ECS 235B, Lecture 7

January 23, 2019

Example

- Anna, Bill must do something cooperatively
 - But they don't trust each other
- Jointly create a proxy
 - Each gives proxy only necessary rights
- In ESPM:
 - Anna, Bill type a; proxy type p; right $x \in R$
 - cc(a, a) = p
 - $cr_{Anna}(a, a, p) = cr_{Bill}(a, a, p) = \emptyset$
 - $cr_{proxy}(a, a, p) = \{ Anna/x, Bill//x \}$

2-Parent Joint Create Suffices

- Goal: emulate 3-parent joint create with 2-parent joint create
- Definition of 3-parent joint create (subjects P_1 , P_2 , P_3 ; child C):
 - $cc(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = Z \subseteq T$
 - $cr_{P1}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{1,1} \cup P_1/R_{2,1}$
 - $cr_{P2}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{2,1} \cup P_2/R_{2,2}$
 - $cr_{P3}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{3,1} \cup P_3/R_{2,3}$

General Approach

- Define agents for parents and child
 - Agents act as surrogates for parents
 - If create fails, parents have no extra rights
 - If create succeeds, parents, child have exactly same rights as in 3-parent creates
 - Only extra rights are to agents (which are never used again, and so these rights are irrelevant)

Entities and Types

- Parents P_1 , P_2 , P_3 have types p_1 , p_2 , p_3
- Child **C** of type *c*
- Parent agents A_1 , A_2 , A_3 of types a_1 , a_2 , a_3
- Child agent S of type s
- Type *t* is parentage
 - if $X/t \in dom(Y)$, X is Y's parent
- Types t, a_1 , a_2 , a_3 , s are new types

can•create

- Following added to can create:
 - $cc(p_1) = a_1$
 - $cc(p_2, a_1) = a_2$
 - $cc(p_3, a_2) = a_3$
 - Parents creating their agents; note agents have maximum of 2 parents
 - $cc(a_3) = s$
 - Agent of all parents creates agent of child
 - cc(s) = c
 - Agent of child creates child

Creation Rules

- Following added to create rule:
 - $cr_P(p_1, a_1) = \emptyset$
 - $cr_{c}(p_{1}, a_{1}) = p_{1}/Rtc$
 - Agent's parent set to creating parent; agent has all rights over parent
 - $cr_{Pfirst}(p_2, a_1, a_2) = \emptyset$
 - $cr_{Psecond}(p_2, a_1, a_2) = \emptyset$
 - $cr_c(p_2, a_1, a_2) = p_2/Rtc \cup a_1/tc$
 - Agent's parent set to creating parent and agent; agent has all rights over parent (but not over agent)

Creation Rules

- $cr_{Pfirst}(p_3, a_2, a_3) = \emptyset$
- $cr_{Psecond}(p_3, a_2, a_3) = \emptyset$
- $cr_c(p_3, a_2, a_3) = p_3/Rtc \cup a_2/tc$
 - Agent's parent set to creating parent and agent; agent has all rights over parent (but not over agent)
- $cr_P(a_3, s) = \emptyset$
- $cr_{C}(a_{3}, s) = a_{3}/tc$
 - Child's agent has third agent as parent $cr_P(a_3, s) = \emptyset$
- $cr_P(s, c) = \mathbf{C}/Rtc$
- $cr_{c}(s, c) = c/R_{3}t$
 - Child's agent gets full rights over child; child gets R₃ rights over agent

Link Predicates

- Idea: no tickets to parents until child created
 - Done by requiring each agent to have its own parent rights
 - $link_1(\mathbf{A}_2, \mathbf{A}_1) = \mathbf{A}_1/t \in dom(\mathbf{A}_2) \wedge \mathbf{A}_2/t \in dom(\mathbf{A}_2)$
 - $link_1(\mathbf{A}_3, \mathbf{A}_2) = \mathbf{A}_2/t \in dom(\mathbf{A}_3) \wedge \mathbf{A}_3/t \in dom(\mathbf{A}_3)$
 - $link_2(S, A_3) = A_3/t \in dom(S) \wedge C/t \in dom(C)$
 - $link_3(\mathbf{A}_1, \mathbf{C}) = \mathbf{C}/t \in dom(\mathbf{A}_1)$
 - $link_3(\mathbf{A}_2, \mathbf{C}) = \mathbf{C}/t \in dom(\mathbf{A}_2)$
 - $link_3(\mathbf{A}_3, \mathbf{C}) = \mathbf{C}/t \in dom(\mathbf{A}_3)$
 - $link_4(\mathbf{A}_1, \mathbf{P}_1) = \mathbf{P}_1/t \in dom(\mathbf{A}_1) \wedge \mathbf{A}_1/t \in dom(\mathbf{A}_1)$
 - $link_4(\mathbf{A}_2, \mathbf{P}_2) = \mathbf{P}_2/t \in dom(\mathbf{A}_2) \wedge \mathbf{A}_2/t \in dom(\mathbf{A}_2)$
 - $link_4(\mathbf{A}_3, \mathbf{P}_3) = \mathbf{P}_3/t \in dom(\mathbf{A}_3) \wedge \mathbf{A}_3/t \in dom(\mathbf{A}_3)$

Filter Functions

•
$$f_1(a_2, a_1) = a_1/t \cup c/Rtc$$

•
$$f_1(a_3, a_2) = a_2/t \cup c/Rtc$$

•
$$f_2(s, a_3) = a_3/t \cup c/Rtc$$

•
$$f_3(a_1, c) = p_1/R_{4,1}$$

•
$$f_3(a_2, c) = p_2/R_{4,2}$$

•
$$f_3(a_3, c) = p_3/R_{4,3}$$

•
$$f_4(a_1, p_1) = c/R_{1,1} \cup p_1/R_{2,1}$$

•
$$f_4(a_2, p_2) = c/R_{1,2} \cup p_2/R_{2,2}$$

•
$$f_4(a_3, p_3) = c/R_{1,3} \cup p_3/R_{2,3}$$

Construction

Create A_1 , A_2 , A_3 , S, C; then

- P₁ has no relevant tickets
- P₂ has no relevant tickets
- P₃ has no relevant tickets
- \mathbf{A}_1 has \mathbf{P}_1/Rtc
- \mathbf{A}_2 has $\mathbf{P}_2/Rtc \cup \mathbf{A}_1/tc$
- A_3 has $P_3/Rtc \cup A_2/tc$
- S has $A_3/tc \cup C/Rtc$
- C has C/R_3t

Construction

- Only $link_2(\mathbf{S}, \mathbf{A}_3)$ true \Rightarrow apply f_2
 - A_3 has $P_3/Rtc \cup A_2/t \cup A_3/t \cup C/Rtc$
- Now $link_1(\mathbf{A}_3, \mathbf{A}_2)$ true \Rightarrow apply f_1
 - \mathbf{A}_2 has $\mathbf{P}_2/Rtc \cup \mathbf{A}_1/tc \cup \mathbf{A}_2/t \cup \mathbf{C}/Rtc$
- Now $link_1(\mathbf{A}_2, \mathbf{A}_1)$ true \Rightarrow apply f_1
 - \mathbf{A}_1 has $\mathbf{P}_2/Rtc \cup \mathbf{A}_1/t \cup \mathbf{C}/Rtc$
- Now all $link_3$ s true \Rightarrow apply f_3
 - C has $C/R_3 \cup P_1/R_{4,1} \cup P_2/R_{4,2} \cup P_3/R_{4,3}$

Finish Construction

- Now $link_4$ is true \Rightarrow apply f_4
 - P_1 has $C/R_{1.1} \cup P_1/R_{2.1}$
 - P_2 has $C/R_{1.2} \cup P_2/R_{2.2}$
 - P_3 has $C/R_{1,3} \cup P_3/R_{2,3}$
- 3-parent joint create gives same rights to P₁, P₂, P₃, C
- If create of **C** fails, link₂ fails, so construction fails

Bell-LaPadula Model, Step 2

- Expand notion of security level to include categories
- Security level is (*clearance*, *category set*)
- Examples
 - (Top Secret, { NUC, EUR, ASI })
 - (Confidential, { EUR, ASI })
 - (Secret, { NUC, ASI })

Levels and Lattices

- (A, C) dom (A', C') iff $A' \leq A$ and $C' \subseteq C$
- Examples
 - (Top Secret, {NUC, ASI}) dom (Secret, {NUC})
 - (Secret, {NUC, EUR}) dom (Confidential,{NUC, EUR})
 - (Top Secret, {NUC}) ¬dom (Confidential, {EUR})
- Let C be set of classifications, K set of categories. Set of security levels $L = C \times K$, dom form lattice
 - lub(L) = (max(A), C)
 - $glb(L) = (min(A), \varnothing)$

Levels and Ordering

- Security levels partially ordered
 - Any pair of security levels may (or may not) be related by dom
- "dominates" serves the role of "greater than" in step 1
 - "greater than" is a total ordering, though

Reading Information

- Information flows up, not down
 - "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 2)
 - Subject s can read object o iff L(s) dom L(o) and s has permission to read o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no reads up" rule

Writing Information

- Information flows up, not down
 - "Writes up" allowed, "writes down" disallowed
- *-Property (Step 2)
 - Subject s can write object o iff L(o) dom L(s) and s has permission to write o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no writes down" rule

Basic Security Theorem, Step 2

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 2, and the *-property, step 2, then every state of the system is secure
 - Proof: induct on the number of transitions
 - In actual Basic Security Theorem, discretionary access control treated as third property, and simple security property and *-property phrased to eliminate discretionary part of the definitions — but simpler to express the way done here.

Problem

- Colonel has (Secret, {NUC, EUR}) clearance
- Major has (Secret, {EUR}) clearance
 - Major can talk to colonel ("write up" or "read down")
 - Colonel cannot talk to major ("read up" or "write down")
- Clearly absurd!

Solution

- Define maximum, current levels for subjects
 - maxlevel(s) dom curlevel(s)
- Example
 - Treat Major as an object (Colonel is writing to him/her)
 - Colonel has maxlevel (Secret, { NUC, EUR })
 - Colonel sets curlevel to (Secret, { EUR })
 - Now L(Major) dom curlevel(Colonel)
 - Colonel can write to Major without violating "no writes down"
 - Does L(s) mean curlevel(s) or maxlevel(s)?
 - Formally, we need a more precise notation