
ECS 235B, Lecture 14
February 8, 2019

February 8, 2019 ECS 235B, Foundations of Computer and Information Security 1



Trust Models

• Integrity models state conditions under which changes preserve a set 
of properties
• So deal with the preservation of trustworthiness

• Trust models deal with confidence one can have in the initial values or 
settings
• So deal with the initial evaluation of whether data can be trusted
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Definition of Trust

A trusts B if A believes, with a level of subjective probability, that B will 
perform a particular action, both before the action can be monitored 
(or independently of the capacity of being able to monitor it) and in a 
context in which it affects Anna’s own action.
• Includes subjective nature of trust
• Captures idea that trust comes from a belief in what we do not 

monitor
• Leads to transitivity of trust
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Transitivity of Trust

Transitivity of trust: if A trusts B and B trusts C, then A trusts C
• Not always; depends on A’s assessment of B’s judgment
• Conditional transitivity of trust: A trusts C when
• B recommends C to A;
• A trusts B’s recommendations;
• A can make judgments about B’s recommendations; and
• Based on B’s recommendation, A may trust C less than B does

• Direct trust: A trusts C because of A’s observations and interactions
• Indirect trust: A trusts C because A accepts B’s recommendation
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Types of Beliefs Underlying Trust

• Competence: A believes B competent to aid A in reaching goal
• Disposition: A believes B will actually do what A needs to reach goal
• Dependence: A believes she needs what B will do, depends on what B 

will do, or it’s better to rely on B than not
• Fulfillment: A believes goal will be reached
• Willingness: A believes B has decided to do what A wants
• Persistence: A believes B will not change B’s mind before doing what A 

wants
• Self-confidence: A believes that B knows B can take the action A wants
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Evaluating Arguments about Trust (con’t)

• Majority behavior: A’s belief that most people from B’s community 
are trustworthy
• Prudence: Not trusting B poses unacceptable risk to A
• Pragmatism: A’s current interests best served by trusting B
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Trust Management

• Use a language to express relationships about trust, allowing us to 
reason about trust
• Evaluation mechanisms take data, trust relationships and provide a measure 

of trust about the entity or whether an action should or should not be taken

• Two basic forms
• Policy-based trust management
• Reputation-based trust management
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Policy-Based Trust Management

• Credentials instantiate policy rules
• Credentials are data, so they too may be input to the rules
• Trusted third parties often vouch for credentials

• Policy rules expressed in a policy language
• Different languages for different goals
• Expressiveness of language determines the policies it can express
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Example: Keynote

• Basic units
• Assertions: describe actions allowed to possessors of credentials

• Policy: statements about policy
• Credential: statements about credentials

• Action environment: attributes describing action associated with credentials

• Evaluator: takes set of policy assertions, set of credentials, action 
environment and determines if proposed action is consistent with 
policy
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Example

• Consider email domain: policy assertion authorizes holder of mastercred
for all actions:
Authorizer: "POLICY"
Licensees: "mastercred"

• Credential assertion:
KeyNote-Version: 2
Local-Constants: Alice="cred1234", Bob="credABCD"
Authorizer: "authcred"
Licensees: Alice || Bob
Conditions: (app_domain == "RFC822-EMAIL") &&

(address ˜= "ˆ.*@keynote\\.ucdavis\\.edu$")
Signature: "signed"

• Compliance Value Set: { “_MIN_TRUST”, “_MAX_TRUST” }
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Example: Results

• Evaluator given action environment:
_ACTION_AUTHORIZERS=Alice
app_domain = "RFC822-EMAIL"
address = "snoopy@keynote.ucdavis.edu"

it satisfies policy, so returns _MAX_TRUST
• Evaluator given action environment:

_ACTION_AUTHORIZERS=Bob
app_domain = "RFC822-EMAIL"
address = ”opus@admin.ucdavis.edu"

it does not satisfy policy, so returns _MIN_TRUST
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Example 2

• Consider separation of duty: policy assertion delegates authority to pay invoices to entity 
with credential “fundmgrcred”:
Authorizer: "POLICY"
Licensee: "fundmgecred"
Conditions: (app_domain == "INVOICE" && @dollars < 10000)

• Credential assertion (requires 2 signatures on any expenditure:
KeyNote-Version: 2
Comment: This credential specifies a spending policy
Authorizer: "authcred"
Licensees: 2-of("cred1", "cred2", "cred3", "cred4", "cred5")
Conditions: (app_domain=="INVOICE") # note nested clauses

-> { (@dollars) < 2500) -> "Approve";
(@dollars < 7500) -> "ApproveAndLog"; };

Signature: "signed"
• Compliance Value Set:  { “Reject”, “ApproveAndLog”, “Approve” }
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Example 2: Results

• Evaluator given action environment:
_ACTION_AUTHORIZERS = "cred1,cred4"
app_domain = "INVOICE"
dollars = "1000"

it satisfies first clause of condition, and so policy, so returns Approve
• Evaluator given action environment:

_ACTION_AUTHORIZERS = "cred1"
app_domain = "INVOICE"
dollars = "1500"

it does not satisfy policy as too few Licensees, so returns Reject
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Example 2: Results

• Evaluator given action environment:
_ACTION_AUTHORIZERS = "cred1,cred2"
app_domain = "INVOICE"
dollars = "3541"

it satisfies second clause of condition, and so policy, so returns 
ApproveAndLog
• Evaluator given action environment:

_ACTION_AUTHORIZERS = "cred1,cred5"
app_domain = "INVOICE"
dollars = "8000"

it does not satisfy policy as amount too large, so returns Reject
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Reputation-Based Trust Management

• Use past behavior, information from other sources, to determine 
whether to trust an entity
• Some models distinguish between direct, indirect trust
• Trust category, trust values, agent’s identification form reputation
• Recommendation is trust information containing at least 1 reputation
• Systems use many different types of metrics
• Statistical models
• Belief models (probabilities may not sum to 1, due to uncertainty in belief)
• Fuzzy models (reasoning involves degrees of trustworthiness)
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Example 1

• Direct trust: –1 (untrustworthy), 1 to 4 (degrees of trust, increasing), 0 
(canot make trust judgment)
• Indirect trust: –1, 0 (same as for direct trust), 1 to 4 (how close the 

judgment of recommender is to the entity being recommended to)

• Formula: t(T, P) = tv(T)∏"#$
% &'()*)

, where T is entity of concern, P trust 
path, tv(x) trust value of x, t(T,P) overall trust in T based on trust path
P
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Example 1

• Amy wants Boris’ recommendation about Danny so she asks him
• Amy trusts Boris’ recommendations with trust value 2 as his judgment is somewhat 

close to hers

• Boris doesn’t know Danny, so he asks Carole
• He trusts her recommendations with trust value 3

• Carole believes Danny is above average programmer, so she replies with a 
recommendation of 3

• Boris adds this to the end of the recommendation

• Path is (Amy—Boris—Carole—Danny), so R1 = Boris, R2 = Carole, T = 
Danny, and 

T(“Danny”, P) = 3 x 
!
" x 

#
" = 1.125
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Example 2

• PeerTrust uses metric based on complaints
• u
• P is a node in a peer-to-peer network
• p(u, t) in P is node that u interacts with in transaction t
• S(u,t) amount of satisfaction u gets from p(u,t)
• I(u) total number of transactions 
• Trust value of u: T(u) = ∑"#$%(') ) *, , -.(/ *, , )
• Credibility of node x’s feedback: Cr(x) = ∑"#$%(0) ) 1, , 2(3 0," )

∑456 % 0 2(3 0,7 )
• So credibility of x depends on prior trust values
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Key Points

• Integrity policies deal with trust
• As trust is hard to quantify, these policies are hard to evaluate completely
• Look for assumptions and trusted users to find possible weak points in their 

implementation

• Biba, Lipner based on multilevel integrity
• Clark-Wilson focuses on separation of duty and transactions
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Availability

• Goals
• Deadlock
• Denial of service
• Constraint-based model
• State-based model

• Networks and flooding
• Amplification attacks
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Goals

• Ensure a resource can be accessed in a timely fashion
• Called “quality of service”
• “Timely fashion” depends on nature of resource, the goals of using it

• Closely related to safety and liveness
• Safety: resource does not perform correctly the functions that client is 

expecting
• Liveness: resource cannot be accessed
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Key Difference

• Mechanisms to support availability in general
• Lack of availability assumes average case, follows a statistical model

• Mechanisms to support availability as security requirement
• Lack of availability assumes worst case, adversary deliberately makes resource 

unavailable
• Failures are non-random, may not conform to any useful statistical model
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Deadlock

• A state in which some set of processes block each waiting for another 
process in set to take come action
• Mutual exclusion: resource not shared
• Hold and wait: process must hold resource and block, waiting other needed 

resources to become available
• No preemption: resource being held cannot be released
• Circular wait: set of entities holding resources such that each process waiting 

for another process in set to release resources

• Usually not due to an attack
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Approaches to Solving Deadlocks

• Prevention: prevent 1 of the 4 conditions from holding
• Do not acquire resources until all needed ones are available
• When needing a new resource, release all held

• Avoidance: ensure process stays in state where deadlock cannot occur
• Safe state: deadlock can not occur
• Unsafe state: may lead to state in which deadlock can occur

• Detection: allow deadlocks to occur, but detect and recover
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Denial of Service

• Occurs when a group of authorized users of a service make that 
service unavailable to a (disjoint) group of authorized users for a 
period of time exceeding a defined maximum waiting time
• First “group of authorized users” here is group of users with access to service, 

whether or not the security policy grants them access
• Often abbreviated “DoS” or “DOS”

• Assumes that, in the absence of other processes, there are enough 
resources
• Otherwise problem is not solvable unless more resources created
• Inadequate resources is another type of problem
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Components of DoS Model

• Waiting time policy: controls the time between a process requesting a 
resource and being allocated that resource
• Denial of service occurs when this waiting time exceeded
• Amount of time depends on environment, goals

• User agreement: establishes constraints that process must meet in 
order to access resource
• Here, “user” means a process
• These ensure a process will receive service within the waiting time
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Constraint-Based Model (Yu-Gligor)

• Framed in terms of users accessing a server for some services
• User agreement: describes properties that users of servers must meet
• Finite waiting time policy: ensures no user is excluded from using 

resource
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User Agreement

• Set of constraints designed to prevent denial of service
• Sseq sequence of all possible invocations of a service
• Useq set of sequences of all possible invocations by a user
• UIi,seq⊆ Useq that user Ui can invoke
• C set of operations Ui can perform to consume service
• P set of operations to produce service user Ui consumes
• p < c means operation p ∈ P must precede operation c ∈ C
• Ai set of operations allowed for user Ui

• Ri set of relations between every pair of allowed operations for Ui
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Example

Mutually exclusive resource

• C = { acquire }

• P = { release }

• For p1, p2, Ai = { acquirei, releasei } for i = 1, 2

• For p1, p2, Ri = { ( acquirei < releasei ) } for i = 1, 2
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Sequences of Operations

• Ui(k) initial subsequence of Ui of length k
• no(Ui(k)) number of times operation o occurs in Ui(k)

• Ui(k) safe if the following 2 conditions hold:
• if o ∈ Ui,seq, then o ∈ Ai; and

• That is, if Ui executes o, it must be an allowed operation for Ui

• for all k, if (o < o’) ∈ Ri, then no(Ui(k)) ≥ no’(Ui(k))
• That is, if one operation precedes another, the first one must occur more times than the 

second
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Resources of Services

• s ∈ Sseq possible sequence of invocations of services
• s blocks on condition c
• May be waiting forservice to become available, or processing some response, 

etc. 

• oi*(c) represents operation oi blocked, waiting for c to become true
• When execution results, oi(c) represents operation
• Note that when c becomes true, oi*(c) may not resume immediately
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Resources of Services

• s(0) initial subsequence of s up to operation oi*(c)
• s(k) subsequence of operations between k-1st, kth time c becomes 

true after oi*(c)
• oi*(c) ➝s(k) oi(c): oi blocks waiting on c at end of s(0), resumes 

operation at end of s(k)
• Sseq live if for every oi*(c) there is a set of subsequences s(0), ..., s(k) 

such that it is initial subsequence of some s ∈ Sseq and oi*(c) ➝s(k) oi(c)
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Example

• Mutually exclusive resource; consider sequence
( acquirei, releasei, acquirei, acquirei, releasei )

with acquirei, releasei ∈ Ai, (acquirei, releasei) ∈ Ri;o = acquirei, o’ = releasei
• Ui(1) = (acquirei ) ⇒ no(Ui(1)) = 1, no’(Ui(1)) = 0
• Ui(2) = (acquirei, releasei ) ⇒ no(Ui(2)) = 1, no’(Ui(2)) = 1
• Ui(3) = (acquirei, releasei, acquirei) ⇒ no(Ui(3)) = 2, no’(Ui(3)) = 1
• Ui(4) = (acquirei, releasei, acquirei, acquirei) ⇒

no(Ui(4)) = 3, no’(Ui(4)) = 1
• Ui(5) = (acquirei, releasei, acquirei, acquirei, releasei) ⇒

no(Ui(5)) = 3, no’(Ui(5)) = 2
• As no(Ui(k)) > no’(Ui(k)) for k = 1, ..., 5, the sequence is safe
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Example (con’t)

• Let c be true whenever resource can be released
• That is, initially and whenever a releasei operation is performed

• Consider sequence: (acquire1, acquire2
*(c), release1, release2, ... , 

acquirek, acquirek+1(c), releasek, releasek+1, ...)
• For all k ≥ 1, acquirei*(c) ➝s(1) acquirek+1(c), so this is live sequence
• Here, acquirek+1(c) occurs between releasek and releasek+1
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Expressing User Agreements

• Use temporal logics
• Symbols
• ☐: henceforth (the predicate is true and will remain true)
• ◇: eventually (the predicate is either true now, or will become true in the 

future)
• ⤳: will  lead to (if the first part is true, the second part will eventually become 

true); so A⤳ B is shorthand for A⇒◇B
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Example

• Acquiring and releasing mutually exclusive resource type
• User agreement: once a process is blocked on an acquire operation, 

enough release operations will release enough resources of that type 
to allow blocked process to proceed

service resource_allocator
User agreement

in(acquire) ⤳ ((☐◇(#active_release > 0) ∨ (free ≥ acquire.n))
• When a process issues an acquire request, at some later time at least 

1 release operation occurs, and enough resources will be freed for the 
requesting process to acquire the needed resources
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