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Waterfall Life Cycle Model

• Requirements definition and analysis
• Functional and non-functional
• General (for customer), specifications

• System and software design
• Implementation and unit testing
• Integration and system testing
• Operation and maintenance
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Relationship of Stages

Requirements 
definition and 
analysis System and 

software 
design Implementa-

tion and unit 
testing

Integration 
and system 
testing

Operation 
and 
maintenance

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 3



Agile Software Development

• Software development is creative process, always changing, never 
really completed
• Leads to agile methodologies
• Focuses on working together
• Agile team efficiently works together in their environment
• Team engages customer as a member of the team, developing requirements 

and scoping of the project
• Accept, adapt to rapidly changing requirements

• Allows for continuous improvement
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Agile Methodologies

Term “Agile software development” used to describe several Agile 
methodologies
• Scrum
• Kanban
• Extreme Programming (XP)
• Others
• Feature-Driven Development (FDD), Dynamic Systems Development Method 

(DSDM), Pragmatic Programming
In all, evidence of trustworthiness for assurance adduced after
development
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Scrum

• Split project into small parts that can be done in a short timeframe (called 
a sprint)
• This product backlog created by product owner, who represents customer, product 

stakeholders
• Scrum team agrees on a small subset from top of backlog, decides how to 

design, implement it
• Goal: complete this within the sprint

• Every day, team meets to evaluate progress, adjust as needed to get a 
workable solution within each sprint
• At the end, work completed should be ready to ship, demo, or put back into backlog 

if not complete
• Iterate until product complete
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Kanban

• Identify lanes of work: to be done, in progress, completed, deployed
• Each lane except the last has limit on how many items can be in that 

lane
• Based on staff available to perform the work

• Teams take item off to be done lane, work on it until completed
• When implemented correctly, team is completing work on top item in lane 

when another item arrives

• Goal: deliver product to customer within expected timeline
• Methodology originated at Toyota

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 7



Extreme Programming

• Rapid prototyping and “best practices”
• Project driven by business decisions
• Requirements open until project complete
• Programmers work in teams
• Components tested, integrated several times a day
• Objective is to get system into production as quickly as possible, then 

enhance it

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 8



Models

• Exploratory programming
• Develop working system quickly
• Used when detailed requirements specification cannot be formulated in 

advance, and adequacy is goal
• No requirements or design specification, so low assurance

• Prototyping
• Objective is to establish system requirements
• Future iterations (after first) allow assurance techniques
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Models

• Formal transformation
• Create formal specification
• Translate it into program using correctness-preserving transformations
• Very conducive to assurance methods

• System assembly from reusable components
• Depends on whether components are trusted
• Must assure connections, composition as well
• Very complex, difficult to assure
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Key Points

• Assurance critical for determining trustworthiness of systems
• Different levels of assurance, from informal evidence to rigorous 

mathematical evidence
• Assurance needed at all stages of system life cycle
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Threats and Goals

• Threat is a danger that can lead to undesirable consequences
• Vulnerability is a weakness allowing a threat to occur
• Each identified threat requires countermeasure
• Unauthorized people using system mitigated by requiring identification and 

authentication
• Often single countermeasure addresses multiple threats
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Architecture

• Where do security enforcement mechanisms go?
• Focus of control on operations or data?

• Operating system: typically on data
• Applications: typically on operations

• Centralized or distributed enforcement mechanisms?
• Centralized: called by routines
• Distributed: spread across several routines
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Layered Architecture

• Security mechanisms at any layer
• Example: 4 layers in architecture

• Application layer: user tasks
• Services layer: services in support of applications
• Operating system layer: the kernel
• Hardware layer: firmware and hardware proper

• Where to put security services?
• Early decision: which layer to put security service in
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Security Services in Layers

• Choose best layer
• User actions: probably at applications layer
• Erasing data in freed disk blocks: OS layer

• Determine supporting services at lower layers
• Security mechanism at application layer needs support in all 3 lower layers

• May not be possible
• Application may require new service at OS layer; but OS layer services may be 

set up and no new ones can be added
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Security: Built In or Add On?

• Think of security as you do performance
• You don’t build a system, then add in performance later

• Can “tweak” system to improve performance a little
• Much more effective to change fundamental algorithms, design

• You need to design it in
• Otherwise, system lacks fundamental and structural concepts for high 

assurance
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Reference Validation Mechanism

• Reference monitor is access control concept of an abstract machine 
that mediates all accesses to objects by subjects
• Reference validation mechanism (RVM) is an implementation of the 

reference monitor concept.
• Tamperproof
• Complete (always invoked and can never be bypassed)
• Simple (small enough to be subject to analysis and testing, the completeness 

of which can be assured)
• Last engenders trust by providing evidence of correctness
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Examples

• Security kernel combines hardware and software to implement 
reference monitor
• Trusted computing base (TCB) consists of all protection mechanisms 

within a system responsible for enforcing security policy
• Includes hardware and software
• Generalizes notion of security kernel
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Adding On Security

• Key to problem: analysis and testing
• Designing in mechanisms allow assurance at all levels
• Too many features adds complexity, complicates analysis

• Adding in mechanisms makes assurance hard
• Gap in abstraction from requirements to design may prevent complete 

requirements testing
• May be spread throughout system (analysis hard)
• Assurance may be limited to test results
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Example

• 2 AT&T products with same goal of adding mandatory controls to 
UNIX system
• SV/MLS: add MAC to UNIX System V Release 3.2
• SVR4.1ES: re-architect UNIX system to support MAC
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Comparison

• Architecting of System
• SV/MLS: used existing kernel modular structure; no implementation of least 

privilege
• SVR4.1ES: restructured kernel to make it highly modular and incorporated 

least privilege
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Comparison

• File Attributes (inodes)
• SV/MLS added separate table for MAC labels, DAC permissions

• UNIX inodes have no space for labels; pointer to table added
• Problem: 2 accesses needed to check permissions
• Problem: possible inconsistency when permissions changed
• Corrupted table causes corrupted permissions

• SVR4.1ES defined new inode structure
• Included MAC labels, DAC attributes
• Only 1 access needed to check permissions
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Requirements Assurance

• Specification describes of characteristics of computer system or 
program
• Security specification specifies desired security properties
• Must be clear, complete, unambiguous
• Something like “meets C2 security requirements” not good: what are those 

requirements (actually, 34 of them!)
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Example

• “Users of the system must be identified and authenticated” is 
ambiguous
• Type of ID required—driver’s license, token?
• What is to be authenticated—user, representation of identity, system?
• Who is to do the authentication—system, guard?

• “Users of the system must be identified to the system and must have 
that identification authenticated by the system” is less ambiguous
• Under what conditions must the user be identified to the system—at login, 

time of day, or something else?
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Example

• “Users of the system must be identified to the system and must have 
that identification authenticated by the system before the system 
performs any functions on behalf of that identity”
• Type of identification is user name
• User identification (name) to be authenticated
• System to authenticate
• Authentication to be done at login (before system performs any action on 

behalf of user)

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 25



Methods of Definition

• Extract applicable requirements from existing security standards
• Tend to be semiformal

• Combine results of threat analysis with components of existing 
policies to create a new policy
• Map the system to existing model
• If model appropriate, creating a mapping from model to system may be 

cheaper than requirements analysis
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