spans to z;
• z = y
• z = y¢

• Idea is that rights can be transferred between y and y¢ if this set non-
empty

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 12

Example

• d(x, b) = { a } • d(d, e) = { d }
• d(b, c) = { b } • d(y, f) = { y }
• d(c, d) = { d } • d(h, f) = { f }
• d(c, e) = { d }

●

● ● ●

● ● ●

●

❍

❍ ❍

❍

x a b c d

e
q

jihfy

t g
g

t
gg

r

gt

g t

z

January 11, 2019 ECS 235B, Foundations of Computer and Information Security Slide #3-13

Conspiracy Graph

• Abstracted graph H from G0:
• Each subject x Î G0 corresponds to a vertex h(x) Î H
• If d(x, y) ≠ Æ, there is an edge between h(x) and h(y) in H

• Idea is that if h(x), h(y) are connected in H, then rights can be
transferred between x and y in G0

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 14

Example

l ¡

l

l l

¡

l

l

l l

¡¡

x a b c d

y f h i j

e z

t

t

t

t

g

g g

g

g

g

r

h(f)

l

l

l l

l

l

l l

h(x)

h(y)

h(b) h(c) h(d)

h(e)

h(h)
January 11, 2019 ECS 235B, Foundations of Computer and Information Security Slide #3-15

Results

• I(x): h(x), all vertices h(y) such that y initially spans to x
• T(x): h(x), all vertices h(y) such that y terminally spans to x
• Theorem: can•share(a, x, y, G0) iff there exists a path from some h(p)

in I(x) to some h(q) in T(y)
• Theorem: l vertices on shortest path between h(p), h(q) in above

theorem; l conspirators necessary and sufficient to witness

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 16

Example: Conspirators

• I(x) = { h(x) }, T(z) = { h(e) }
• Path between h(x), h(e) so can•share(r, x, z, G0)
• Shortest path between h(x), h(e) has 4 vertices
Þ Conspirators are e, c, b, x

l

l

l l

l

l

l l

h(x)

h(y)

h(b) h(c) h(d)

h(e)

h(h)

January 11, 2019 ECS 235B, Foundations of Computer and Information Security Slide #3-17

Example: Witness

l ¡

l

l l

¡

l

l

l l

¡¡

x

a b c d

y f h i j

e z

t

t

t

t

g

g g

g

g

g r

1. e grants (r to z) to d
2. c takes (r to z) from d

rr

3. c grants (r to z) to b

r

5. x takes (r to z) from a
4. b grants (r to z) to a

r

January 11, 2019 ECS 235B, Foundations of Computer and Information Security Slide #3-18

Key Question

• Characterize class of models for which safety is decidable
• Existence: Take-Grant Protection Model is a member of such a class
• Universality: In general, question undecidable, so for some models it is not

decidable

• What is the dividing line?

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 19

Schematic Protection Model

• Type-based model
• Protection type: entity label determining how control rights affect the entity

• Set at creation and cannot be changed
• Ticket: description of a single right over an entity

• Entity has sets of tickets (called a domain)
• Ticket is X/r, where X is entity and r right

• Functions determine rights transfer
• Link: are source, target “connected”?
• Filter: is transfer of ticket authorized?

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 20

Link Predicate

• Idea: linki(X, Y) if X can assert some control right over Y
• Conjunction of disjunction of:
• X/z Î dom(X)
• X/z Î dom(Y)
• Y/z Î dom(X)
• Y/z Î dom(Y)
• true

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 21

Examples

• Take-Grant:
link(X, Y) = Y/g Î dom(X) v X/t Î dom(Y)

• Broadcast:
link(X, Y) = X/b Î dom(X)

• Pull:
link(X, Y) = Y/p Î dom(Y)

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 22

Filter Function

• Range is set of copyable tickets
• Entity type, right

• Domain is subject pairs
• Copy a ticket X/r:c from dom(Y) to dom(Z)
• X/rc Î dom(Y)
• linki(Y, Z)
• t(Y)/r:c Î fi(t(Y), t(Z))

• One filter function per link function

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 23

Example

• f(t(Y), t(Z)) = T ´ R
• Any ticket can be transferred (if other conditions met)

• f(t(Y), t(Z)) = T ´ RI
• Only tickets with inert rights can be transferred (if other conditions met)

• f(t(Y), t(Z)) = Æ
• No tickets can be transferred

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 24

Example

• Take-Grant Protection Model
• TS = { subjects }, TO = { objects }
• RC = { tc, gc }, RI = { rc, wc }
• link(p, q) = p/t Î dom(q) Ú q/g Î dom(p)
• f(subject, subject) = { subject, object } ´ { tc, gc, rc, wc }

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 25

Create Operation

• Must handle type, tickets of new entity
• Relation cc(a, b) [cc for can-create]
• Subject of type a can create entity of type b

• Rule of acyclic creates:

a b

c d

a b

c d

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 26

Types

• cr(a, b): tickets created when subject of type a creates entity of type b
[cr for create-rule]
• B object: cr(a, b) Í { b/r:c Î RI }
• A gets B/r:c iff b/r:c Î cr(a, b)

• B subject: cr(a, b) has two subsets
• crP(a, b) added to A, crC(a, b) added to B
• A gets B/r:c if b/r:c Î crP(a, b)
• B gets A/r:c if a/r:c Î crC(a, b)

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 27

Non-Distinct Types

cr(a, a): who gets what?
• self/r:c are tickets for creator
• a/r:c tickets for created
cr(a, a) = { a/r:c, self/r:c | r:c Î R}

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 28

Attenuating Create Rule

cr(a, b) attenuating if:
1. crC(a, b) Í crP(a, b) and
2. a/r:c Î crP(a, b) Þ self/r:c Î crP(a, b)

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 29

Example: Owner-Based Policy

• Users can create files, creator can give itself any
inert rights over file
• cc = { (user , file) }
• cr(user, file) = { file/r:c | r Î RI }

• Attenuating, as graph is acyclic, loop free

owner file

January 11, 2019 ECS 235B, Foundations of Computer and Information Security Slide #3-30

Example: Take-Grant

• Say subjects create subjects (type s), objects (type o), but
get only inert rights over latter
• cc = { (s, s), (s, o) }

• crC(a, b) = Æ
• crP(s, s) = {s/tc, s/gc, s/rc, s/wc }
• crP(s, o) = {s/rc, s/wc }

• Not attenuating, as no self tickets provided; subject creates
subject

subject object

January 11, 2019 ECS 235B, Foundations of Computer and Information Security Slide #3-31

Safety Analysis

• Goal: identify types of policies with tractable safety analyses

• Approach: derive a state in which additional entries, rights do not
affect the analysis; then analyze this state
• Called a maximal state

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 32

Definitions

• System begins at initial state
• Authorized operation causes legal transition
• Sequence of legal transitions moves system into final state
• This sequence is a history
• Final state is derivable from history, initial state

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 33

More Definitions

• States represented by h

• Set of subjects SUBh, entities ENTh

• Link relation in context of state h is linkh

• Dom relation in context of state h is domh

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 34

pathh(X,Y)

• X, Y connected by one link or a sequence of links
• Formally, either of these hold:
• for some i, linkih(X, Y); or
• there is a sequence of subjects X0, …, Xn such that linkih(X, X0), linkih(Xn,Y), and

for k = 1, …, n, linkih(Xk–1, Xk)

• If multiple such paths, refer to pathjh(X, Y)

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 35

Capacity cap(pathh(X,Y))

• Set of tickets that can flow over pathh(X,Y)
• If linkih(X,Y): set of tickets that can be copied over the link (i.e., fi(t(X), t(Y)))
• Otherwise, set of tickets that can be copied over all links in the sequence of

links making up the pathh(X,Y)

• Note: all tickets (except those for the final link) must be copyable

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 36

Flow Function

• Idea: capture flow of tickets around a given state of the system
• Let there be m pathhs between subjects X and Y in state h. Then flow

function
flowh: SUBh ´ SUBh ® 2T´R

is:

flowh(X,Y) = Èi=1,…,m cap(pathi
h(X,Y))

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 37

Properties of Maximal State

• Maximizes flow between all pairs of subjects
• State is called *
• Ticket in flow*(X,Y) means there exists a sequence of operations that can

copy the ticket from X to Y
• Questions
• Is maximal state unique?
• Does every system have one?

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 38

Formal Definition

• Definition: g ≤0 h holds iff for all X, Y Î SUB0, flowg(X,Y) Í flowh(X,Y).
• Note: if g ≤0 h and h ≤0 g, then g, h equivalent
• Defines set of equivalence classes on set of derivable states

• Definition: for a given system, state m is maximal iff h ≤0 m for every
derivable state h
• Intuition: flow function contains all tickets that can be transferred

from one subject to another
• All maximal states in same equivalence class

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 39

Maximal States

• Lemma. Given arbitrary finite set of states H, there exists a derivable
state m such that for all h Î H, h ≤0 m
• Outline of proof: induction
• Basis: H = Æ; trivially true
• Step: |H¢| = n + 1, where H¢ = GÈ {h}. By IH, there is a g Î G such that x ≤0 g

for all x Î G.

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 40

Outline of Proof

• M interleaving histories of g, h which:
• Preserves relative order of transitions in g, h
• Omits second create operation if duplicated

• M ends up at state m
• If pathg(X,Y) for X, Y Î SUBg, pathm(X,Y)
• So g ≤0 m

• If pathh(X,Y) for X, Y Î SUBh, pathm(X,Y)
• So h ≤0 m

• Hence m maximal state in H¢

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 41

Answer to Second Question

• Theorem: every system has a maximal state *
• Outline of proof: K is set of derivable states containing exactly one

state from each equivalence class of derivable states
• Consider X, Y in SUB0. Flow function’s range is 2T´R, so can take at most 2|T´R|

values. As there are |SUB0|2 pairs of subjects in SUB0, at most 2|T´R| |SUB0|2

distinct equivalence classes; so K is finite

• Result follows from lemma

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 42

Safety Question

• In this model:
Is it possible to have a derivable state with X/r:c in dom(A), or does there exist
a subject B with ticket X/rc in the initial state or which can demand X/rc and
t(X)/r:c in flow*(B,A)?

• To answer: construct maximal state and test
• Consider acyclic attenuating schemes; how do we construct maximal state?

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 43

Intuition

• Consider state h.
• State u corresponds to h but with minimal number of new entities

created such that maximal state m can be derived with no create
operations
• So if in history from h to m, subject X creates two entities of type a, in u only

one would be created; surrogate for both

• m can be derived from u in polynomial time, so if u can be created by
adding a finite number of subjects to h, safety question decidable.

January 11, 2019 ECS 235B, Foundations of Computer and Information Security 44

