
ECS 235B, Lecture 11
February 1, 2019

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 1



Waterfall Life Cycle Model

• Requirements definition and analysis
• Functional and non-functional
• General (for customer), specifications

• System and software design
• Implementation and unit testing
• Integration and system testing
• Operation and maintenance

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 2



Relationship of Stages

Requirements 
definition and 
analysis System and 

software 
design Implementa-

tion and unit 
testing

Integration 
and system 
testing

Operation 
and 
maintenance

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 3



Agile Software Development

• Software development is creative process, always changing, never 
really completed
• Leads to agile methodologies
• Focuses on working together
• Agile team efficiently works together in their environment
• Team engages customer as a member of the team, developing requirements 

and scoping of the project
• Accept, adapt to rapidly changing requirements

• Allows for continuous improvement

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 4



Agile Methodologies

Term “Agile software development” used to describe several Agile 
methodologies
• Scrum
• Kanban
• Extreme Programming (XP)
• Others
• Feature-Driven Development (FDD), Dynamic Systems Development Method 

(DSDM), Pragmatic Programming
In all, evidence of trustworthiness for assurance adduced after
development

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 5



Scrum

• Split project into small parts that can be done in a short timeframe (called 
a sprint)
• This product backlog created by product owner, who represents customer, product 

stakeholders
• Scrum team agrees on a small subset from top of backlog, decides how to 

design, implement it
• Goal: complete this within the sprint

• Every day, team meets to evaluate progress, adjust as needed to get a 
workable solution within each sprint
• At the end, work completed should be ready to ship, demo, or put back into backlog 

if not complete
• Iterate until product complete

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 6



Kanban

• Identify lanes of work: to be done, in progress, completed, deployed
• Each lane except the last has limit on how many items can be in that 

lane
• Based on staff available to perform the work

• Teams take item off to be done lane, work on it until completed
• When implemented correctly, team is completing work on top item in lane 

when another item arrives

• Goal: deliver product to customer within expected timeline
• Methodology originated at Toyota

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 7



Extreme Programming

• Rapid prototyping and “best practices”
• Project driven by business decisions
• Requirements open until project complete
• Programmers work in teams
• Components tested, integrated several times a day
• Objective is to get system into production as quickly as possible, then 

enhance it

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 8



Models

• Exploratory programming
• Develop working system quickly
• Used when detailed requirements specification cannot be formulated in 

advance, and adequacy is goal
• No requirements or design specification, so low assurance

• Prototyping
• Objective is to establish system requirements
• Future iterations (after first) allow assurance techniques

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 9



Models

• Formal transformation
• Create formal specification
• Translate it into program using correctness-preserving transformations
• Very conducive to assurance methods

• System assembly from reusable components
• Depends on whether components are trusted
• Must assure connections, composition as well
• Very complex, difficult to assure

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 10



Key Points

• Assurance critical for determining trustworthiness of systems
• Different levels of assurance, from informal evidence to rigorous 

mathematical evidence
• Assurance needed at all stages of system life cycle

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 11



Threats and Goals

• Threat is a danger that can lead to undesirable consequences
• Vulnerability is a weakness allowing a threat to occur
• Each identified threat requires countermeasure
• Unauthorized people using system mitigated by requiring identification and 

authentication
• Often single countermeasure addresses multiple threats

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 12



Architecture

• Where do security enforcement mechanisms go?
• Focus of control on operations or data?

• Operating system: typically on data
• Applications: typically on operations

• Centralized or distributed enforcement mechanisms?
• Centralized: called by routines
• Distributed: spread across several routines

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 13



Layered Architecture

• Security mechanisms at any layer
• Example: 4 layers in architecture

• Application layer: user tasks
• Services layer: services in support of applications
• Operating system layer: the kernel
• Hardware layer: firmware and hardware proper

• Where to put security services?
• Early decision: which layer to put security service in

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 14



Security Services in Layers

• Choose best layer
• User actions: probably at applications layer
• Erasing data in freed disk blocks: OS layer

• Determine supporting services at lower layers
• Security mechanism at application layer needs support in all 3 lower layers

• May not be possible
• Application may require new service at OS layer; but OS layer services may be 

set up and no new ones can be added

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 15



Security: Built In or Add On?

• Think of security as you do performance
• You don’t build a system, then add in performance later

• Can “tweak” system to improve performance a little
• Much more effective to change fundamental algorithms, design

• You need to design it in
• Otherwise, system lacks fundamental and structural concepts for high 

assurance

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 16



Reference Validation Mechanism

• Reference monitor is access control concept of an abstract machine 
that mediates all accesses to objects by subjects
• Reference validation mechanism (RVM) is an implementation of the 

reference monitor concept.
• Tamperproof
• Complete (always invoked and can never be bypassed)
• Simple (small enough to be subject to analysis and testing, the completeness 

of which can be assured)
• Last engenders trust by providing evidence of correctness

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 17



Examples

• Security kernel combines hardware and software to implement 
reference monitor
• Trusted computing base (TCB) consists of all protection mechanisms 

within a system responsible for enforcing security policy
• Includes hardware and software
• Generalizes notion of security kernel

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 18



Adding On Security

• Key to problem: analysis and testing
• Designing in mechanisms allow assurance at all levels
• Too many features adds complexity, complicates analysis

• Adding in mechanisms makes assurance hard
• Gap in abstraction from requirements to design may prevent complete 

requirements testing
• May be spread throughout system (analysis hard)
• Assurance may be limited to test results

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 19



Example

• 2 AT&T products with same goal of adding mandatory controls to 
UNIX system
• SV/MLS: add MAC to UNIX System V Release 3.2
• SVR4.1ES: re-architect UNIX system to support MAC

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 20



Comparison

• Architecting of System
• SV/MLS: used existing kernel modular structure; no implementation of least 

privilege
• SVR4.1ES: restructured kernel to make it highly modular and incorporated 

least privilege

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 21



Comparison

• File Attributes (inodes)
• SV/MLS added separate table for MAC labels, DAC permissions

• UNIX inodes have no space for labels; pointer to table added
• Problem: 2 accesses needed to check permissions
• Problem: possible inconsistency when permissions changed
• Corrupted table causes corrupted permissions

• SVR4.1ES defined new inode structure
• Included MAC labels, DAC attributes
• Only 1 access needed to check permissions

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 22



Requirements Assurance

• Specification describes of characteristics of computer system or 
program
• Security specification specifies desired security properties
• Must be clear, complete, unambiguous
• Something like “meets C2 security requirements” not good: what are those 

requirements (actually, 34 of them!)

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 23



Example

• “Users of the system must be identified and authenticated” is 
ambiguous
• Type of ID required—driver’s license, token?
• What is to be authenticated—user, representation of identity, system?
• Who is to do the authentication—system, guard?

• “Users of the system must be identified to the system and must have 
that identification authenticated by the system” is less ambiguous
• Under what conditions must the user be identified to the system—at login, 

time of day, or something else?

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 24



Example

• “Users of the system must be identified to the system and must have 
that identification authenticated by the system before the system 
performs any functions on behalf of that identity”
• Type of identification is user name
• User identification (name) to be authenticated
• System to authenticate
• Authentication to be done at login (before system performs any action on 

behalf of user)

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 25



Methods of Definition

• Extract applicable requirements from existing security standards
• Tend to be semiformal

• Combine results of threat analysis with components of existing 
policies to create a new policy
• Map the system to existing model
• If model appropriate, creating a mapping from model to system may be 

cheaper than requirements analysis

February 1, 2019 ECS 235B, Foundations of Computer and Information Security 26


