ECS 235B, Lecture 5

January 16, 2019

Security Properties

- Question: given two models, do they have the same security properties?
 - First comes theory
 - Then comes an example comparison
- Basic idea: view access request as query asking if subject has right to perform action on object

Alternate Definition of "Scheme"

- Σ set of states
- Q set of queries
- $e: \Sigma \times Q \rightarrow \{true, false\}$
 - Called *entailment relation*
- *T* set of state transition rules
- (Σ, Q, e, T) is an access control scheme

Alternate Definition of "Scheme"

- *s* tries to access *o*
 - Corresponds to query $q \in Q$
- If state $\sigma \in \Sigma$ allows access, then $e(\sigma, q) = true$; otherwise, $e(\sigma, q) = false$
- Write change of state from σ_0 to σ_1 as $\sigma_0 \mapsto \sigma_1$
 - Emphasizing we're looking at *permissions*
 - Multiple transitions are $\sigma_0 \mapsto_{\tau}^* \sigma_n$
 - Σ_n said to be τ -reachable from σ_0

Example: Take-Grant

- $\boldsymbol{\Sigma}$ set of all possible protection graphs
- Q set of queries

{ $can \bullet share(\alpha, \mathbf{v}_1, \mathbf{v}_2, G_0) \mid \alpha \in R, \mathbf{v}_1, \mathbf{v}_2 \in G_0$ }

- $e(\sigma_0, q) = true$ if q holds; $e(\sigma_0, q) = false$ if not
- *T* set of sequences of take, grant, create, remove rules

Security Analysis Instance

- Let (Σ, Q, e, T) be an access control scheme
- Tuple (σ , q, τ , Π) is security analysis instance, where:
 - $\sigma \in \Sigma$ $-\tau \in T$
 - $q \in Q$ Π is \forall or \exists
- If Π is ∃, existential security analysis
 - Is there a state σ' such that $\sigma \mapsto_{\tau}^{*} \sigma'$, $e(\sigma', q) = true$?
- If Π is ∀, *universal* security analysis
 - For all states σ' such that $\sigma \mapsto_{\tau}^{*} \sigma'$, is $e(\sigma', q) = true$?

Example: Take-Grant

- $\sigma_0 = G_0$
- q is can share $(r, \mathbf{v}_1, \mathbf{v}_2, G_0)$
- $\bullet\,\tau$ is sequence of take-grant rules
- П is Э
- Security analysis instance examines whether v₁ has r rights over v₂ in graph with initial state G₀
- So safety question is security analysis instance

Comparing Two Models

- Each query in A corresponds to a query in B
- Each (state, state transition) in A corresponds to (state, state transition) in B

Formally:

- $A = (\Sigma^A, Q^A, e^A, T^A)$ and $B = (\Sigma^B, Q^B, e^B, T^B)$
- *mapping* from A to B is:
 - $f: (\Sigma^A \times T^A) \cup Q^A \rightarrow (\Sigma^B \times T^B) \cup Q^B$

Image of Instance

- *f* mapping from A to B
- image of a security analysis instance (σ^A, q^A, τ^A, Π) under f is (σ^B, q^B, τ^B, Π), where:
 - $f((\sigma^A, \tau^A)) = (\sigma^B, \tau^B)$
 - $f(q^A) = q^B$
- *f* is *security-preserving* if every security analysis instance in *A* is true iff its image is true

Composition of Queries

- Let (Σ, Q, e, T) be an access control scheme
- Tuple (σ , φ , τ , Π) is compositional *security analysis instance*, where φ is propositional logic formula of queries from Q
- *image of compositional security analysis instance* defined similarly to previous
- *f* is *strongly security-preserving* if every compositional security analysis instance in *A* is true iff its image is true

State-Matching Reduction

- $A = (\Sigma^A, Q^A, e^A, T^A), B = (\Sigma^B, Q^B, e^B, T^B), f$ mapping from A to B
- σ^A , σ^B equivalent under the mapping f when
 - $e^A(\sigma^A, q^A) = e^B(\sigma^B, q^B)$
- *f* state-matching reduction if for all $\sigma^A \in S^A$, $\tau^A \in T^A$, $(\sigma^B, \tau^B) = f((\sigma^A, \tau^A))$ has the following properties:

Property 1

- For every state σ'^A in scheme A such that $\sigma^A \mapsto_{\tau}^* \sigma'^A$, there is a state σ'^B in scheme B such that $\sigma^B \mapsto_{\tau}^* \sigma'^B$, and σ'^A and σ'^B are equivalent under the mapping f
 - That is, for every reachable state in *A*, a matching state in *B* gives the same answer for every query

Property 2

- For every state σ'^B in scheme *B* such that $\sigma^B \mapsto_{\tau}^* \sigma'^B$, there is a state σ'^A in scheme *A* such that $\sigma^A \mapsto_{\tau}^* \sigma'^A$, and σ'^A and σ'^B are equivalent under the mapping *f*
 - That is, for every reachable state in *B*, a matching state in *A* gives the same answer for every query

Mapping *f* from scheme *A* to *B* is strongly security-preserving iff *f* is a state-matching reduction

$\mathsf{Proof} (\Longrightarrow)$

- Must show (σ^A , φ^A , τ^A , Π) true iff (σ^B , φ^B , τ^B , Π) true
- Π is \exists : assume τ^A -reachable state σ'^A from σ^A in which φ^A true
 - By property 1, there is a state σ'^B corresponding to σ'^A in which φ^B holds
- Π is \forall : assume τ^{A} -reachable state σ^{A} from σ^{A} in which φ^{A} false
 - By property 1, there is a state σ'^B corresponding to σ'^A in which φ^B false
- Same for φ^{B} with τ^{B} -reachable state σ'^{B} from σ^{B}
- So $(\sigma^A, \varphi^A, \tau^A, \Pi)$ true iff $(\sigma^B, \varphi^B, \tau^B, \Pi)$ true

Proof (⇐=)

- Let *f* be map from *A* to *B* but not state-matching reduction. Then there are $\sigma^A \in S^A$, $\tau^A \in T^A$, $(\sigma^B, \tau^B) = f((\sigma^A, \tau^A))$ violating at least one of the properties
- Assume it's property 1; σ^A, σ^B corresponding states. There is a τ^A-reachable state σ'^A from σ^A such that no τ^B-reachable state from σ^B is equivalent to σ'^B
- Generate φ^A and φ^B such that the existential compositional security analysis in A is true but in B is false
 - To do this, look at each $q^A \in Q^A$
 - If $e(\sigma'^A, q^A) = true$, conjoin q^A to φ^A ; otherwise, conjoin $\neg q^A$ to φ^A
 - Then $e(\sigma'^A, q^A) = true$ but for $\varphi^B = f(\varphi^A)$ and all states σ'^B that are τ^B -reachable from σ^B , $e(\sigma'^B, q^B) = false$
- Thus, *f* is not strongly security-preserving
- Argument for property 2 is similar

Expressive Power

If access control model *MA* has a scheme that cannot be mapped into a scheme in access control model *MB* using a state-matching reduction, then model *MB* is *less expressive than* model *MA*.

If every scheme in model *MA* can be mapped into a scheme in model *MB* using a state-matching reduction, then model *MB* is *as expressive as* model *MA*.

If *MA* is as expressive as *MB*, and MB is as expressive as *MA*, the models are *equivalent*

• Note this does not assume monotonicity, unlike earlier definition

Augmented Typed Access Control Matrix

```
Add a test for the absence of rights to TAM
command add•right(s:u, o:v)
if own in a[s,o] and r not in a[s,o]
then
enter r into a[s,o]
```

end

• How does this affect the answer to the safety question?

Safety Question

- ATAM can be mapped onto TAM
- But will the mapping, or any such mapping, preserve security properties?
- Approach: consider TAM as an access control model

TAM as Access Control Model

- S set of subjects; S_{σ} subjects in state σ
- O set of objects; O_{σ} objects in state σ
- *R* set of rights; R_{σ} rights in state σ
- *T* set of types; T_{σ} subjects in state σ
- $t: S_{\sigma} \cup O_{\sigma} \longrightarrow T_{\sigma}$ gives type of any subject or object
- State σ defined as (S_{σ} , O_{σ} , R_{σ} , T_{σ} , t)
- In TAM, query is of form "is $r \in a[s,o]$ ", and $e(s, r \in a[s,o])$ true iff $s \in S_{\sigma}$, $o \in O_{\sigma}$, $r \in R_{\sigma}$, $r \in a_{\sigma}[s,o]$ are true

ATAM as Access Control Model

Same as TAM with one addition:

• ATAM also allows queries of form "is $r \notin a[s,o]$ ", and $e(s, r \notin a[s,o])$ true iff $s \in S_{\sigma}$, $o \in O_{\sigma}$, $r \in R_{\sigma}$, $r \notin a_{\sigma}[s,o]$ are true

Theorem

A state-matching reduction from ATAM to Tam does not exist.

Outline of proof: by contradiction

- Consider two state transitions, one that creates subject and one that adds right *r* to an element of the matrix
- Can determine an upper bound on the number of answers to TAM query a command can change; depends on state and commands

- Assume *f* is state-matching reduction from ATAM to TAM
- Consider simple ATAM scheme:
 - Initial state σ_0 has no subjects, objects
 - All entities have type t
 - Only one right *r*
 - Query $q_{ij} = r \in a[s,o]$; query $\underline{q_{ij}} = r \notin a[s,o]$
 - 2 state transition rules
 - make•subj(s : t) creates subject s of type t
 - *add*•*right*(*x* : *t*, *y* : *t*) adds right *r* to *a*[*x*, *y*]

- TAM: superscript *T* represents components of that system
 - So initial state is $\sigma_0^T = f(\sigma_0)$, transitions are $\tau^T = f(\tau)$
- By definition of state-matching reduction, how f maps queries does not depend on initial state or state transitions of a model
- Let p, q be queries in ATAM and p^T , q^T the corresponding queries in TAM; if $p \neq q$, then $p^T \neq q^T$
- As commands in TAM execute, they can change the value (response) of q_{ij}
- Upper bound on the number of values of queries a single command can change is *m* (number of enter or adderight operations)

- Choose *n* > *m*
- In ATAM, construct state σ_k such that:
 - $\sigma_0 \rightarrow^* \sigma_k$; and
 - $e(\sigma_k, \neg q_{1,1} \land \underline{q_{1,1}} \land \ldots \land \neg q_{n,n} \land \underline{q_{n,n}})$ is true
- So $e(\sigma_k, q_{i,j})$ is false, $e(\sigma_k, q_{i,j})$ is true for all $1 \le i, j \le n$
- As f is a state-matching reduction, there is a state σ_k^T in TAM that causes the corresponding queries to be answered the same way
- Consider $\sigma_0^T \to \sigma_1^T \to \ldots \to \sigma_k^T$; choose first state σ_c^T such that $e(\sigma_c^T, q_{i,j}^T \lor q_{i,j}^T)$ is true for all $1 \le i, j \le n$

- In σ_{C-1}^{T} , $e(\sigma_{C-1}^{T}, q_{v,w}^{T} \lor q_{v,w}^{T})$ is false for some $1 \le v, w \le n$, so $e(\sigma_{C-1}^{T}, \neg q_{v,w}^{T} \land \neg q_{v,w}^{T})$ is true
- State σ in ATAM for which $e(\sigma, \neg q_{v,w} \land \neg q_{v,w})$ is true is one in which either s_v or s_w or both does not exist
- Thus in that state, one of the following 2 queries holds:
 - $Q_1 = \neg q_{\nu,1} \land \neg \underline{q}_{\nu,1} \land \ldots \land \neg q_{n,\nu} \land \neg \underline{q}_{n,\nu}$
 - $Q_1 = \neg q_{w,1} \land \neg q_{\underline{w,1}} \land \ldots \land \neg q_{n,w} \land \neg \underline{q_{n,w}}$
- So in TAM, $e(\sigma_{C-1}^{T}, Q_1^{T} \wedge Q_2^{T})$ is true

- Now consider the transition from $\sigma_{C^{-1}}{}^{\mathcal{T}}$ to $\sigma_{C}{}^{\mathcal{T}}$
- Values of at least *n* queries in Q_1 or Q_2 must change from false to true
- But each command can change at most *m* < *n* queries
- This is a contradiction
- So no such f can exist, proving the result

Thus, ATAM can express security properties that TAM cannot

Key Points

- Safety problem undecidable
- Limiting scope of systems can make problem decidable
- Types critical to safety problem's analysis

Security Policies

- Policies
- Trust
- Nature of Security Mechanisms
- Policy Expression Languages
- Limits on Secure and Precise Mechanisms

Security Policy

- Policy partitions system states into:
 - Authorized (secure)
 - These are states the system can enter
 - Unauthorized (nonsecure)
 - If the system enters any of these states, it's a security violation
- Secure system
 - Starts in authorized state
 - Never enters unauthorized state

Confidentiality

- X set of entities, I information
- I has the *confidentiality* property with respect to X if no x ∈ X can obtain information from I
- I can be disclosed to others
- Example:
 - X set of students
 - I final exam answer key
 - I is confidential with respect to X if students cannot obtain final exam answer key

Integrity

- X set of entities, I information
- I has the *integrity* property with respect to X if all x ∈ X trust information in I
- Types of integrity:
 - Trust *I*, its conveyance and protection (data integrity)
 - *I* information about origin of something or an identity (origin integrity, authentication)
 - *I* resource: means resource functions as it should (assurance)

Availability

- X set of entities, I resource
- I has the *availability* property with respect to X if all $x \in X$ can access I
- Types of availability:
 - Traditional: *x* gets access or not
 - Quality of service: promised a level of access (for example, a specific level of bandwidth); *x* meets it or not, even though some access is achieved

Policy Models

- Abstract description of a policy or class of policies
- Focus on points of interest in policies
 - Security levels in multilevel security models
 - Separation of duty in Clark-Wilson model
 - Conflict of interest in Chinese Wall model

Mechanisms

- Entity or procedure that enforces some part of the security policy
 - Access controls (like bits to prevent someone from reading a homework file)
 - Disallowing people from bringing CDs and floppy disks into a computer facility to control what is placed on systems

Question

- Policy disallows cheating
 - Includes copying homework, with or without permission
- CS class has students do homework on computer
- Anne forgets to read-protect her homework file
- Bill copies it
- Who breached security?
 - Anne, Bill, or both?

Answer Part 1

- Bill clearly breached security
 - Policy forbids copying homework assignment
 - Bill did it
 - System entered unauthorized state (Bill having a copy of Anne's assignment)
- If not explicit in computer security policy, certainly implicit
 - Not credible that a unit of the university allows something that the university as a whole forbids, unless the unit explicitly says so

Answer Part #2

- Anne didn't protect her homework
 - Not required by security policy
- She didn't breach security
- If policy said students had to read-protect homework files, then Anne did breach security
 - She didn't do this

Types of Security Policies

- Military (governmental) security policy
 - Policy primarily protecting confidentiality
- Commercial security policy
 - Policy primarily protecting integrity
- Confidentiality policy
 - Policy protecting only confidentiality
- Integrity policy
 - Policy protecting only integrity

Integrity and Transactions

- Begin in consistent state
 - "Consistent" defined by specification
- Perform series of actions (*transaction*)
 - Actions cannot be interrupted
 - If actions complete, system in consistent state
 - If actions do not complete, system reverts to a consistent state