
ECS 235B, Lecture 14
February 8, 2019

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 1

Trust Models

• Integrity models state conditions under which changes preserve a set
of properties
• So deal with the preservation of trustworthiness

• Trust models deal with confidence one can have in the initial values or
settings
• So deal with the initial evaluation of whether data can be trusted

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 2

Definition of Trust

A trusts B if A believes, with a level of subjective probability, that B will
perform a particular action, both before the action can be monitored
(or independently of the capacity of being able to monitor it) and in a
context in which it affects Anna’s own action.
• Includes subjective nature of trust
• Captures idea that trust comes from a belief in what we do not

monitor
• Leads to transitivity of trust

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 3

Transitivity of Trust

Transitivity of trust: if A trusts B and B trusts C, then A trusts C
• Not always; depends on A’s assessment of B’s judgment
• Conditional transitivity of trust: A trusts C when
• B recommends C to A;
• A trusts B’s recommendations;
• A can make judgments about B’s recommendations; and
• Based on B’s recommendation, A may trust C less than B does

• Direct trust: A trusts C because of A’s observations and interactions
• Indirect trust: A trusts C because A accepts B’s recommendation

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 4

Types of Beliefs Underlying Trust

• Competence: A believes B competent to aid A in reaching goal
• Disposition: A believes B will actually do what A needs to reach goal
• Dependence: A believes she needs what B will do, depends on what B

will do, or it’s better to rely on B than not
• Fulfillment: A believes goal will be reached
• Willingness: A believes B has decided to do what A wants
• Persistence: A believes B will not change B’s mind before doing what A

wants
• Self-confidence: A believes that B knows B can take the action A wants

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 5

Evaluating Arguments about Trust (con’t)

• Majority behavior: A’s belief that most people from B’s community
are trustworthy
• Prudence: Not trusting B poses unacceptable risk to A
• Pragmatism: A’s current interests best served by trusting B

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 6

Trust Management

• Use a language to express relationships about trust, allowing us to
reason about trust
• Evaluation mechanisms take data, trust relationships and provide a measure

of trust about the entity or whether an action should or should not be taken

• Two basic forms
• Policy-based trust management
• Reputation-based trust management

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 7

Policy-Based Trust Management

• Credentials instantiate policy rules
• Credentials are data, so they too may be input to the rules
• Trusted third parties often vouch for credentials

• Policy rules expressed in a policy language
• Different languages for different goals
• Expressiveness of language determines the policies it can express

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 8

Example: Keynote

• Basic units
• Assertions: describe actions allowed to possessors of credentials

• Policy: statements about policy
• Credential: statements about credentials

• Action environment: attributes describing action associated with credentials

• Evaluator: takes set of policy assertions, set of credentials, action
environment and determines if proposed action is consistent with
policy

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 9

Example

• Consider email domain: policy assertion authorizes holder of mastercred
for all actions:
Authorizer: "POLICY"
Licensees: "mastercred"

• Credential assertion:
KeyNote-Version: 2
Local-Constants: Alice="cred1234", Bob="credABCD"
Authorizer: "authcred"
Licensees: Alice || Bob
Conditions: (app_domain == "RFC822-EMAIL") &&

(address ˜= "ˆ.*@keynote\\.ucdavis\\.edu$")
Signature: "signed"

• Compliance Value Set: { “_MIN_TRUST”, “_MAX_TRUST” }

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 10

Example: Results

• Evaluator given action environment:
_ACTION_AUTHORIZERS=Alice
app_domain = "RFC822-EMAIL"
address = "snoopy@keynote.ucdavis.edu"

it satisfies policy, so returns _MAX_TRUST
• Evaluator given action environment:

_ACTION_AUTHORIZERS=Bob
app_domain = "RFC822-EMAIL"
address = ”opus@admin.ucdavis.edu"

it does not satisfy policy, so returns _MIN_TRUST

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 11

Example 2

• Consider separation of duty: policy assertion delegates authority to pay invoices to entity
with credential “fundmgrcred”:
Authorizer: "POLICY"
Licensee: "fundmgecred"
Conditions: (app_domain == "INVOICE" && @dollars < 10000)

• Credential assertion (requires 2 signatures on any expenditure:
KeyNote-Version: 2
Comment: This credential specifies a spending policy
Authorizer: "authcred"
Licensees: 2-of("cred1", "cred2", "cred3", "cred4", "cred5")
Conditions: (app_domain=="INVOICE") # note nested clauses

-> { (@dollars) < 2500) -> "Approve";
(@dollars < 7500) -> "ApproveAndLog"; };

Signature: "signed"
• Compliance Value Set: { “Reject”, “ApproveAndLog”, “Approve” }

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 12

Example 2: Results

• Evaluator given action environment:
_ACTION_AUTHORIZERS = "cred1,cred4"
app_domain = "INVOICE"
dollars = "1000"

it satisfies first clause of condition, and so policy, so returns Approve
• Evaluator given action environment:

_ACTION_AUTHORIZERS = "cred1"
app_domain = "INVOICE"
dollars = "1500"

it does not satisfy policy as too few Licensees, so returns Reject

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 13

Example 2: Results

• Evaluator given action environment:
_ACTION_AUTHORIZERS = "cred1,cred2"
app_domain = "INVOICE"
dollars = "3541"

it satisfies second clause of condition, and so policy, so returns
ApproveAndLog
• Evaluator given action environment:

_ACTION_AUTHORIZERS = "cred1,cred5"
app_domain = "INVOICE"
dollars = "8000"

it does not satisfy policy as amount too large, so returns Reject

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 14

Reputation-Based Trust Management

• Use past behavior, information from other sources, to determine
whether to trust an entity
• Some models distinguish between direct, indirect trust
• Trust category, trust values, agent’s identification form reputation
• Recommendation is trust information containing at least 1 reputation
• Systems use many different types of metrics
• Statistical models
• Belief models (probabilities may not sum to 1, due to uncertainty in belief)
• Fuzzy models (reasoning involves degrees of trustworthiness)

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 15

Example 1

• Direct trust: –1 (untrustworthy), 1 to 4 (degrees of trust, increasing), 0
(canot make trust judgment)
• Indirect trust: –1, 0 (same as for direct trust), 1 to 4 (how close the

judgment of recommender is to the entity being recommended to)

• Formula: t(T, P) = tv(T)∏"#$
% &'()*)

, where T is entity of concern, P trust
path, tv(x) trust value of x, t(T,P) overall trust in T based on trust path
P

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 16

Example 1

• Amy wants Boris’ recommendation about Danny so she asks him
• Amy trusts Boris’ recommendations with trust value 2 as his judgment is somewhat

close to hers

• Boris doesn’t know Danny, so he asks Carole
• He trusts her recommendations with trust value 3

• Carole believes Danny is above average programmer, so she replies with a
recommendation of 3

• Boris adds this to the end of the recommendation

• Path is (Amy—Boris—Carole—Danny), so R1 = Boris, R2 = Carole, T =
Danny, and

T(“Danny”, P) = 3 x
!
" x

#
" = 1.125

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 17

Example 2

• PeerTrust uses metric based on complaints
• u
• P is a node in a peer-to-peer network
• p(u, t) in P is node that u interacts with in transaction t
• S(u,t) amount of satisfaction u gets from p(u,t)
• I(u) total number of transactions
• Trust value of u: T(u) = ∑"#$%(')) *, , -.(/ *, ,)
• Credibility of node x’s feedback: Cr(x) = ∑"#$%(0)) 1, , 2(3 0,")

∑456 % 0 2(3 0,7)
• So credibility of x depends on prior trust values

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 18

Key Points

• Integrity policies deal with trust
• As trust is hard to quantify, these policies are hard to evaluate completely
• Look for assumptions and trusted users to find possible weak points in their

implementation

• Biba, Lipner based on multilevel integrity
• Clark-Wilson focuses on separation of duty and transactions

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 19

Availability

• Goals
• Deadlock
• Denial of service
• Constraint-based model
• State-based model

• Networks and flooding
• Amplification attacks

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 20

Goals

• Ensure a resource can be accessed in a timely fashion
• Called “quality of service”
• “Timely fashion” depends on nature of resource, the goals of using it

• Closely related to safety and liveness
• Safety: resource does not perform correctly the functions that client is

expecting
• Liveness: resource cannot be accessed

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 21

Key Difference

• Mechanisms to support availability in general
• Lack of availability assumes average case, follows a statistical model

• Mechanisms to support availability as security requirement
• Lack of availability assumes worst case, adversary deliberately makes resource

unavailable
• Failures are non-random, may not conform to any useful statistical model

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 22

Deadlock

• A state in which some set of processes block each waiting for another
process in set to take come action
• Mutual exclusion: resource not shared
• Hold and wait: process must hold resource and block, waiting other needed

resources to become available
• No preemption: resource being held cannot be released
• Circular wait: set of entities holding resources such that each process waiting

for another process in set to release resources

• Usually not due to an attack

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 23

Approaches to Solving Deadlocks

• Prevention: prevent 1 of the 4 conditions from holding
• Do not acquire resources until all needed ones are available
• When needing a new resource, release all held

• Avoidance: ensure process stays in state where deadlock cannot occur
• Safe state: deadlock can not occur
• Unsafe state: may lead to state in which deadlock can occur

• Detection: allow deadlocks to occur, but detect and recover

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 24

Denial of Service

• Occurs when a group of authorized users of a service make that
service unavailable to a (disjoint) group of authorized users for a
period of time exceeding a defined maximum waiting time
• First “group of authorized users” here is group of users with access to service,

whether or not the security policy grants them access
• Often abbreviated “DoS” or “DOS”

• Assumes that, in the absence of other processes, there are enough
resources
• Otherwise problem is not solvable unless more resources created
• Inadequate resources is another type of problem

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 25

Components of DoS Model

• Waiting time policy: controls the time between a process requesting a
resource and being allocated that resource
• Denial of service occurs when this waiting time exceeded
• Amount of time depends on environment, goals

• User agreement: establishes constraints that process must meet in
order to access resource
• Here, “user” means a process
• These ensure a process will receive service within the waiting time

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 26

Constraint-Based Model (Yu-Gligor)

• Framed in terms of users accessing a server for some services
• User agreement: describes properties that users of servers must meet
• Finite waiting time policy: ensures no user is excluded from using

resource

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 27

User Agreement

• Set of constraints designed to prevent denial of service
• Sseq sequence of all possible invocations of a service
• Useq set of sequences of all possible invocations by a user
• UIi,seq⊆ Useq that user Ui can invoke
• C set of operations Ui can perform to consume service
• P set of operations to produce service user Ui consumes
• p < c means operation p ∈ P must precede operation c ∈ C
• Ai set of operations allowed for user Ui

• Ri set of relations between every pair of allowed operations for Ui

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 28

Example

Mutually exclusive resource

• C = { acquire }

• P = { release }

• For p1, p2, Ai = { acquirei, releasei } for i = 1, 2

• For p1, p2, Ri = { (acquirei < releasei) } for i = 1, 2

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 29

Sequences of Operations

• Ui(k) initial subsequence of Ui of length k
• no(Ui(k)) number of times operation o occurs in Ui(k)

• Ui(k) safe if the following 2 conditions hold:
• if o ∈ Ui,seq, then o ∈ Ai; and

• That is, if Ui executes o, it must be an allowed operation for Ui

• for all k, if (o < o’) ∈ Ri, then no(Ui(k)) ≥ no’(Ui(k))
• That is, if one operation precedes another, the first one must occur more times than the

second

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 30

Resources of Services

• s ∈ Sseq possible sequence of invocations of services
• s blocks on condition c
• May be waiting forservice to become available, or processing some response,

etc.

• oi*(c) represents operation oi blocked, waiting for c to become true
• When execution results, oi(c) represents operation
• Note that when c becomes true, oi*(c) may not resume immediately

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 31

Resources of Services

• s(0) initial subsequence of s up to operation oi*(c)
• s(k) subsequence of operations between k-1st, kth time c becomes

true after oi*(c)
• oi*(c) ➝s(k) oi(c): oi blocks waiting on c at end of s(0), resumes

operation at end of s(k)
• Sseq live if for every oi*(c) there is a set of subsequences s(0), ..., s(k)

such that it is initial subsequence of some s ∈ Sseq and oi*(c) ➝s(k) oi(c)

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 32

Example

• Mutually exclusive resource; consider sequence
(acquirei, releasei, acquirei, acquirei, releasei)

with acquirei, releasei ∈ Ai, (acquirei, releasei) ∈ Ri;o = acquirei, o’ = releasei
• Ui(1) = (acquirei) ⇒ no(Ui(1)) = 1, no’(Ui(1)) = 0
• Ui(2) = (acquirei, releasei) ⇒ no(Ui(2)) = 1, no’(Ui(2)) = 1
• Ui(3) = (acquirei, releasei, acquirei) ⇒ no(Ui(3)) = 2, no’(Ui(3)) = 1
• Ui(4) = (acquirei, releasei, acquirei, acquirei) ⇒

no(Ui(4)) = 3, no’(Ui(4)) = 1
• Ui(5) = (acquirei, releasei, acquirei, acquirei, releasei) ⇒

no(Ui(5)) = 3, no’(Ui(5)) = 2
• As no(Ui(k)) > no’(Ui(k)) for k = 1, ..., 5, the sequence is safe

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 33

Example (con’t)

• Let c be true whenever resource can be released
• That is, initially and whenever a releasei operation is performed

• Consider sequence: (acquire1, acquire2
*(c), release1, release2, ... ,

acquirek, acquirek+1(c), releasek, releasek+1, ...)
• For all k ≥ 1, acquirei*(c) ➝s(1) acquirek+1(c), so this is live sequence
• Here, acquirek+1(c) occurs between releasek and releasek+1

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 34

Expressing User Agreements

• Use temporal logics
• Symbols
• ☐: henceforth (the predicate is true and will remain true)
• ◇: eventually (the predicate is either true now, or will become true in the

future)
• ⤳: will lead to (if the first part is true, the second part will eventually become

true); so A⤳ B is shorthand for A⇒◇B

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 35

Example

• Acquiring and releasing mutually exclusive resource type
• User agreement: once a process is blocked on an acquire operation,

enough release operations will release enough resources of that type
to allow blocked process to proceed

service resource_allocator
User agreement

in(acquire) ⤳ ((☐◇(#active_release > 0) ∨ (free ≥ acquire.n))
• When a process issues an acquire request, at some later time at least

1 release operation occurs, and enough resources will be freed for the
requesting process to acquire the needed resources

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 36

