
ECS 235B, Lecture 9
January 28, 2019

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 1



Example

• S = { s }, O = { o }, P = { r, w }
• C = { High, Low }, K = { All }
• For every f Î F, either  fc(s) = ( High, { All }) or fc(s) = ( Low, { All })
• Initial State:
• b1 = { (s, o, r) }, m1 ÎM gives s read access over o, and for f1 Î F, fc,1(s) = (High, 

{All}), fo,1(o) = (Low, {All})
• Call this state v0 = (b1, m1, f1, h1) Î V.

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 2



First Transition

• Now suppose in state v0: S = { s, s¢ }
• Suppose fs,1(s¢) = (Low, {All}), m1 Î M gives s read access over o and s¢

write access to o
• As s¢ not written to o, b1 = { (s, o, r) }
• z0 = v0; if s¢ requests r1 to write to o:
• System decides d1 = y (as m1 gives it that right, and fs,1(s¢) = fo(o)
• New state v1 = (b2, m1, f1, h1) Î V
• b2 = { (s, o, r), (s¢, o, w) }
• Here, x = (r1), y = (y), z = (v0, v1)

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 3



Second Transition

• Current state v1 = (b2, m1, f1, h1) Î V
• b2 = { (s, o, r), (s¢, o, w) }
• fc,1(s) = (High, { All }), fo,1(o) = (Low, { All })

• s requests r2 to write to o:
• System decides d2 = n (as fc,1(s) dom fo,1(o))
• New state v2 = (b2, m1, f1, h1) Î V
• b2 = { (s, o, r), (s¢, o, w) }
• So, x = (r1, r2), y = (y, n), z = (v0, v1, v2), where v2 = v1

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 4



Basic Security Theorem

• Define action, secure formally
• Using a bit of foreshadowing for “secure”

• Restate properties formally
• Simple security condition
• *-property
• Discretionary security property

• State conditions for properties to hold
• State Basic Security Theorem

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 5



Action

• A request and decision that causes the system to move from one state 
to another
• Final state may be the same as initial state

• (r, d, v, v¢) Î R ´ D ´ V ´ V is an action of S(R, D, W, z0) iff there is an
(x, y, z) Î S(R, D, W, z0) and a t Î N such that (r, d, v, v¢) = (xt, yt, zt, zt–1)
• Request r made when system in state v¢; decision d moves system into (possibly 

the same) state v
• Correspondence with (xt, yt, zt, zt–1) makes states, requests, part of a sequence

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 6



Simple Security Condition

• (s, o, p) Î S ´ O ´ P satisfies the simple security condition relative to 
f (written ssc rel f) iff one of the following holds:

1. p = e or p = a
2. p = r or p = w and fs(s) dom fo(o)

• Holds vacuously if rights do not involve reading
• If all elements of b satisfy ssc rel f, then state satisfies simple 

security condition
• If all states satisfy simple security condition, system satisfies simple 

security condition

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 7



Necessary and Sufficient

• S(R, D, W, z0) satisfies the simple security condition for any secure 
state z0 iff for every action (r, d, (b, m, f, h), (b¢, m¢, f¢, h¢)), W satisfies
• Every (s, o, p) Î b – b¢ satisfies ssc rel f
• Every (s, o, p) Î b¢ that does not satisfy ssc rel f is not in b

• Note: “secure” means z0 satisfies ssc rel f
• First says every (s, o, p) added satisfies ssc rel f; second says any (s, o, 
p) in b¢ that does not satisfy ssc rel f is deleted

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 8



*-Property

• b(s: p1, …, pn) set of all objects that s has p1, …, pn access to

• State (b, m, f, h) satisfies the *-property iff for each sÎ S the following hold:
1. b(s: a) ≠ÆÞ ["oÎb(s: a) [ fo(o) dom fc(s) ] ]
2. b(s: w) ≠ÆÞ ["oÎb(s: w) [ fo(o) = fc(s) ] ]
3. b(s: r) ≠ÆÞ ["oÎb(s: r) [ fc(s) dom fo(o) ] ]

• Idea: for writing, object dominates subject; for reading, subject dominates 
object

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 9



*-Property

• If all states satisfy simple security condition, system satisfies simple 
security condition
• If a subset S¢ of subjects satisfy *-property, then *-property satisfied 

relative to S¢ Í S
• Note: tempting to conclude that *-property includes simple security 

condition, but this is false
• See condition placed on w right for each

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 10



Necessary and Sufficient

• S(R, D, W, z0) satisfies the *-property relative to S¢ Í S for any secure state z0 iff
for every action (r, d, (b, m, f, h), (b¢, m¢, f¢, h¢)), W satisfies the following for every 
s Î S¢
• Every (s, o, p) Î b – b´ satisfies the *-property relative to S¢
• Every (s, o, p) Î b´ that does not satisfy the *-property relative to  S¢ is not in 
b

• Note: “secure” means z0 satisfies *-property relative to S¢
• First says every (s, o, p) added satisfies the *-property relative to S¢; second says 

any (s, o, p) in b¢ that does not satisfy the *-property relative to S¢ is deleted

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 11



Discretionary Security Property

• State (b, m, f, h) satisfies the discretionary security property iff, for 
each (s, o, p) Î b, then p Î m[s, o]
• Idea: if s can read o, then it must have rights to do so in the access 

control matrix m
• This is the discretionary access control part of the model
• The other two properties are the mandatory access control parts of the model

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 12



Necessary and Sufficient

• S(R, D, W, z0) satisfies the ds-property for any secure state z0 iff, for 
every action (r, d, (b, m, f, h), (b¢, m¢, f¢, h¢)), W satisfies:
• Every (s, o, p) Î b – b¢ satisfies the ds-property
• Every (s, o, p) Î b¢ that does not satisfy the ds-property is not in b

• Note: “secure” means z0 satisfies ds-property
• First says every (s, o, p) added satisfies the ds-property; second says 

any (s, o, p) in b¢ that does not satisfy the *-property is deleted

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 13



Secure

• A system is secure iff it satisfies:
• Simple security condition
• *-property
• Discretionary security property

• A state meeting these three properties is also said to be secure

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 14



Basic Security Theorem

• S(R, D, W, z0) is a secure system if z0 is a secure state and W satisfies 
the conditions for the preceding three theorems
• The theorems are on the slides titled “Necessary and Sufficient”

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 15



Rule

• r: R ´ V® D ´ V
• Takes a state and a request, returns a decision and a (possibly new) 

state
• Rule r ssc-preserving if for all (r, v) ÎR ´ V and v satisfying ssc rel f, 
r(r, v) = (d, v¢) means that v¢ satisfies ssc rel f¢.
• Similar definitions for *-property, ds-property
• If rule meets all 3 conditions, it is security-preserving

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 16



Unambiguous Rule Selection

• Problem: multiple rules may apply to a request in a state
• if two rules act on a read request in state v …

• Solution: define relation W(w) for a set of rules w = { r1, …, rm } such 
that a state (r, d, v, v¢) ÎW(w) iff either
• d = i; or 
• for exactly one integer j, rj(r, v) = (d, v¢)

• Either request is illegal, or only one rule applies 

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 17



Rules Preserving SSC

• Let w be set of ssc-preserving rules. Let state z0 satisfy simple security 
condition. Then S(R, D, W(w), z0 ) satisfies simple security condition
Proof: by contradiction.
• Choose (x, y, z) Î S(R, D, W(w), z0) as state not satisfying simple security 

condition; then choose t Î N such that (xt, yt, zt) is first appearance not 
meeting simple security condition
• As (xt, yt, zt, zt–1) ÎW(w), there is unique rule r Î w such that r(xt, zt–1) = (yt, 
zt) and yt ≠ i.
• As r ssc-preserving, and zt–1 satisfies simple security condition, then zt meets 

simple security condition, contradiction.

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 18



Adding States Preserving SSC

• Let v = (b, m, f, h) satisfy simple security condition. Let (s, o, p) Ï b, b¢
= bÈ { (s, o, p) }, and v¢ = (b¢, m, f, h). Then v¢ satisfies simple security 
condition iff:

1.Either p = e or p = a; or
2.Either p = r or p = w, and fc(s) dom fo(o)

Proof:
1. Immediate from definition of simple security condition and v¢ satisfying ssc

rel f
2. v¢ satisfies simple security condition means fc(s) dom fo(o), and for 

converse, (s, o, p) Î b¢ satisfies ssc rel f, so v¢ satisfies simple security 
condition

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 19



Rules, States Preserving *-Property

• Let w be set of *-property-preserving rules, state z0 satisfies the *-
property. Then S(R, D, W(w), z0 ) satisfies *-property
• Let v = (b, m, f, h) satisfy *-property. Let (s, o, p) Ï b, b¢ = bÈ { (s, o, 
p) }, and v¢ = (b¢, m, f, h). Then v¢ satisfies *-property iff one of the 
following holds:

1. p = a and fo(o) dom fc(s)
2. p = w and fc(s) = fo(o)
3. p = r and fc(s) dom fo(o)

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 20



Rules, States Preserving ds-Property

• Let w be set of ds-property-preserving rules, state z0 satisfies ds-
property. Then S(R, D, W(w), z0 ) satisfies ds-property

• Let v = (b, m, f, h) satisfy ds-property. Let (s, o, p) Ï b, b¢ = bÈ { (s, o, 
p) }, and v¢ = (b¢, m, f, h). Then v¢ satisfies ds-property iff p Îm[s, o].

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 21



Combining

• Let r be a rule and r(r, v) = (d, v¢), where v = (b, m, f, h) and v¢ = (b¢, 
m¢, f¢, h¢). Then:
1. If b¢ Í b, f¢ = f, and v satisfies the simple security condition, then v¢ satisfies 

the simple security condition
2. If b¢ Í b, f¢ = f, and v satisfies the *-property, then v¢ satisfies the *-property
3. If b¢ Í b, m[s, o] Ím¢[s, o] for all s Î S and o Î O, and v satisfies the ds-

property, then v¢ satisfies the ds-property

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 22



Proof

1. Suppose v satisfies simple security property.
a) b´ Í b and (s, o, r) Î b¢ implies (s, o, r) Î b
b) b´ Í b and (s, o, w) Î b¢ implies (s, o, w) Î b
c) So fc(s) dom fo(o)
d) But f¢ = f
e) Hence f¢c(s) dom f¢o(o)
f) So v¢ satisfies simple security condition

2, 3 proved similarly

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 23



Example Instantiation: Multics

• 11 rules affect rights:
• set to request, release access
• set to give, remove access to different subject
• set to create, reclassify objects
• set to remove objects
• set to change subject security level

• Set of “trusted” subjects ST Í S
• *-property not enforced; subjects trusted not to violate it

• D(r) domain
• determines if components of request are valid

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 24



get-read Rule

• Request r = (get, s, o, r)
• s gets (requests) the right to read o

• Rule is r1(r, v):
if (r ≠ D(r1)) then r1(r, v) = (i, v);
else if (fs(s) dom fo(o) and [s Î ST or fc(s) dom fo(o)] and r Îm[s, o])

then r1(r, v) = (y, (bÈ { (s, o, r) }, m, f, h));
else r1(r, v) = (n, v);

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 25



Security of Rule

• The get-read rule preserves the simple security condition, the *-
property, and the ds-property
Proof:
• Let v satisfy all conditions.   Let r1(r, v) = (d, v¢). If v¢ = v, result is trivial. So let 
v¢ = (bÈ { (s2, o, r) }, m, f, h).

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 26



Proof

• Consider the simple security condition.
• From the choice of v¢, either b¢ – b = Æ or { (s2, o, r) }
• If b¢ – b = Æ, then { (s2, o, r) } Î b, so v = v¢, proving that v¢ satisfies the simple 

security condition.
• If b¢ – b = { (s2, o, r) }, because the get-read rule requires that fc(s) dom fo(o), 

an earlier result says that v¢ satisfies the simple security condition.

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 27



Proof

• Consider the *-property.
• Either s2 Î ST or fc(s) dom fo(o) from the definition of get-read
• If s2 Î ST, then s2 is trusted, so *-property holds by definition of trusted and 
ST.
• If fc(s) dom fo(o), an earlier result says that v¢ satisfies the simple security 

condition.

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 28



Proof

• Consider the discretionary security property.
• Conditions in the get-read rule require r Îm[s, o] and either b¢ – b = Æ or { 

(s2, o, r) }
• If b¢ – b = Æ, then { (s2, o, r) } Î b, so v = v¢, proving that v¢ satisfies the simple 

security condition.
• If b¢ – b = { (s2, o, r) }, then { (s2, o, r) } Ï b, an earlier result says that v¢

satisfies the ds-property.

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 29



give-read Rule

• Request r = (s1, give, s2, o, r)
• s1 gives (request to give) s2 the (discretionary) right to read o
• Rule: can be done if giver can alter parent of object

• If object or parent is root of hierarchy, special authorization required

• Useful definitions
• root(o): root object of hierarchy h containing o
• parent(o): parent of o in h (so o Î h(parent(o)))
• canallow(s, o, v): s specially authorized to grant access when object or parent 

of object is root of hierarchy
• mÙm[s, o]¬r: access control matrix m with r added to m[s, o]

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 30



give-read Rule

• Rule is r6(r, v):
if (r ≠ D(r6)) then r6(r, v) = (i, v);
else if ([o ≠ root(o) and parent(o) ≠ root(o) and parent(o) Î b(s1:w)] or

[parent(o) = root(o) and canallow(s1, o, v) ] or
[o = root(o) and canallow(s1, o, v) ])

then r6(r, v) = (y, (b, mÙm[s2, o] ¬ r, f, h));
else r1(r, v) = (n, v);

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 31



Security of Rule

• The give-read rule preserves the simple security condition, the *-
property, and the ds-property
• Proof: Let v satisfy all conditions. Let r1(r, v) = (d, v¢). If v¢ = v, result is trivial. 

So let v¢ = (b, m[s2, o]¬r, f, h). So b¢ = b, f¢ = f, m[x, y] = m¢[x, y] for all x Î S
and y Î O such that x ≠ s and y ≠ o, and m[s, o] Ím¢[s, o]. Then by earlier 
result, v¢ satisfies the simple security condition, the *-property, and the ds-
property.

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 32



Principle of Tranquility

• Raising object’s security level
• Information once available to some subjects is no longer available
• Usually assume information has already been accessed, so this does nothing

• Lowering object’s security level
• The declassification problem
• Essentially, a “write down” violating *-property
• Solution: define set of trusted subjects that sanitize or remove sensitive 

information before security level lowered

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 33



Types of Tranquility

• Strong Tranquility
• The clearances of subjects, and the classifications of objects, do not change 

during the lifetime of the system

• Weak Tranquility
• The clearances of subjects, and the classifications of objects, do not change in 

a way that violates the simple security condition or the *-property during the 
lifetime of the system

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 34



Example: Trusted Solaris

• Security administrator can provide specific authorization for a user to 
change the MAC label of a file
• “downgrade file label” authorization
• “upgrade file label” authorization

• User requires additional authorization if not the owner of the file
• “act as file owner” authorization

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 35



Principles of Declassification

• Principle of Semantic Consistency
• As long as semantics of components that do not do declassification do not 

change, the components can be altered without affecting security

• Principle of Occlusion
• A declassification operation cannot conceal an improper declassification

• Principle of Conservativity
• Absent any declassification, the system is secure

• Principle of Monotonicity of Release
• When declassification is performed in an authorized manner by authorized 

subjects, the system remains secure

January 28, 2019 ECS 235B, Foundations of Computer and Information Security 36


