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Break-the-Glass Policies

• Motivation: when security requirements conflict, some access 
controls may need to be overwritten in an unpredictable manner
• Example: a doctor may need access to a medical record to treat someone, yet 

that person is unable to give consent (without which access would be denied)

• User overrides the denial
• Controls notify some people about the override
• Controls log override for later audit
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Example: Rumpole

• Implements a break-the-glass policy
• Evidential rules: how to assemble evidence to create context for 

request
• Break-glass rules: define permissions

• Includes constraints such as obligations to justify need for actions

• Grant policies: how rules are combined to determine whether to 
grant override

February 20, 2019 ECS 235B, Foundations of Computer and Information Security 3



Example: Rumpole Enforcement Model

• Request: subject, desired action, resource, obligations acceptable to 
subject
• Decision point:
• Grants request
• Denies request
• Returns request with set of obligations subject must accept; subject then can 

send a new request with that set of obligations, if they are acceptable
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Key Points

• Hybrid policies deal with both confidentiality and integrity
• Different combinations of these

• ORCON model neither MAC nor DAC
• Actually, a combination

• RBAC model controls access based on functionality
• Break-the-glass model handles exceptional circumstances that the 

access control model does not account for
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Information Flow

• Basics and background
• Entropy

• Non-lattice flow policies
• Compiler-based mechanisms
• Execution-based mechanisms
• Examples
• Privacy and cell phones
• Firewalls
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Basics

• Bell-LaPadula Model embodies information flow policy
• Given compartments A, B, info can flow from A to B iff B dom A

• So does Biba Model
• Given compartments A, B, info can flow from A to B iff A dom B

• Variables x, y assigned compartments x, y as well as values
• Confidentiality (Bel-LaPadula): if x = A, y = B, and B dom A, then y := x allowed 

but not x := y
• Integrity (Biba): if x = A, y = B, and A dom B, then x := y allowed but not y := x

• From here on, the focus is on confidentiality (Bell-LaPadula)
• Discuss integrity later
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All About Entropy

• Random variables
• Joint probability
• Conditional probability
• Entropy (or uncertainty in bits)
• Joint entropy
• Conditional entropy
• Applying it to secrecy of ciphers
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Random Variable

• Variable that represents outcome of an event
• X represents value from roll of a fair die; probability for rolling n: p( =n) = 1/6
• If die is loaded so 2 appears twice as often as other numbers, p(X=2) = 2/7 

and, for n ≠ 2,  p(X=n) = 1/7

• Note: p(X) means specific value for X doesn’t matter
• Example: all values of X are equiprobable
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Joint Probability

• Joint probability of X and Y, p(X, Y), is probability that X and Y
simultaneously assume particular values
• If X, Y independent, p(X, Y) = p(X)p(Y)

• Roll die, toss coin
• p(X=3, Y=heads) = p(X=3)p(Y=heads) = 1/6 ´ 1/2 = 1/12
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Two Dependent Events

• X = roll of red die, Y = sum of red, blue die rolls

• Formula:
p(X=1, Y=11) = p(X=1)p(Y=11) = (1/6)(2/36) = 1/108

p(Y=2) = 1/36 p(Y=3) = 2/36 p(Y=4) = 3/36 p(Y=5) = 4/36

p(Y=6) = 5/36 p(Y=7) = 6/36 p(Y=8) = 5/36 p(Y=9) = 4/36

p(Y=10) = 3/36 p(Y=11) = 2/36 p(Y=12) = 1/36
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Conditional Probability

• Conditional probability of X given Y, p(X | Y), is probability that X takes 
on a particular value given Y has a particular value
• Continuing example …
• p(Y=7 | X=1) = 1/6
• p(Y=7 | X=3) = 1/6
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Relationship

• p(X, Y) = p(X | Y) p(Y) = p(X) p(Y | X)
• Example:

p(X=3,Y=8) = p(X=3|Y=8) p(Y=8) = (1/5)(5/36) = 1/36

• Note: if X, Y independent:
p(X|Y) = p(X)
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Entropy

• Uncertainty of a value, as measured in bits
• Example: X value of fair coin toss; X could be heads or tails, so 1 bit of 

uncertainty
• Therefore entropy of X is H(X) = 1

• Formal definition: random variable X, values x1, …, xn; so
Si p(X = xi) = 1; then entropy is:

H(X) = –Si p(X=xi) lg p(X=xi)
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Heads or Tails?

• H(X) = – p(X=heads) lg p(X=heads) – p(X=tails) lg p(X=tails)
= – (1/2) lg (1/2) – (1/2) lg (1/2)
= – (1/2) (–1) – (1/2) (–1) = 1

• Confirms previous intuitive result 
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n-Sided Fair Die

H(X) = –Si p(X = xi) lg p(X = xi)
As p(X = xi) = 1/n, this becomes
H(X) = –Si (1/n) lg (1/ n) = –n(1/n) (–lg n)
so
H(X) = lg n
which is the number of bits in n, as expected
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Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul
W represents the winner. What is its entropy?
• w1 = Ann, w2 = Pam, w3 = Paul
• p(W=w1) = p(W=w2) = 2/5, p(W=w3) = 1/5

• So H(W) = –Si p(W=wi) lg p(W=wi)
= – (2/5) lg (2/5) – (2/5) lg (2/5) – (1/5) lg (1/5)
= – (4/5) + lg 5 ≈ –1.52
• If all equally likely to win, H(W) = lg 3 ≈ 1.58
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Joint Entropy

• X takes values from { x1, …, xn }, and Si p(X=xi) = 1
• Y takes values from { y1, …, ym }, and Si p(Y=yi) = 1
• Joint entropy of X, Y is:

H(X, Y) = –Sj Si p(X=xi, Y=yj) lg p(X=xi, Y=yj)
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Example

X: roll of fair die, Y: flip of coin
As X, Y are independent:
p(X=1, Y=heads) = p(X=1) p(Y=heads) = 1/12

and
H(X, Y) = –Sj Si p(X=xi, Y=yj) lg p(X=xi, Y=yj)

= –2 [ 6 [ (1/12) lg (1/12) ] ] = lg 12
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Conditional Entropy

• X takes values from { x1, …, xn }  and Si p(X=xi) = 1
• Y takes values from { y1, …, ym } and Si p(Y=yi) = 1
• Conditional entropy of X given Y=yj is:

H(X | Y=yj) = –Si p(X=xi | Y=yj) lg p(X=xi | Y=yj)
• Conditional entropy of X given Y is:

H(X | Y) = –Sj p(Y=yj) Si p(X=xi | Y=yj) lg p(X=xi | Y=yj)

February 20, 2019 ECS 235B, Foundations of Computer and Information Security 20



Example

• X roll of red die, Y sum of red, blue roll
• Note p(X=1|Y=2) = 1, p(X=i|Y=2) = 0 for i ≠ 1
• If the sum of the rolls is 2, both dice were 1

• Thus
H(X|Y=2) = –Si p(X=xi|Y=2) lg p(X=xi|Y=2) = 0
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Example (con’t)

• Note p(X=i, Y=7) = 1/6
• If the sum of the rolls is 7, the red die can be any of 1, …, 6 and the blue die 

must be 7–roll of red die

• H(X|Y=7) = –Si p(X=xi|Y=7) lg p(X=xi|Y=7)
= –6 (1/6) lg (1/6) = lg 6
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Perfect Secrecy

• Cryptography: knowing the ciphertext does not decrease the 
uncertainty of the plaintext
• M = { m1, …, mn } set of messages
• C = { c1, …, cn } set of messages
• Cipher ci = E(mi) achieves perfect secrecy if H(M | C) = H(M)
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Entropy and Information Flow

• Idea: info flows from x to y as a result of a sequence of commands c if 
you can deduce information about x before c from the value in y after 
c
• Formally:
• s time before execution of c, t time after
• H(xs | yt) < H(xs | ys)
• If no y at time s, then H(xs | yt) < H(xs)
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Example 1

• Command is x := y + z; where:
• 0 ≤ y ≤ 7, equal probability
• z = 1 with prob. 1/2, z = 2 or 3 with prob. 1/4 each

• s state before command executed; t, after; so
• H(ys) = H(yt) = –8(1/8) lg (1/8) = 3
• H(zs) = H(zt) = –(1/2) lg (1/2) –2(1/4) lg (1/4) = 1.5

• If you know xt, ys can have at most 3 values, so H(ys | xt) = –3(1/3) lg
(1/3) = lg 3 ≈ 1.58
• Thus, information flows from y to x
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Example 2

• Command is
if x = 1 then y := 0 else y := 1;

where x, y equally likely to be either 0 or 1
• H(xs) = 1 as x can be either 0 or 1 with equal probability
• H(xs | yt) = 0 as if yt = 1 then xs = 0 and vice versa
• Thus, H(xs | yt) = 0 < 1 = H(xs)

• So information flowed from x to y
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Implicit Flow of Information

• Information flows from x to y without an explicit assignment of the 
form y := f(x)
• f(x) an arithmetic expression with variable x

• Example from previous slide:
if x = 1 then y := 0 else y := 1;

• So must look for implicit flows of information to analyze program
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Notation

• x means class of x
• In Bell-LaPadula based system, same as “label of security compartment to 

which x belongs”

• x ≤ y means “information can flow from an element in class of x to an 
element in class of y
• Or, “information with a label placing it in class x can flow into class y”
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Information Flow Policies

Information flow policies are usually:
• reflexive
• So information can flow freely among members of a single class

• transitive
• So if information can flow from class 1 to class 2, and from class 2 to class 3, 

then information can flow from class 1 to class 3
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Non-Transitive Policies

• Betty is a confident of Anne
• Cathy is a confident of Betty
• With transitivity, information flows from Anne to Betty to Cathy

• Anne confides to Betty she is having an affair with Cathy’s spouse
• Transitivity undesirable in this case, probably
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Non-Lattice Transitive Policies

• 2 faculty members co-PIs on a grant
• Equal authority; neither can overrule the other

• Grad students report to faculty members
• Undergrads report to grad students
• Information flow relation is:
• Reflexive and transitive

• But some elements (people) have no “least upper bound” element
• What is it for the faculty members?
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Confidentiality Policy Model

• Lattice model fails in previous 2 cases
• Generalize: policy I = (SCI, ≤I, joinI):
• SCI set of security classes
• ≤I ordering relation on elements of SCI
• joinI function to combine two elements of SCI

• Example: Bell-LaPadula Model
• SCI set of security compartments
• ≤I ordering relation dom
• joinI function lub
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Confinement Flow Model

• (I, O, confine, ®)
• I = (SCI, ≤I, joinI)
• O set of entities
• ®: O´O with (a, b) Î® (written a ® b) iff information can flow from a to b
• for a Î O, confine(a) = (aL, aU) Î SCI´SCI with aL ≤I aU

• Interpretation: for a Î O, if x ≤I aU, information can flow from x to a, and if aL ≤I x, 
information can flow from a to x

• So aL lowest classification of information allowed to flow out of a, and aU highest 
classification of information allowed to flow into a
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Assumptions, etc.

• Assumes: object can change security classes
• So, variable can take on security class of its data

• Object x has security class x currently
• Note transitivity not required
• If information can flow from a to b, then b dominates a under 

ordering of policy I:
(" a, b Î O)[ a ® b Þ aL ≤I bU ]
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Example 1

• SCI = { U, C, S, TS }, with U ≤I C, C ≤I S, and S ≤I TS
• a, b, c Î O
• confine(a) = [ C, C ]
• confine(b) = [ S, S ]
• confine(c) = [ TS, TS ]

• Secure information flows: a® b, a® c, b® c
• As aL ≤I bU, aL ≤I cU, bL ≤I cU
• Transitivity holds
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Example 2

• SCI, ≤I as in Example 1
• x, y, z Î O
• confine(x) = [ C, C ]
• confine(y) = [ S, S ]
• confine(z) = [ C, TS ]

• Secure information flows: x® y, x® z, y® z, z® x, z® y
• As xL ≤I yU, xL ≤I zU, yL ≤I zU, zL ≤I xU, zL ≤I yU
• Transitivity does not hold

• y® z and z® x, but y® z is false, because yL ≤I xU is false
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