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Constraint-Based Model (Yu-Gligor)

• Framed in terms of users accessing a server for some services
• User agreement: describes properties that users of servers must meet
• Finite waiting time policy: ensures no user is excluded from using 

resource
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User Agreement

• Set of constraints designed to prevent denial of service
• Sseq sequence of all possible invocations of a service
• Useq set of sequences of all possible invocations by a user
• UIi,seq⊆ Useq that user Ui can invoke
• C set of operations Ui can perform to consume service
• P set of operations to produce service user Ui consumes
• p < c means operation p ∈ P must precede operation c ∈ C
• Ai set of operations allowed for user Ui

• Ri set of relations between every pair of allowed operations for Ui
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Example

Mutually exclusive resource
• C = { acquire }
• P = { release }
• For p1, p2, Ai = { acquirei, releasei } for i = 1, 2
• For p1, p2, Ri = { ( acquirei < releasei ) } for i = 1, 2
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Sequences of Operations

• Ui(k) initial subsequence of Ui of length k
• no(Ui(k)) number of times operation o occurs in Ui(k)

• Ui(k) safe if the following 2 conditions hold:
• if o ∈ Ui,seq, then o ∈ Ai; and

• That is, if Ui executes o, it must be an allowed operation for Ui

• for all k, if (o < o’) ∈ Ri, then no(Ui(k)) ≥ no’(Ui(k))
• That is, if one operation precedes another, the first one must occur more times than the 

second
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Resources of Services

• s ∈ Sseq possible sequence of invocations of services
• s blocks on condition c
• May be waiting forservice to become available, or processing some response, 

etc. 

• oi*(c) represents operation oi blocked, waiting for c to become true
• When execution results, oi(c) represents operation
• Note that when c becomes true, oi*(c) may not resume immediately
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Resources of Services

• s(0) initial subsequence of s up to operation oi*(c)
• s(k) subsequence of operations between k-1st, kth time c becomes 

true after oi*(c)
• oi*(c) ➝s(k) oi(c): oi blocks waiting on c at end of s(0), resumes 

operation at end of s(k)
• Sseq live if for every oi*(c) there is a set of subsequences s(0), ..., s(k) 

such that it is initial subsequence of some s ∈ Sseq and oi*(c) ➝s(k) oi(c)
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Example

• Mutually exclusive resource; consider sequence
( acquirei, releasei, acquirei, acquirei, releasei )

with acquirei, releasei ∈ Ai, (acquirei, releasei) ∈ Ri;o = acquirei, o’ = releasei
• Ui(1) = (acquirei ) ⇒ no(Ui(1)) = 1, no’(Ui(1)) = 0
• Ui(2) = (acquirei, releasei ) ⇒ no(Ui(2)) = 1, no’(Ui(2)) = 1
• Ui(3) = (acquirei, releasei, acquirei) ⇒ no(Ui(3)) = 2, no’(Ui(3)) = 1
• Ui(4) = (acquirei, releasei, acquirei, acquirei) ⇒

no(Ui(4)) = 3, no’(Ui(4)) = 1
• Ui(5) = (acquirei, releasei, acquirei, acquirei, releasei) ⇒

no(Ui(5)) = 3, no’(Ui(5)) = 2
• As no(Ui(k)) > no’(Ui(k)) for k = 1, ..., 5, the sequence is safe
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Example (con’t)

• Let c be true whenever resource can be released
• That is, initially and whenever a releasei operation is performed

• Consider sequence: (acquire1, acquire2
*(c), release1, release2, ... , 

acquirek, acquirek+1(c), releasek, releasek+1, ...)
• For all k ≥ 1, acquirei*(c) ➝s(1) acquirek+1(c), so this is live sequence
• Here, acquirek+1(c) occurs between releasek and releasek+1
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Expressing User Agreements

• Use temporal logics
• Symbols
• ☐: henceforth (the predicate is true and will remain true)
• ◇: eventually (the predicate is either true now, or will become true in the 

future)
• ⤳: will  lead to (if the first part is true, the second part will eventually become 

true); so A⤳ B is shorthand for A⇒◇B
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Example

• Acquiring and releasing mutually exclusive resource type
• User agreement: once a process is blocked on an acquire operation, 

enough release operations will release enough resources of that type 
to allow blocked process to proceed

service resource_allocator
User agreement

in(acquire) ⤳ ((☐◇(#active_release > 0) ∨ (free ≥ acquire.n))
• When a process issues an acquire request, at some later time at least 

1 release operation occurs, and enough resources will be freed for the 
requesting process to acquire the needed resources
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Finite Waiting Time Policy

• Fairness policy: prevents starvation; ensures process using a resource 
will not block indefinitely if given the opportunity to progress
• Simultaneity policy: ensures progress; provides opportunities process 

needs to use resource
• User agreement: see earlier
• If these three hold, no process will wait an indefinite time before 

accessing and using the resource
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Example

• Continuing example ... these and above user agreement ensure no 
indefinite blocking

sharing policies
fairness

(at(acquire) ∧☐◇((free ≥ acquire.n) ∧ (#active = 0))) ⤳ after(acquire)
(at(release) ∧☐◇(#active = 0)) ⤳ after(release)

simultaneity
(in(acquire) ∧ (☐◇(free ≥ acquire.n)) ∧ (☐◇(#active = 0))) ⤳

((free ≥ acquire.n) ∧ (#active = 0))
(in(release) ∧☐◇(#active_release > 0)) ⤳ (free ≥ acquire.n)
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Service Specification

• Interface operations
• Private operations not available outside service
• Resource constraints
• Concurrency constraints
• Finite waiting time policy
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Example: 

• Interface operations of the resource allocation/deallocation example
interface operations
acquire(n: units)

exception conditions: quota[id] < own[id] + n
effects: free’ = free – n

own[id]’ = own[id] + n
release(n: units)

exception conditions: n > own[id]
effects: free’ = free + n

own[id]’ = own[id] – n
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Example (con’t) 

• Resource constrains of the resource allocation/deallocation example
resource constraints
1. ☐((free ≥ 0) ∧ (free ≤ size))
2. (∀ id) [☐(own[id] ≥ 0) ∧ (own[id] ≤ quota[id]))]
3. (free = N) ⇒ ((free = N) UNTIL (after(acquire) ∨ after(release)))
4. (∀ id) [ (own[id] = M) ⇒ ((own[id] = M) UNTIL (after(acquire) ∨

after(release)))]
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Example (con’t) 

• Concurrency constraints of the resource allocation/deallocation 
example

concurrency constraints
1. ☐(#active ≤ 1)
2. (#active = 1) ⤳ (#active = 1)
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Denial of Service

• Service specification policies, user agreements prevent denial of 
service if enforced
• These do not prevent a long wait time; they simply ensure the wait 

time is finite
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State-Based Model (Millen)

• Unlike constraint-based model, allows a maximum waiting time to be 
specified
• Based on resource allocation system, denial of service base that 

enforces its policies
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Resource Allocation System Model

• R set of resource types
• For each r ∈ R, number of resource units (capacity, c(r)) is constant; a 

process can hold a unit for a maximum holding time m(r)
• P set of processes
• For each p ∈ P, state is running or sleeping
• When allocated a resource, process is running
• Multiple process can be in running state simultaneously
• Each p has upper bound it can be in running state before being interrupted, if 

only by CPU quantum q
• Example: if CPU considered a resource, m(CPU) = q
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Allocation Matrix

• Rows represent processes; columns represent resources
• A: P × R➝ ℕ is matrix
• For p ∈ P, r ∈ R, Ap(r) is number of resource units of type r acquired by p
• As at most c(r) of resource type r exist, at most that many can be allocated at 

any time

R1: The system cannot allocate more instances of a resource type than 
it has:

(∀r ∈ R)[∑p∈P Ap(r) ≤ c(r)]
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More About Resources

• T: P ➝ ℕ is system time when resource assignment was last changed
• Think of it as a time vector, each element belonging to one process

• QS: P × R ➝ ℕ is matrix of required resources for each process, not 
including the resources it already holds
• So QS

p(r) means the number of units of resource type r that process p may need to 
complete 

• QT: P × R ➝ ℕ is matrix of how much longer each process p needs the units 
of resource r
• Predicates running(p) true if p is in running state; asleep(p) true otherwise
R2: A currently running process must not require additional resources to run

running(p) => (∀r ∈ R)[QS
p(r) = 0]
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States, State Transitions

• Current state of system is (A, T, QS, QT)
• State transition (A, T, QS, QT) ➝ (A’, T’, QS’, QT’)
• We only care about treansitions due to allocation, deallocation of resources

• Three relevant types of transitions
• Deactivation transition: running(p) ➝ asleep’(p); process stops execution
• Activation transition: asleep(p) ➝ running’(p); process starts or resumes 

execution
• Reallocation transition: transition in which p has resource allocation changed; 

can only occur when asleep(p)
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Constraints

R3: Resource allocation does not affect allocations of a running 
process:

(running(p) ∧ running’(p)) ⇒ (Ap’ = Ap)
R4: T(p) changes only when resource allocation of p changes:

(Ap’(CPU) = Ap(CPU)) ⇒ (T’(p) = T(p))
R5: Updates in time vector increase value of element being updated:

(Ap’(CPU) ≠ Ap(CPU)) => (T’(p) > T(p))
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Constraints

R6: When p reallocated resources, allocation matrix updated before p
resumes execution:

asleep(p) ⇒ QS
p’ = QS

p + Ap – Ap’
R7: When a process is not running, the time it needs resources does 
not change:

asleep(p) ⇒ QT
p’ = QT

p
R8: when a process ceases to execute, the only resource it must
surrender is the CPU:
(running(p) ∧ asleep’(p)) ⇒ Ap’(r) = Ap(r)–1 if r = CPU
(running(p) ∧ asleep’(p)) ⇒ Ap’(r) = Ap(r) otherwise
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Resource Allocation System

• A system in a state (A, T, QS, QT) such that:
• State satisfies constraints R1, R2
• All state transitions constrained to meet R3-R8 
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Denial of Service Protection Base (DPB)

• A mechanism that is tamperproof, cannot be prevented from 
operating, and guarantees authorized access to resources it controls
• Four parts:
• Resource allocation system (see earlier)
• Resource monitor
• Waiting time policy
• User agreement (see earlier; constraints apply to changes in allocation when 

process transitions from running(p) to asleep(p)
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Resource Monitor

• Controls allocation, deallocation of resources and the timing
• QS

p is feasible if (∀i)[QS
p(ri) + Ap(ri) ≤ c(ri)] ∧ QS

p(CPU) ≤ 1
• If the total number of resources it will be allocated will always be no more 

than the capacity of that resource, and no more than 1 CPU is requested

• Tp is feasible if (∀i)[Tp(ri) ≤ max(ri)]
• Here, max(ri) max time a process must wait for its needed allocation of units 

of resource type i
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Waiting Time Policy

• Let σ = (A, T, QS, QT)
• Example finite waiting time policy: 

(∀p, σ)(∃σ’)[running’(p) ∧ (T’(p) ≥ T(p))]
• For every process and state, there is a future state in which p is executing and 

has been allocated resources

• Example maximum waiting time policy:
(∃M)(∀p, σ)(∃σ’)[running’(p) ∧ (0 < T’(p) – T(p) ≤ M)]

• There is an upper bound M to how long it takes every process to reach a 
future state in which it is executing and has been allocated resources
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Two Additional Constraints

In addition to all these, a DPB must satisfy these constraints:

1. Each process satisfying user agreement constraints will progress in a 
way that satisfies the waiting time policy

2. No resource other than the CPU is deallocated from a process 
unless that resource is no longer needed

(∀i)[ri ≠ CPU ∧ Ap(ri) ≠ 0 ∧ Ap’(ri) = 0] ⇒ QT
p(ri) = 0
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Example: DPB

• Assume system has 1 CPU
• Assume maximum waiting time policy in place
• 3 parts to user agreement:
• QS

p, Tp are feasible
• Process in running state executes for a minimum amount of time before it 

transitions to a non-running state
• If process requires resource type, and enters a non-running state, the time it 

needs the resource for is decreased by the amount of time it was in the 
previous running state; that is,

QT
p ≠ 0 ∧ running(p) ∧ asleep’(p) ⇒ (∀r∈R)[QT

p(r) ≤ max(0, maxr QT
p(r)–(T’(p)–T(p)))]
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Example: System

• n processes, round robin scheduler with quantum q
• Initially no process has any resources
• Resource monitor selects process p to give resources to
• p executes until QT

p = 0 or monitor concludes QS
p or Tp is not feasible

• Goal: show there will be no denial of service in this system because
a) no resource ri is deallocated from p for which QS

p is feasible until QT
p = 0; 

and
b) there is a maximum time for each round robin cycle
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Claim (a)

• Before p selected, no process has any resources allocated to it
• So next process with QS

p and Tp feasible is selected
• It runs until it enters the asleep state or q, whichever is shorter
• If in asleep state, process is done
• If q, monitor gives p another quantum of running time; this repeats until QT

p = 0, and 
then p needs no more resources

• Let m(r) be maximum time any process will hold resources of type r
• Let M(r) = maxr m(r)

• As QS
p and Tp  feasible, M upper bound for all elements of QT

p
• d = min(q, minimum time before p transitions to asleep state); exists because a 

process in running state executes for a minimum amount of time before it transitions 
to a non-running state
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Claim (a) (con’t)

• As QS
p and Tp  feasible, M upper bound for all elements of QT

p

• d = min(q, minimum time before p transitions to asleep state)
• Exists because a process in running state executes for a minimum amount of 

time before it transitions to a non-running state

• At end of each quantum, m’(r) = m(r) – d
• By third part of user agreement

• So after floor(M/d + 1) quanta, QT
p = 0

• So no resources deallocated until (∀i) QT
p(ri) = 0
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Claim (b)

• ta is time between resource monitor beginning cycle and when it has 
allocated required resources to p
• Resource monitor then allocates CPU resource to p; call this time tCPU
• Done between each quantum

• When p completes, all its resources deallocated; this takes time td

• As QS
p and Tp  feasible, time needed to run p, including time to 

deallocate all resources, is:
ta + floor(M/d + 1)(q + tCPU) + td

• So for n processes, maximum time cycle will take is n times this
• Thus, there is a maximum time for each round robin cycle
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Availability and Network Flooding

• Access over Internet must be unimpeded
• Context: flooding attacks, in which attackers try to overwhelm system 

resources

• If many sources flood a target, it’s a distributed denial of service 
attack
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TCP 3-Way Handshake and Availability

• Normal three-way handshake to 
initiate connection
• Suppose source never sends 

third message (the last ACK)
• Destination holds information 

about pending connection for a 
period of time before the space is 
released

source destination
SYN(s)

source destination
SYN(t)ACK(s+1)

source destination
ACK(t+1)
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Analysis

• Consumption of bandwidth
• If flooding overwhelms capacity of physical network medium, SYNs from 

legitimate handshake attempts may not be able to reach the target

• Absorption of resources on destination host
• Flooding fills up memory space for pending connections, causing SYNs from 

legitimate handshake attempts to be discarded

• In terms of the models:
• Waiting time is the time that destination waits for ACK from source
• Fairness policy must assure host waiting for ACK (resource) will receive 

(acquire) it
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Analysis in Terms of Model

• Waiting time is the time that destination waits for ACK from source
• Fairness policy must assure host waiting for ACK (resource) will 

receive (acquire) it
• But goal of attack is to make sure it never arrives

• Yu-Gligor model: finite wait time does not hold
• So model says denial of service can occur

• Millen model: Tp(ACK) > max(ACK)
• max(ACK) is the time-out period for pending connections
• So model says denial of service can occur

February 11, 2019 ECS 235B, Foundations of Computer and Information Security 39



Countermeasures

• Focus on ensuring resources needed for legitimate handshakes to 
complete are available
• So every legitimate client gets access to server

• First approach: manipulate opening of connection at end point
• If focus is to ensure connection attempts will succeed at some time, focus is 

really on waiting time
• Otherwise, focus is on user agreement

• Second approach: control which packets, or rate at which packets, 
sent to destination
• Focus is on implicit user agreements
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Intermediate Systems

• Approach is to reduce consumption of resources on destination by 
diverting or eliminating illegitimate traffic so only legitimate traffic 
reaches destination
• Done at infrastructure level

• Example: Cisco routers try to establish connection with source (TCP 
intercept mode)
• On success, router does same with intended destination, merges the two
• On failure, short time-out protects router resources and target never sees 

flood
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Track Connection Status

• Use network monitor to track status of handshake

• Example: synkill monitors traffic on network
• Classifies IP addresses as not flooding (good), flooding (bad), unknown (new)
• Checks IP address of SYN

• If good, packet ignored
• If bad, send RST to destination; ends handshake, releasing resources
• If new, look for ACK or RST from same source; if seen, change to good; if not seen, 

change to bad

• Periodically discard stale good addresses
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Intermediate Systems near Sources 

• D-WARD relies on routers close to the sources to block attack
• Reduces congestion in network without interfering with legitimate traffic

• Placed at gateways of possible sources to examine packets leaving 
(internal) network and going to Internet
• Deployed on systems in research lab for 4 months
• First month: large number of false alerts
• Tuning D-WARD parameters reduced this number
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D-WARD: Observation Component

• Has set of legitimate internal addresses
• Gathers statistics on packets leaving network, discarding packets 

without legitimate addresses
• Tracks number of simultaneous connections to each remote 

destination
• Unusually large number may indicate attack from this network

• Examines connections with large amount of outgoing traffic but little 
incoming (response) traffic
• May indicate destination host is overwhelmed
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D-WARD: Observation Component

• Also aggregates traffic statistics to each remote address
• Classifies flows as attack, suspicious, normal
• Normal: statistics match legitimate traffic model
• Attack: if not

• Once traffic classified as attack begins to match legitimate traffic 
model, indicates attack has ended, so flow reclassified as suspicious
• If it stays suspicious for predetermined time, reclassified as normal
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D-WARD: Rate-Limiting Component

• When attack detected, this component limits amount of packets that 
can be sent
• This reduces volume of traffic going from this network to destination
• How it limits rate is based on D-WARD’s best guess of amount of 

traffic destination can handle
• When flow reclassified as normal, D-WARD raises rate limit until sending rate 

is as before
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D-WARD: Traffic-Policing Component

• Component obtains information from other 2 components
• Based on this, decides whether to drop packets
• Packets for normal connections always forwarded
• Packets for other flows may be forwarded provided doing so does not exceed 

rate limit associated with flow
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