ECS 235B, Lecture /

Januar y 23, 2019

Example

* Anna, Bill must do something cooperatively
* But they don't trust each other

* Jointly create a proxy
* Each gives proxy only necessary rights

* [n ESPM:
* Anna, Bill type a; proxy type p; right x € R
e ccla,a)=p
* Crannala, @, p) = crgyla, a, p) =D
* Crooxy(@, @, p) = { Anna/x, Bill//x }

2-Parent Joint Create Suffices

* Goal: emulate 3-parent joint create with 2-parent joint create

* Definition of 3-parent joint create (subjects P4, P,, P5; child C):
* cc(t(Py), T(Py), T(P3)) =Z T
* crpy(t(P41), T(Py), T(P3)) = C/Ry; U P1/Ry 4
* crpy(t(Py), T(Py), T(P3)) = C/Ry 1 U Py/R,
* crp3(t(Pq), T(Py), ©(P3)) = C/R3; W P3/R; 5

General Approach

* Define agents for parents and child
* Agents act as surrogates for parents
* |f create fails, parents have no extra rights

* |f create succeeds, parents, child have exactly same rights as in 3-parent
creates

* Only extra rights are to agents (which are never used again, and so these rights are
irrelevant)

Entities and Types

* Parents P4, P,, P; have types p;, p,, p3

* Child C of type ¢

* Parent agents A, A,, A; of types a4, a,, a5
* Child agent S of type s

* Type tis parentage
o if X/t € dom(Y), X is Y’s parent

* Types t, a4, a,, as, S are new types

canecreaqte

* Following added to canecreate:
* cc(py) = a;
* cc(py, aq) =0,
* cc(ps, ay) = a3
* Parents creating their agents; note agents have maximum of 2 parents
cc(as) =s
* Agent of all parents creates agent of child
cc(s)=c
* Agent of child creates child

Creation Rules

* Following added to create rule:
* crplpy, a;) =
crepy, a1) = pa/Rtc
* Agent’s parent set to creating parent; agent has all rights over parent
° CrPfirst(er dq, az) = @
CrPsecond(pZI alr 02) = @
CrC(pZI alr aZ) = pZ/RtC U C71/t-c

* Agent’s parent set to creating parent and agent; agent has all rights over parent (but not
over agent)

Creation Rules

* CrPfirst(pBI as, 03) =
* CrPsecond(p3r a,, 03) =
* cre(ps, a,, a3) = ps/Rtc U a,/tc

* Agent’s parent set to creating parent and agent; agent has all rights over parent (but not
over agent)

* crplas, 5) =D
* cre(as, s) = as/tc
* Child’s agent has third agent as parent cry(a;, s) = J
* crp(s, c) = C/Rtc
* cr(s, c) =c/Rst
* Child’s agent gets full rights over child; child gets R, rights over agent

Link Predicates

* ldea: no tickets to parents until child created

* Done by requiring each agent to have its own parent rights
* link,(A,, A;) = A,/t € dom(A,) A A,/t € dom(A,)

* link,(A;, A,) = A,/t € dom(A;) A Aj/t € dom(A;)

* link,(S, A;) = A5/t € dom(S) A C/t € dom(C)

* link;(A,, C) =C/t € dom(A,)

* link;(A,, C) = C/t € dom(A,)

* link;(A;, C) = C/t € dom(A;)

* link,(A,, P,) =P/t € dom(A,) A A/t € dom(A,)

* link,(A,, P,) =P,/t € dom(A,) A A,/t € dom(A,)

* link,(A5, P3) = P3/t € dom(A3) A As/t € dom(A;)

Filter Functions

* f.(a,, a,) = a,/t U c/Rtc

* fi(as, a,) = a,/t U c/Rtc

* f,(s, a3) = a5/t U c/Rtc

* f3(ay, €) = p1/Ry

* f3(a,, €) = py/Ry

* f3(as, ¢) = p3/Ry 3

* falay, p1) = ¢/Ri1 Y p1/Ry,
* falay, P3) = ¢/R12 VU Py/Ry
* falas, p3) = ¢/R13 Y p3/Ry 3

Construction

Create A, A,, A3, S, C; then
* P, has no relevant tickets
* P, has no relevant tickets
* P; has no relevant tickets
* A, has P,/Rtc

* A, has P,/Rtc U A,/tc

* A; has P;/Rtc U A,/tc

* S has A;/tc U C/Rtc

* Chas C/Rst

Construction

* Only link,(S, A3) true = apply f,
* A; has Py/Rtc U A,/t U A3/t U C/Rtc

* Now link(A;, A,) true = apply f;
* A, has P,/Rtc U A,/tc U A,/t U C/Rtc

* Now link,(A,, A;) true = apply f;
* A, has P,/Rtc U A/t U C/Rtc

* Now all links;s true = apply f;
* Chas C/R; UP/Ry1 UP,/R,, UP3/R, 5

Finish Construction

* Now link,is true = apply f,
* P, hasC/R, 1 UP,/R;,
* P, has C/R;, UP,/R,,
* Py has C/R; 5 U P3/R, ;

* 3-parent joint create gives same rights to P, P,, P5, C
* If create of C fails, link, fails, so construction fails

Bell-LaPadula Model, Step 2

* Expand notion of security level to include categories
 Security level is (clearance, category set)

* Examples
* (Top Secret, { NUC, EUR, ASI })
e (Confidential, { EUR, ASI })
e (Secret, { NUC, ASI })

Levels and Lattices

*(A,C)dom (A, C)iff A"<Aand C'cC

* Examples
* (Top Secret, {NUC, ASI}) dom (Secret, {NUC})
e (Secret, {NUC, EUR}) dom (Confidential,{NUC, EUR})
* (Top Secret, {NUC}) —dom (Confidential, {EUR})

* Let C be set of classifications, K set of categories. Set of security levels
L =C x K, dom form lattice
* lub(L) = (max(A), C)
* glb(L) = (min(A), &)

Levels and Ordering

* Security levels partially ordered
* Any pair of security levels may (or may not) be related by dom

* “dominates” serves the role of “greater than” in step 1
* “greater than” is a total ordering, though

Reading Information

* Information flows up, not down
* “Reads up” disallowed, “reads down” allowed

* Simple Security Condition (Step 2)
» Subject s can read object o iff L(s) dom L(o) and s has permission to read o

* Note: combines mandatory control (relationship of security levels) and discretionary
control (the required permission)

* Sometimes called “no reads up” rule

Writing Information

 Information flows up, not down
e “Writes up” allowed, “writes down” disallowed

e *-Property (Step 2)
» Subject s can write object o iff L(0) dom L(s) and s has permission to write o

* Note: combines mandatory control (relationship of security levels) and discretionary
control (the required permission)

e Sometimes called “no writes down” rule

Basic Security Theorem, Step 2

* If a system is initially in a secure state, and every transition of the
system satisfies the simple security condition, step 2, and the *-
property, step 2, then every state of the system is secure

* Proof: induct on the number of transitions

* |In actual Basic Security Theorem, discretionary access control treated as third
property, and simple security property and *-property phrased to eliminate
discretionary part of the definitions — but simpler to express the way done
here.

Problem

* Colonel has (Secret, {NUC, EUR}) clearance

* Major has (Secret, {EUR}) clearance
* Major can talk to colonel (“write up” or “read down”)
* Colonel cannot talk to major (“read up” or “write down”)

* Clearly absurd!

Solution

* Define maximum, current levels for subjects
* maxlevel(s) dom curlevel(s)

* Example

* Treat Major as an object (Colonel is writing to him/her)
e Colonel has maxlevel (Secret, { NUC, EUR })
e Colonel sets curlevel to (Secret, { EUR })

Now L(Major) dom curlevel(Colonel)
* Colonel can write to Major without violating “no writes down”

Does L(s) mean curlevel(s) or maxlevel(s)?
* Formally, we need a more precise notation

