ECS 235B, Lecture 11

February 1, 2019

Waterfall Life Cycle Model

* Requirements definition and analysis
* Functional and non-functional
* General (for customer), specifications

e System and software design
* Implementation and unit testing
* Integration and system testing

e Operation and maintenance

Relationship of Stages

Requirements
definition and
analysis

System and
software
design
*_g‘ Implementa-
I . :
v VoS tion and unit
-~ \ \ \~~ .
. \\\ x \\ Integration
~<_ . S VoS o and system
R =<2 - ,
MR-~ _ =< - = === testing
~ h ~ T = -__ - >
\\\ \\\ \\ \
\\\ \\\ \\\ \\~

Operation
and
maintenance

Agile Software Development

» Software development is creative process, always changing, never
really completed

* Leads to agile methodologies
* Focuses on working together
* Agile team efficiently works together in their environment

 Team engages customer as a member of the team, developing requirements
and scoping of the project

* Accept, adapt to rapidly changing requirements
* Allows for continuous improvement

Agile Methodologies

Term “Agile software development” used to describe several Agile
methodologies

* Scrum
* Kanban
e Extreme Programming (XP)

e Others

e Feature-Driven Development (FDD), Dynamic Systems Development Method
(DSDM), Pragmatic Programming

In all, evidence of trustworthiness for assurance adduced after
development

Scrum

* Split project into small parts that can be done in a short timeframe (called
a sprint)
* This product backlog created by product owner, who represents customer, product
stakeholders

e Scrum team agrees on a small subset from top of backlog, decides how to
design, implement it
* Goal: complete this within the sprint

* Every day, team meets to evaluate progress, adjust as needed to get a
workable solution within each sprint

* At the end, work completed should be ready to ship, demo, or put back into backlog
if not complete

* |terate until product complete

Kanban

* |dentify lanes of work: to be done, in progress, completed, deployed

* Each lane except the last has limit on how many items can be in that
lane

* Based on staff available to perform the work

* Teams take item off to be done lane, work on it until completed

* When implemented correctly, team is completing work on top item in lane
when another item arrives

* Goal: deliver product to customer within expected timeline
 Methodology originated at Toyota

Extreme Programming

* Rapid prototyping and “best practices”

* Project driven by business decisions

* Requirements open until project complete

* Programmers work in teams

 Components tested, integrated several times a day

* Objective is to get system into production as quickly as possible, then
enhance it

Models

* Exploratory programming
e Develop working system quickly

* Used when detailed requirements specification cannot be formulated in
advance, and adequacy is goal

* No requirements or design specification, so low assurance

* Prototyping
* Objective is to establish system requirements
e Future iterations (after first) allow assurance techniques

Models

 Formal transformation
* Create formal specification
* Translate it into program using correctness-preserving transformations
* Very conducive to assurance methods

e System assembly from reusable components
* Depends on whether components are trusted
* Must assure connections, composition as well
* Very complex, difficult to assure

Key Points

e Assurance critical for determining trustworthiness of systems

* Different levels of assurance, from informal evidence to rigorous
mathematical evidence

* Assurance needed at all stages of system life cycle

Threats and Goals

* Threat is a danger that can lead to undesirable consequences
* Vulnerability is a weakness allowing a threat to occur

* Each identified threat requires countermeasure

* Unauthorized people using system mitigated by requiring identification and
authentication

e Often single countermeasure addresses multiple threats

Architecture

 Where do security enforcement mechanisms go?

* Focus of control on operations or data?
e Operating system: typically on data
* Applications: typically on operations
* Centralized or distributed enforcement mechanisms?

* Centralized: called by routines
» Distributed: spread across several routines

Layered Architecture

e Security mechanisms at any layer

 Example: 4 layers in architecture
* Application layer: user tasks
* Services layer: services in support of applications
* Operating system layer: the kernel
* Hardware layer: firmware and hardware proper

* Where to put security services?
* Early decision: which layer to put security service in

Security Services In Layers

* Choose best layer
* User actions: probably at applications layer
* Erasing data in freed disk blocks: OS layer

* Determine supporting services at lower layers
* Security mechanism at application layer needs support in all 3 lower layers

* May not be possible

* Application may require new service at OS layer; but OS layer services may be
set up and no new ones can be added

Security: Built In or Add On?

* Think of security as you do performance

* You don’t build a system, then add in performance later
* Can “tweak” system to improve performance a little
* Much more effective to change fundamental algorithms, design

* You need to design it in

* Otherwise, system lacks fundamental and structural concepts for high
assurance

Reference Validation Mechanism

* Reference monitor is access control concept of an abstract machine
that mediates all accesses to objects by subjects

* Reference validation mechanism (RVM) is an implementation of the
reference monitor concept.
* Tamperproof
 Complete (always invoked and can never be bypassed)

» Simple (small enough to be subject to analysis and testing, the completeness
of which can be assured)

* Last engenders trust by providing evidence of correctness

Examples

 Security kernel combines hardware and software to implement
reference monitor

* Trusted computing base (TCB) consists of all protection mechanisms
within a system responsible for enforcing security policy

* Includes hardware and software
* Generalizes notion of security kernel

Adding On Security

* Key to problem: analysis and testing

* Designing in mechanisms allow assurance at all levels
* Too many features adds complexity, complicates analysis

* Adding in mechanisms makes assurance hard

e Gap in abstraction from requirements to design may prevent complete
requirements testing

* May be spread throughout system (analysis hard)
* Assurance may be limited to test results

Example

e 2 AT&T products with same goal of adding mandatory controls to
UNIX system

e SV/MLS: add MAC to UNIX System V Release 3.2
* SVR4.1ES: re-architect UNIX system to support MAC

Comparison

* Architecting of System
* SV/MLS: used existing kernel modular structure; no implementation of least
privilege
* SVR4.1ES: restructured kernel to make it highly modular and incorporated
least privilege

Comparison

* File Attributes (inodes)
* SV/MLS added separate table for MAC labels, DAC permissions

* UNIX inodes have no space for labels; pointer to table added
* Problem: 2 accesses needed to check permissions
* Problem: possible inconsistency when permissions changed
e Corrupted table causes corrupted permissions

* SVR4.1ES defined new inode structure

* Included MAC labels, DAC attributes
* Only 1 access needed to check permissions

Requirements Assurance

 Specification describes of characteristics of computer system or
program

 Security specification specifies desired security properties

* Must be clear, complete, unambiguous

* Something like “meets C2 security requirements” not good: what are those
requirements (actually, 34 of them!)

Example

» “Users of the system must be identified and authenticated” is
ambiguous
* Type of ID required—driver’s license, token?
* What is to be authenticated—user, representation of identity, system?
* Who is to do the authentication—system, guard?

* “Users of the system must be identified to the system and must have
that identification authenticated by the system” is less ambiguous

* Under what conditions must the user be identified to the system—at login,
time of day, or something else?

Example

» “Users of the system must be identified to the system and must have
that identification authenticated by the system before the system
performs any functions on behalf of that identity”

* Type of identification is user name
e User identification (name) to be authenticated
e System to authenticate

* Authentication to be done at login (before system performs any action on
behalf of user)

Methods of Definition

* Extract applicable requirements from existing security standards
* Tend to be semiformal

* Combine results of threat analysis with components of existing
policies to create a new policy

* Map the system to existing model

* |If model appropriate, creating a mapping from model to system may be
cheaper than requirements analysis

