ECS 235B, Lecture 18

February 20, 2019

Break-the-Glass Policies

- Motivation: when security requirements conflict, some access controls may need to be overwritten in an unpredictable manner
 - Example: a doctor may need access to a medical record to treat someone, yet that person is unable to give consent (without which access would be denied)
- User overrides the denial
 - Controls notify some people about the override
 - Controls log override for later audit

Example: Rumpole

- Implements a break-the-glass policy
- *Evidential rules*: how to assemble evidence to create context for request
- Break-glass rules: define permissions
 - Includes constraints such as obligations to justify need for actions
- *Grant policies*: how rules are combined to determine whether to grant override

Example: Rumpole Enforcement Model

- Request: subject, desired action, resource, obligations acceptable to subject
- Decision point:
 - Grants request
 - Denies request
 - Returns request with set of obligations subject must accept; subject then can send a new request with that set of obligations, if they are acceptable

Key Points

- Hybrid policies deal with both confidentiality and integrity
 - Different combinations of these
- ORCON model neither MAC nor DAC
 - Actually, a combination
- RBAC model controls access based on functionality
- Break-the-glass model handles exceptional circumstances that the access control model does not account for

Information Flow

- Basics and background
 - Entropy
- Non-lattice flow policies
- Compiler-based mechanisms
- Execution-based mechanisms
- Examples
 - Privacy and cell phones
 - Firewalls

Basics

- Bell-LaPadula Model embodies information flow policy
 - Given compartments A, B, info can flow from A to B iff B dom A
- So does Biba Model
 - Given compartments A, B, info can flow from A to B iff A dom B
- Variables x, y assigned compartments <u>x</u>, <u>y</u> as well as values
 - Confidentiality (Bel-LaPadula): if <u>x</u> = A, <u>y</u> = B, and B dom A, then y := x allowed but not x := y
 - Integrity (Biba): if $\underline{x} = A$, $\underline{y} = B$, and A dom B, then x := y allowed but not y := x
- From here on, the focus is on confidentiality (Bell-LaPadula)
 - Discuss integrity later

All About Entropy

- Random variables
- Joint probability
- Conditional probability
- Entropy (or uncertainty in bits)
- Joint entropy
- Conditional entropy
- Applying it to secrecy of ciphers

Random Variable

- Variable that represents outcome of an event
 - X represents value from roll of a fair die; probability for rolling n: p(=n) = 1/6
 - If die is loaded so 2 appears twice as often as other numbers, p(X=2) = 2/7and, for $n \neq 2$, p(X=n) = 1/7
- Note: p(X) means specific value for X doesn't matter
 - Example: all values of *X* are equiprobable

Joint Probability

- Joint probability of X and Y, p(X, Y), is probability that X and Y simultaneously assume particular values
 - If X, Y independent, p(X, Y) = p(X)p(Y)
- Roll die, toss coin
 - $p(X=3, Y=heads) = p(X=3)p(Y=heads) = 1/6 \times 1/2 = 1/12$

Two Dependent Events

• X = roll of red die, Y = sum of red, blue die rolls

p(Y=2) = 1/36 p(Y=3) = 2/36 p(Y=4) = 3/36 p(Y=5) = 4/36p(Y=6) = 5/36 p(Y=7) = 6/36 p(Y=8) = 5/36 p(Y=9) = 4/36p(Y=10) = 3/36 p(Y=11) = 2/36 p(Y=12) = 1/36

• Formula:

p(X=1, Y=11) = p(X=1)p(Y=11) = (1/6)(2/36) = 1/108

Conditional Probability

- Conditional probability of X given Y, p(X | Y), is probability that X takes on a particular value given Y has a particular value
- Continuing example ...
 - p(Y=7 | X=1) = 1/6
 - p(Y=7 | X=3) = 1/6

Relationship

- p(X, Y) = p(X | Y) p(Y) = p(X) p(Y | X)
- Example:

p(X=3,Y=8) = p(X=3 | Y=8) p(Y=8) = (1/5)(5/36) = 1/36

• Note: if X, Y independent: p(X|Y) = p(X)

Entropy

- Uncertainty of a value, as measured in bits
- Example: X value of fair coin toss; X could be heads or tails, so 1 bit of uncertainty
 - Therefore entropy of X is H(X) = 1
- Formal definition: random variable X, values x₁, ..., x_n; so

 $\Sigma_i p(X = x_i) = 1$; then entropy is:

$$H(X) = -\sum_i p(X=x_i) \log p(X=x_i)$$

Heads or Tails?

• $H(X) = -p(X=heads) \lg p(X=heads) - p(X=tails) \lg p(X=tails)$ = $-(1/2) \lg (1/2) - (1/2) \lg (1/2)$ = -(1/2) (-1) - (1/2) (-1) = 1

• Confirms previous intuitive result

n-Sided Fair Die

 $H(X) = -\sum_{i} p(X = x_{i}) \lg p(X = x_{i})$ As $p(X = x_{i}) = 1/n$, this becomes $H(X) = -\sum_{i} (1/n) \lg (1/n) = -n(1/n) (-\lg n)$ so $H(X) = \lg n$

which is the number of bits in *n*, as expected

Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul

W represents the winner. What is its entropy?

•
$$w_1 = Ann, w_2 = Pam, w_3 = Paul$$

• $p(W=w_1) = p(W=w_2) = 2/5, p(W=w_3) = 1/5$

• So
$$H(W) = -\sum_i p(W=w_i) \lg p(W=w_i)$$

$$= -(4/5) + \lg 5 \approx -1.52$$

• If all equally likely to win, $H(W) = \lg 3 \approx 1.58$

Joint Entropy

- X takes values from { x_1 , ..., x_n }, and $\Sigma_i p(X=x_i) = 1$
- Y takes values from { y_1 , ..., y_m }, and $\Sigma_i p(Y=y_i) = 1$
- Joint entropy of *X*, *Y* is:

 $H(X, Y) = -\sum_{j} \sum_{i} p(X=x_{i}, Y=y_{j}) \log p(X=x_{i}, Y=y_{j})$

Example

X: roll of fair die, Y: flip of coin

As X, Y are independent:

$$p(X=1, Y=heads) = p(X=1) p(Y=heads) = 1/12$$

and

$$H(X, Y) = -\sum_{j} \sum_{i} p(X=x_{i}, Y=y_{j}) \log p(X=x_{i}, Y=y_{j})$$

= -2 [6 [(1/12) lg (1/12)] = lg 12

Conditional Entropy

- X takes values from $\{x_1, ..., x_n\}$ and $\sum_i p(X=x_i) = 1$
- Y takes values from { y_1 , ..., y_m } and $\Sigma_i p(Y=y_i) = 1$
- Conditional entropy of X given Y=y_i is:

$$H(X \mid Y=y_j) = -\sum_i p(X=x_i \mid Y=y_j) \log p(X=x_i \mid Y=y_j)$$

• Conditional entropy of X given Y is:

$$H(X \mid Y) = -\sum_{j} p(Y=y_{j}) \sum_{i} p(X=x_{i} \mid Y=y_{j}) \log p(X=x_{i} \mid Y=y_{j})$$

Example

- X roll of red die, Y sum of red, blue roll
- Note p(X=1|Y=2) = 1, p(X=i|Y=2) = 0 for $i \neq 1$
 - If the sum of the rolls is 2, both dice were 1
- Thus

$$H(X|Y=2) = -\sum_{i} p(X=x_{i}|Y=2) \log p(X=x_{i}|Y=2) = 0$$

Example (*con't*)

- Note *p*(*X*=*i*, *Y*=7) = 1/6
 - If the sum of the rolls is 7, the red die can be any of 1, ..., 6 and the blue die must be 7–roll of red die

•
$$H(X | Y=7) = -\sum_{i} p(X=x_{i} | Y=7) \lg p(X=x_{i} | Y=7)$$

= -6 (1/6) $\lg (1/6) = \lg 6$

Perfect Secrecy

- Cryptography: knowing the ciphertext does not decrease the uncertainty of the plaintext
- *M* = { *m*₁, ..., *m*_n } set of messages
- *C* = { *c*₁, ..., *c*_{*n*} } set of messages
- Cipher $c_i = E(m_i)$ achieves *perfect secrecy* if H(M | C) = H(M)

Entropy and Information Flow

- Idea: info flows from x to y as a result of a sequence of commands c if you can deduce information about x before c from the value in y after c
- Formally:
 - *s* time before execution of *c*, *t* time after
 - $H(x_s \mid y_t) < H(x_s \mid y_s)$
 - If no y at time s, then $H(x_s | y_t) < H(x_s)$

Example 1

- Command is *x* := *y* + *z*; where:
 - $0 \le y \le 7$, equal probability
 - *z* = 1 with prob. 1/2, *z* = 2 or 3 with prob. 1/4 each
- s state before command executed; t, after; so
 - $H(y_s) = H(y_t) = -8(1/8) \lg (1/8) = 3$
 - $H(z_s) = H(z_t) = -(1/2) \lg (1/2) 2(1/4) \lg (1/4) = 1.5$
- If you know x_t , y_s can have at most 3 values, so $H(y_s \mid x_t) = -3(1/3) \lg (1/3) = \lg 3 \approx 1.58$
 - Thus, information flows from y to x

Example 2

• Command is

where *x*, *y* equally likely to be either 0 or 1

- $H(x_s) = 1$ as x can be either 0 or 1 with equal probability
- $H(x_s | y_t) = 0$ as if $y_t = 1$ then $x_s = 0$ and vice versa
 - Thus, $H(x_s | y_t) = 0 < 1 = H(x_s)$
- So information flowed from *x* to *y*

Implicit Flow of Information

- Information flows from x to y without an *explicit* assignment of the form y := f(x)
 - *f*(*x*) an arithmetic expression with variable *x*
- Example from previous slide:

```
if x = 1 then y := 0 else y := 1;
```

• So must look for implicit flows of information to analyze program

Notation

- <u>x</u> means class of x
 - In Bell-LaPadula based system, same as "label of security compartment to which x belongs"
- <u>x</u> ≤ <u>y</u> means "information can flow from an element in class of x to an element in class of y
 - Or, "information with a label placing it in class \underline{x} can flow into class \underline{y} "

Information Flow Policies

Information flow policies are usually:

- reflexive
 - So information can flow freely among members of a single class
- transitive
 - So if information can flow from class 1 to class 2, and from class 2 to class 3, then information can flow from class 1 to class 3

Non-Transitive Policies

- Betty is a confident of Anne
- Cathy is a confident of Betty
 - With transitivity, information flows from Anne to Betty to Cathy
- Anne confides to Betty she is having an affair with Cathy's spouse
 - Transitivity undesirable in this case, probably

Non-Lattice Transitive Policies

- 2 faculty members co-PIs on a grant
 - Equal authority; neither can overrule the other
- Grad students report to faculty members
- Undergrads report to grad students
- Information flow relation is:
 - Reflexive and transitive
- But some elements (people) have no "least upper bound" element
 - What is it for the faculty members?

Confidentiality Policy Model

- Lattice model fails in previous 2 cases
- Generalize: policy $I = (SC_I, \leq_I, join_I)$:
 - *SC*₁ set of security classes
 - \leq_{I} ordering relation on elements of SC_{I}
 - *join*, function to combine two elements of *SC*,
- Example: Bell-LaPadula Model
 - *SC*₁ set of security compartments
 - \leq_l ordering relation *dom*
 - *join*, function *lub*

Confinement Flow Model

- (I, O, confine, \rightarrow)
 - $I = (SC_i, \leq_i, join_i)$
 - O set of entities
 - \rightarrow : $O \times O$ with $(a, b) \in \rightarrow$ (written $a \rightarrow b$) iff information can flow from a to b
 - for $a \in O$, $confine(a) = (a_L, a_U) \in SC_I \times SC_I$ with $a_L \leq_I a_U$
 - Interpretation: for $a \in O$, if $x \leq_l a_U$, information can flow from x to a, and if $a_L \leq_l x$, information can flow from a to x
 - So *a_L* lowest classification of information allowed to flow out of *a*, and *a_U* highest classification of information allowed to flow into *a*

Assumptions, etc.

- Assumes: object can change security classes
 - So, variable can take on security class of its data
- Object *x* has security class <u>*x*</u> currently
- Note transitivity *not* required
- If information can flow from *a* to *b*, then *b* dominates *a* under ordering of policy *I*:

 $(\forall a, b \in O)[a \rightarrow b \Rightarrow a_L \leq_I b_U]$

Example 1

- $SC_{i} = \{ U, C, S, TS \}$, with $U \leq_{i} C, C \leq_{i} S$, and $S \leq_{i} TS$
- *a*, *b*, *c* ∈ *O*
 - confine(*a*) = [C, C]
 - confine(*b*) = [S, S]
 - confine(*c*) = [TS, TS]
- Secure information flows: $a \rightarrow b$, $a \rightarrow c$, $b \rightarrow c$
 - As $a_L \leq_I b_U$, $a_L \leq_I c_U$, $b_L \leq_I c_U$
 - Transitivity holds

Example 2

- SC_{l} , \leq_{l} as in Example 1
- $x, y, z \in O$
 - confine(*x*) = [C, C]
 - confine(y) = [S, S]
 - confine(z) = [C, TS]
- Secure information flows: $x \rightarrow y, x \rightarrow z, y \rightarrow z, z \rightarrow x, z \rightarrow y$
 - As $x_{L} \leq_{I} y_{U}, x_{L} \leq_{I} z_{U}, y_{L} \leq_{I} z_{U}, z_{L} \leq_{I} x_{U}, z_{L} \leq_{I} y_{U}$
 - Transitivity does not hold
 - $y \rightarrow z$ and $z \rightarrow x$, but $y \rightarrow z$ is false, because $y_L \leq_I x_U$ is false