
ECS 235B, Lecture 15
February 11, 2019

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 1

Constraint-Based Model (Yu-Gligor)

• Framed in terms of users accessing a server for some services
• User agreement: describes properties that users of servers must meet
• Finite waiting time policy: ensures no user is excluded from using

resource

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 2

User Agreement

• Set of constraints designed to prevent denial of service
• Sseq sequence of all possible invocations of a service
• Useq set of sequences of all possible invocations by a user
• UIi,seq⊆ Useq that user Ui can invoke
• C set of operations Ui can perform to consume service
• P set of operations to produce service user Ui consumes
• p < c means operation p ∈ P must precede operation c ∈ C
• Ai set of operations allowed for user Ui

• Ri set of relations between every pair of allowed operations for Ui

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 3

Example

Mutually exclusive resource
• C = { acquire }
• P = { release }
• For p1, p2, Ai = { acquirei, releasei } for i = 1, 2
• For p1, p2, Ri = { (acquirei < releasei) } for i = 1, 2

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 4

Sequences of Operations

• Ui(k) initial subsequence of Ui of length k
• no(Ui(k)) number of times operation o occurs in Ui(k)

• Ui(k) safe if the following 2 conditions hold:
• if o ∈ Ui,seq, then o ∈ Ai; and

• That is, if Ui executes o, it must be an allowed operation for Ui

• for all k, if (o < o’) ∈ Ri, then no(Ui(k)) ≥ no’(Ui(k))
• That is, if one operation precedes another, the first one must occur more times than the

second

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 5

Resources of Services

• s ∈ Sseq possible sequence of invocations of services
• s blocks on condition c
• May be waiting forservice to become available, or processing some response,

etc.

• oi*(c) represents operation oi blocked, waiting for c to become true
• When execution results, oi(c) represents operation
• Note that when c becomes true, oi*(c) may not resume immediately

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 6

Resources of Services

• s(0) initial subsequence of s up to operation oi*(c)
• s(k) subsequence of operations between k-1st, kth time c becomes

true after oi*(c)
• oi*(c) ➝s(k) oi(c): oi blocks waiting on c at end of s(0), resumes

operation at end of s(k)
• Sseq live if for every oi*(c) there is a set of subsequences s(0), ..., s(k)

such that it is initial subsequence of some s ∈ Sseq and oi*(c) ➝s(k) oi(c)

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 7

Example

• Mutually exclusive resource; consider sequence
(acquirei, releasei, acquirei, acquirei, releasei)

with acquirei, releasei ∈ Ai, (acquirei, releasei) ∈ Ri;o = acquirei, o’ = releasei
• Ui(1) = (acquirei) ⇒ no(Ui(1)) = 1, no’(Ui(1)) = 0
• Ui(2) = (acquirei, releasei) ⇒ no(Ui(2)) = 1, no’(Ui(2)) = 1
• Ui(3) = (acquirei, releasei, acquirei) ⇒ no(Ui(3)) = 2, no’(Ui(3)) = 1
• Ui(4) = (acquirei, releasei, acquirei, acquirei) ⇒

no(Ui(4)) = 3, no’(Ui(4)) = 1
• Ui(5) = (acquirei, releasei, acquirei, acquirei, releasei) ⇒

no(Ui(5)) = 3, no’(Ui(5)) = 2
• As no(Ui(k)) > no’(Ui(k)) for k = 1, ..., 5, the sequence is safe

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 8

Example (con’t)

• Let c be true whenever resource can be released
• That is, initially and whenever a releasei operation is performed

• Consider sequence: (acquire1, acquire2
*(c), release1, release2, ... ,

acquirek, acquirek+1(c), releasek, releasek+1, ...)
• For all k ≥ 1, acquirei*(c) ➝s(1) acquirek+1(c), so this is live sequence
• Here, acquirek+1(c) occurs between releasek and releasek+1

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 9

Expressing User Agreements

• Use temporal logics
• Symbols
• ☐: henceforth (the predicate is true and will remain true)
• ◇: eventually (the predicate is either true now, or will become true in the

future)
• ⤳: will lead to (if the first part is true, the second part will eventually become

true); so A⤳ B is shorthand for A⇒◇B

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 10

Example

• Acquiring and releasing mutually exclusive resource type
• User agreement: once a process is blocked on an acquire operation,

enough release operations will release enough resources of that type
to allow blocked process to proceed

service resource_allocator
User agreement

in(acquire) ⤳ ((☐◇(#active_release > 0) ∨ (free ≥ acquire.n))
• When a process issues an acquire request, at some later time at least

1 release operation occurs, and enough resources will be freed for the
requesting process to acquire the needed resources

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 11

Finite Waiting Time Policy

• Fairness policy: prevents starvation; ensures process using a resource
will not block indefinitely if given the opportunity to progress
• Simultaneity policy: ensures progress; provides opportunities process

needs to use resource
• User agreement: see earlier
• If these three hold, no process will wait an indefinite time before

accessing and using the resource

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 12

Example

• Continuing example ... these and above user agreement ensure no
indefinite blocking

sharing policies
fairness

(at(acquire) ∧☐◇((free ≥ acquire.n) ∧ (#active = 0))) ⤳ after(acquire)
(at(release) ∧☐◇(#active = 0)) ⤳ after(release)

simultaneity
(in(acquire) ∧ (☐◇(free ≥ acquire.n)) ∧ (☐◇(#active = 0))) ⤳

((free ≥ acquire.n) ∧ (#active = 0))
(in(release) ∧☐◇(#active_release > 0)) ⤳ (free ≥ acquire.n)

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 13

Service Specification

• Interface operations
• Private operations not available outside service
• Resource constraints
• Concurrency constraints
• Finite waiting time policy

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 14

Example:

• Interface operations of the resource allocation/deallocation example
interface operations
acquire(n: units)

exception conditions: quota[id] < own[id] + n
effects: free’ = free – n

own[id]’ = own[id] + n
release(n: units)

exception conditions: n > own[id]
effects: free’ = free + n

own[id]’ = own[id] – n

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 15

Example (con’t)

• Resource constrains of the resource allocation/deallocation example
resource constraints
1. ☐((free ≥ 0) ∧ (free ≤ size))
2. (∀ id) [☐(own[id] ≥ 0) ∧ (own[id] ≤ quota[id]))]
3. (free = N) ⇒ ((free = N) UNTIL (after(acquire) ∨ after(release)))
4. (∀ id) [(own[id] = M) ⇒ ((own[id] = M) UNTIL (after(acquire) ∨

after(release)))]

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 16

Example (con’t)

• Concurrency constraints of the resource allocation/deallocation
example

concurrency constraints
1. ☐(#active ≤ 1)
2. (#active = 1) ⤳ (#active = 1)

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 17

Denial of Service

• Service specification policies, user agreements prevent denial of
service if enforced
• These do not prevent a long wait time; they simply ensure the wait

time is finite

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 18

State-Based Model (Millen)

• Unlike constraint-based model, allows a maximum waiting time to be
specified
• Based on resource allocation system, denial of service base that

enforces its policies

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 19

Resource Allocation System Model

• R set of resource types
• For each r ∈ R, number of resource units (capacity, c(r)) is constant; a

process can hold a unit for a maximum holding time m(r)
• P set of processes
• For each p ∈ P, state is running or sleeping
• When allocated a resource, process is running
• Multiple process can be in running state simultaneously
• Each p has upper bound it can be in running state before being interrupted, if

only by CPU quantum q
• Example: if CPU considered a resource, m(CPU) = q

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 20

Allocation Matrix

• Rows represent processes; columns represent resources
• A: P × R➝ ℕ is matrix
• For p ∈ P, r ∈ R, Ap(r) is number of resource units of type r acquired by p
• As at most c(r) of resource type r exist, at most that many can be allocated at

any time

R1: The system cannot allocate more instances of a resource type than
it has:

(∀r ∈ R)[∑p∈P Ap(r) ≤ c(r)]

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 21

More About Resources

• T: P ➝ ℕ is system time when resource assignment was last changed
• Think of it as a time vector, each element belonging to one process

• QS: P × R ➝ ℕ is matrix of required resources for each process, not
including the resources it already holds
• So QS

p(r) means the number of units of resource type r that process p may need to
complete

• QT: P × R ➝ ℕ is matrix of how much longer each process p needs the units
of resource r
• Predicates running(p) true if p is in running state; asleep(p) true otherwise
R2: A currently running process must not require additional resources to run

running(p) => (∀r ∈ R)[QS
p(r) = 0]

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 22

States, State Transitions

• Current state of system is (A, T, QS, QT)
• State transition (A, T, QS, QT) ➝ (A’, T’, QS’, QT’)
• We only care about treansitions due to allocation, deallocation of resources

• Three relevant types of transitions
• Deactivation transition: running(p) ➝ asleep’(p); process stops execution
• Activation transition: asleep(p) ➝ running’(p); process starts or resumes

execution
• Reallocation transition: transition in which p has resource allocation changed;

can only occur when asleep(p)

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 23

Constraints

R3: Resource allocation does not affect allocations of a running
process:

(running(p) ∧ running’(p)) ⇒ (Ap’ = Ap)
R4: T(p) changes only when resource allocation of p changes:

(Ap’(CPU) = Ap(CPU)) ⇒ (T’(p) = T(p))
R5: Updates in time vector increase value of element being updated:

(Ap’(CPU) ≠ Ap(CPU)) => (T’(p) > T(p))

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 24

Constraints

R6: When p reallocated resources, allocation matrix updated before p
resumes execution:

asleep(p) ⇒ QS
p’ = QS

p + Ap – Ap’
R7: When a process is not running, the time it needs resources does
not change:

asleep(p) ⇒ QT
p’ = QT

p
R8: when a process ceases to execute, the only resource it must
surrender is the CPU:
(running(p) ∧ asleep’(p)) ⇒ Ap’(r) = Ap(r)–1 if r = CPU
(running(p) ∧ asleep’(p)) ⇒ Ap’(r) = Ap(r) otherwise

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 25

Resource Allocation System

• A system in a state (A, T, QS, QT) such that:
• State satisfies constraints R1, R2
• All state transitions constrained to meet R3-R8

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 26

Denial of Service Protection Base (DPB)

• A mechanism that is tamperproof, cannot be prevented from
operating, and guarantees authorized access to resources it controls
• Four parts:
• Resource allocation system (see earlier)
• Resource monitor
• Waiting time policy
• User agreement (see earlier; constraints apply to changes in allocation when

process transitions from running(p) to asleep(p)

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 27

Resource Monitor

• Controls allocation, deallocation of resources and the timing
• QS

p is feasible if (∀i)[QS
p(ri) + Ap(ri) ≤ c(ri)] ∧ QS

p(CPU) ≤ 1
• If the total number of resources it will be allocated will always be no more

than the capacity of that resource, and no more than 1 CPU is requested

• Tp is feasible if (∀i)[Tp(ri) ≤ max(ri)]
• Here, max(ri) max time a process must wait for its needed allocation of units

of resource type i

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 28

Waiting Time Policy

• Let σ = (A, T, QS, QT)
• Example finite waiting time policy:

(∀p, σ)(∃σ’)[running’(p) ∧ (T’(p) ≥ T(p))]
• For every process and state, there is a future state in which p is executing and

has been allocated resources

• Example maximum waiting time policy:
(∃M)(∀p, σ)(∃σ’)[running’(p) ∧ (0 < T’(p) – T(p) ≤ M)]

• There is an upper bound M to how long it takes every process to reach a
future state in which it is executing and has been allocated resources

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 29

Two Additional Constraints

In addition to all these, a DPB must satisfy these constraints:

1. Each process satisfying user agreement constraints will progress in a
way that satisfies the waiting time policy

2. No resource other than the CPU is deallocated from a process
unless that resource is no longer needed

(∀i)[ri ≠ CPU ∧ Ap(ri) ≠ 0 ∧ Ap’(ri) = 0] ⇒ QT
p(ri) = 0

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 30

Example: DPB

• Assume system has 1 CPU
• Assume maximum waiting time policy in place
• 3 parts to user agreement:
• QS

p, Tp are feasible
• Process in running state executes for a minimum amount of time before it

transitions to a non-running state
• If process requires resource type, and enters a non-running state, the time it

needs the resource for is decreased by the amount of time it was in the
previous running state; that is,

QT
p ≠ 0 ∧ running(p) ∧ asleep’(p) ⇒ (∀r∈R)[QT

p(r) ≤ max(0, maxr QT
p(r)–(T’(p)–T(p)))]

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 31

Example: System

• n processes, round robin scheduler with quantum q
• Initially no process has any resources
• Resource monitor selects process p to give resources to
• p executes until QT

p = 0 or monitor concludes QS
p or Tp is not feasible

• Goal: show there will be no denial of service in this system because
a) no resource ri is deallocated from p for which QS

p is feasible until QT
p = 0;

and
b) there is a maximum time for each round robin cycle

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 32

Claim (a)

• Before p selected, no process has any resources allocated to it
• So next process with QS

p and Tp feasible is selected
• It runs until it enters the asleep state or q, whichever is shorter
• If in asleep state, process is done
• If q, monitor gives p another quantum of running time; this repeats until QT

p = 0, and
then p needs no more resources

• Let m(r) be maximum time any process will hold resources of type r
• Let M(r) = maxr m(r)

• As QS
p and Tp feasible, M upper bound for all elements of QT

p
• d = min(q, minimum time before p transitions to asleep state); exists because a

process in running state executes for a minimum amount of time before it transitions
to a non-running state

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 33

Claim (a) (con’t)

• As QS
p and Tp feasible, M upper bound for all elements of QT

p

• d = min(q, minimum time before p transitions to asleep state)
• Exists because a process in running state executes for a minimum amount of

time before it transitions to a non-running state

• At end of each quantum, m’(r) = m(r) – d
• By third part of user agreement

• So after floor(M/d + 1) quanta, QT
p = 0

• So no resources deallocated until (∀i) QT
p(ri) = 0

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 34

Claim (b)

• ta is time between resource monitor beginning cycle and when it has
allocated required resources to p
• Resource monitor then allocates CPU resource to p; call this time tCPU
• Done between each quantum

• When p completes, all its resources deallocated; this takes time td

• As QS
p and Tp feasible, time needed to run p, including time to

deallocate all resources, is:
ta + floor(M/d + 1)(q + tCPU) + td

• So for n processes, maximum time cycle will take is n times this
• Thus, there is a maximum time for each round robin cycle

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 35

Availability and Network Flooding

• Access over Internet must be unimpeded
• Context: flooding attacks, in which attackers try to overwhelm system

resources

• If many sources flood a target, it’s a distributed denial of service
attack

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 36

TCP 3-Way Handshake and Availability

• Normal three-way handshake to
initiate connection
• Suppose source never sends

third message (the last ACK)
• Destination holds information

about pending connection for a
period of time before the space is
released

source destination
SYN(s)

source destination
SYN(t)ACK(s+1)

source destination
ACK(t+1)

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 37

Analysis

• Consumption of bandwidth
• If flooding overwhelms capacity of physical network medium, SYNs from

legitimate handshake attempts may not be able to reach the target

• Absorption of resources on destination host
• Flooding fills up memory space for pending connections, causing SYNs from

legitimate handshake attempts to be discarded

• In terms of the models:
• Waiting time is the time that destination waits for ACK from source
• Fairness policy must assure host waiting for ACK (resource) will receive

(acquire) it

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 38

Analysis in Terms of Model

• Waiting time is the time that destination waits for ACK from source
• Fairness policy must assure host waiting for ACK (resource) will

receive (acquire) it
• But goal of attack is to make sure it never arrives

• Yu-Gligor model: finite wait time does not hold
• So model says denial of service can occur

• Millen model: Tp(ACK) > max(ACK)
• max(ACK) is the time-out period for pending connections
• So model says denial of service can occur

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 39

Countermeasures

• Focus on ensuring resources needed for legitimate handshakes to
complete are available
• So every legitimate client gets access to server

• First approach: manipulate opening of connection at end point
• If focus is to ensure connection attempts will succeed at some time, focus is

really on waiting time
• Otherwise, focus is on user agreement

• Second approach: control which packets, or rate at which packets,
sent to destination
• Focus is on implicit user agreements

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 40

Intermediate Systems

• Approach is to reduce consumption of resources on destination by
diverting or eliminating illegitimate traffic so only legitimate traffic
reaches destination
• Done at infrastructure level

• Example: Cisco routers try to establish connection with source (TCP
intercept mode)
• On success, router does same with intended destination, merges the two
• On failure, short time-out protects router resources and target never sees

flood

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 41

Track Connection Status

• Use network monitor to track status of handshake

• Example: synkill monitors traffic on network
• Classifies IP addresses as not flooding (good), flooding (bad), unknown (new)
• Checks IP address of SYN

• If good, packet ignored
• If bad, send RST to destination; ends handshake, releasing resources
• If new, look for ACK or RST from same source; if seen, change to good; if not seen,

change to bad

• Periodically discard stale good addresses

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 42

Intermediate Systems near Sources

• D-WARD relies on routers close to the sources to block attack
• Reduces congestion in network without interfering with legitimate traffic

• Placed at gateways of possible sources to examine packets leaving
(internal) network and going to Internet
• Deployed on systems in research lab for 4 months
• First month: large number of false alerts
• Tuning D-WARD parameters reduced this number

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 43

D-WARD: Observation Component

• Has set of legitimate internal addresses
• Gathers statistics on packets leaving network, discarding packets

without legitimate addresses
• Tracks number of simultaneous connections to each remote

destination
• Unusually large number may indicate attack from this network

• Examines connections with large amount of outgoing traffic but little
incoming (response) traffic
• May indicate destination host is overwhelmed

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 44

D-WARD: Observation Component

• Also aggregates traffic statistics to each remote address
• Classifies flows as attack, suspicious, normal
• Normal: statistics match legitimate traffic model
• Attack: if not

• Once traffic classified as attack begins to match legitimate traffic
model, indicates attack has ended, so flow reclassified as suspicious
• If it stays suspicious for predetermined time, reclassified as normal

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 45

D-WARD: Rate-Limiting Component

• When attack detected, this component limits amount of packets that
can be sent
• This reduces volume of traffic going from this network to destination
• How it limits rate is based on D-WARD’s best guess of amount of

traffic destination can handle
• When flow reclassified as normal, D-WARD raises rate limit until sending rate

is as before

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 46

D-WARD: Traffic-Policing Component

• Component obtains information from other 2 components
• Based on this, decides whether to drop packets
• Packets for normal connections always forwarded
• Packets for other flows may be forwarded provided doing so does not exceed

rate limit associated with flow

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 47

