
ECS 235B, Lecture 19
February 22, 2019

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 1

Composition of Policies

• Two organizations have two security policies
• They merge
• How do they combine security policies to create one security policy?
• Can they create a coherent, consistent security policy?

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 2

The Problem

• Single system with 2 users
• Each has own virtual machine
• Holly at system high, Lara at system low so they cannot communicate directly

• CPU shared between VMs based on load
• Forms a covert channel through which Holly, Lara can communicate

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 3

Example Protocol

• Holly, Lara agree:
• Begin at noon
• Lara will sample CPU utilization every minute
• To send 1 bit, Holly runs program

• Raises CPU utilization to over 60%
• To send 0 bit, Holly does not run program

• CPU utilization will be under 40%

• Not “writing” in traditional sense
• But information flows from Holly to Lara

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 4

Policy vs. Mechanism

• Can be hard to separate these
• In the abstract: CPU forms channel along which information can be

transmitted
• Violates *-property
• Not “writing” in traditional sense

• Conclusion:
• Bell-LaPadula model does not give sufficient conditions to prevent

communication, or
• System is improperly abstracted; need a better definition of “writing”

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 5

Composition of Bell-LaPadula

• Why?
• Some standards require secure components to be connected to form secure

(distributed, networked) system

• Question
• Under what conditions is this secure?

• Assumptions
• Implementation of systems precise with respect to each system’s security

policy

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 6

Issues

• Compose the lattices
• What is relationship among labels?
• If the same, trivial
• If different, new lattice must reflect the relationships among the levels

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 7

Example

(HIGH, { EAST, WEST })

(HIGH, { EAST }) (HIGH, { WEST })

(LOW)

(TS, { EAST, SOUTH })

(TS, { EAST }) (TS, { SOUTH })

(S, { EAST, SOUTH })

(S, { EAST }) (S, { SOUTH })

(LOW)

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 8

Analysis

• Assume S < HIGH < TS

• Assume SOUTH, EAST, WEST different

• Resulting lattice has:
• 4 clearances (LOW < S < HIGH < TS)
• 3 categories (SOUTH, EAST, WEST)

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 9

Same Policies

• If we can change policies that components must meet, composition is
trivial (as above)
• If we cannot, we must show composition meets the same policy as

that of components; this can be very hard

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 10

Different Policies

• What does “secure” now mean?
• Which policy (components) dominates?
• Possible principles:
• Any access allowed by policy of a component must be allowed by composition

of components (autonomy)
• Any access forbidden by policy of a component must be forbidden by

composition of components (security)

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 11

Implications

• Composite system satisfies security policy of components as
components’ policies take precedence
• If something neither allowed nor forbidden by principles, then:
• Allow it (Gong & Qian)
• Disallow it (Fail-Safe Defaults)

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 12

Example

• System X: Bob can’t access Alice’s files
• System Y: Eve, Lilith can access each other’s files
• Composition policy:
• Bob can access Eve’s files
• Lilith can access Alice’s files

• Question: can Bob access Lilith’s files?

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 13

Solution (Gong & Qian)

• Notation:
• (a, b): a can read b’s files
• AS(x): access set of system x

• Set-up:
• AS(X) = Æ
• AS(Y) = { (Eve, Lilith), (Lilith, Eve) }
• AS(XÈY) = { (Bob, Eve), (Lilith, Alice), (Eve, Lilith), (Lilith, Eve) }

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 14

Solution (Gong & Qian)

• Compute transitive closure of AS(XÈY):
• AS(XÈY)+ = { (Bob, Eve), (Bob, Lilith), (Bob, Alice), (Eve, Lilith), (Eve, Alice),

(Lilith, Eve), (Lilith, Alice) }

• Delete accesses conflicting with policies of components:
• Delete (Bob, Alice)

• (Bob, Lilith) in set, so Bob can access Lilith’s files

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 15

Idea

• Composition of policies allows accesses not mentioned by original
policies
• Generate all possible allowed accesses
• Computation of transitive closure

• Eliminate forbidden accesses
• Removal of accesses disallowed by individual access policies

• Everything else is allowed
• Note: determining if access allowed is of polynomial complexity

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 16

Information Flow

• Basics and background
• Entropy

• Non-lattice flow policies
• Compiler-based mechanisms
• Execution-based mechanisms
• Examples
• Privacy and cell phones
• Firewalls

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 17

Nontransitive Flow Policies

• Government agency information flow policy (on next slide)
• Entities public relations officers PRO, analysts A, spymasters S
• confine(PRO) = [public, analysis]
• confine(A) = [analysis, top-level]
• confine(S) = [covert, top-level]

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 18

Information Flow

• By confinement flow model:
• PRO ≤ A, A ≤ PRO
• PRO ≤ S
• A ≤ S, S ≤ A

• Data cannot flow to public
relations officers; not transitive
• S ≤ A, A ≤ PRO
• S ≤ PRO is false

top-level

analysis covert

public

February 22, 2019 ECS 235B, Foundations of Computer and Information
Security Slide 17-19

Transforming Into Lattice

• Rough idea: apply a special mapping to generate a subset of the
power set of the set of classes
• Done so this set is partially ordered
• Means it can be transformed into a lattice

• Can show this mapping preserves ordering relation
• So it preserves non-orderings and non-transitivity of elements corresponding

to those of original set

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 20

Dual Mapping

• R = (SCR, ≤R, joinR) reflexive info flow policy
• P = (SP, ≤P) ordered set
• Define dual mapping functions lR, hR: SCR®SP

• lR(x) = { x }
• hR(x) = { y | y Î SCR Ù y ≤R x }

• SP contains subsets of SCR; ≤P subset relation
• Dual mapping function order preserving iff

("a, b Î SCR)[a ≤R b Û lR(a) ≤P hR(b)]

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 21

Theorem

Dual mapping from reflexive information flow policy R to ordered set P
order-preserving
Proof sketch: all notation as before
(Þ) Let a ≤R b. Then a Î lR(a), a Î hR(b), so lR(a) Í hR(b), or lR(a) ≤P hR(b)
(Ü) Let lR(a) ≤P hR(b). Then lR(a) Í hR(b). But lR(a) = { a }, so a Î hR(b),
giving a ≤R b

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 22

Information Flow Requirements

• Interpretation: let confine(x) = [xL, xU], consider class y
• Information can flow from x to element of y iff xL ≤R y, or lR(xL) Í hR(y)
• Information can flow from element of y to x iff y ≤R xU, or lR(y) Í hR(xU)

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 23

Revisit Government Example

• Information flow policy is R
• Flow relationships among classes are:

public ≤R public
public ≤R analysis analysis ≤R analysis
public ≤R covert covert ≤R covert
public ≤R top-level covert ≤R top-level
analysis ≤R top-level top-level ≤R top-level

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 24

Dual Mapping of R

• Elements lR, hR:
lR(public) = { public }
hR(public = { public }
lR(analysis) = { analysis }
hR(analysis) = { public, analysis }
lR(covert) = { covert }
hR(covert) = { public, covert }
lR(top-level) = { top-level }
hR(top-level) = { public, analysis, covert, top-level }

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 25

confine

• Let p be entity of type PRO, a of type A, s of type S
• In terms of P (not R), we get:
• confine(p) = [{ public }, { public, analysis }]
• confine(a) = [{ analysis }, { public, analysis, covert, top-level }]
• confine(s) = [{ covert }, { public, analysis, covert, top-level }]

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 26

And the Flow Relations Are …

• p ® a as lR(p) Í hR(a)
• lR(p) = { public }
• hR(a) = { public, analysis, covert, top-level }

• Similarly: a ® p, p ® s, a ® s, s ® a
• But s ® p is false as lR(s) Ë hR(p)
• lR(s) = { covert }
• hR(p) = { public, analysis }

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 27

Analysis

• (SP, ≤P) is a lattice, so it can be analyzed like a lattice policy
• Dual mapping preserves ordering, hence non-ordering and non-

transitivity, of original policy
• So results of analysis of (SP, ≤P) can be mapped back into (SCR, ≤R, joinR)

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 28

Compiler-Based Mechanisms

• Detect unauthorized information flows in a program during
compilation
• Analysis not precise, but secure
• If a flow could violate policy (but may not), it is unauthorized
• No unauthorized path along which information could flow remains

undetected

• Set of statements certified with respect to information flow policy if
flows in set of statements do not violate that policy

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 29

Example

if x = 1 then y := a;
else y := b;
• Information flows from x and a to y, or from x and b to y
• Certified only if x ≤ y and a ≤ y and b ≤ y
• Note flows for both branches must be true unless compiler can determine

that one branch will never be taken

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 30

Declarations

• Notation:
x: int class { A, B }

means x is an integer variable with security class at least lub{ A, B }, so
lub{ A, B } ≤ x
• Distinguished classes Low, High
• Constants are always Low

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 31

Input Parameters

• Parameters through which data passed into procedure
• Class of parameter is class of actual argument

ip: type class { ip }

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 32

Output Parameters

• Parameters through which data passed out of procedure
• If data passed in, called input/output parameter

• As information can flow from input parameters to output parameters,
class must include this:

op: type class { r1, …, rn }
where ri is class of ith input or input/output argument

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 33

Example

proc sum(x: int class { A };
var out: int class { A, B });

begin
out := out + x;

end;
• Require x ≤ out and out ≤ out

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 34

Array Elements

• Information flowing out:
… := a[i]

Value of i, a[i] both affect result, so class is lub{ a[i], i }
• Information flowing in:

a[i] := …
• Only value of a[i] affected, so class is a[i]

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 35

Assignment Statements

x := y + z;
• Information flows from y, z to x, so this requires lub{ y, z } ≤ x
More generally:
y := f(x1, …, xn)
• the relation lub{ x1, …, xn } ≤ y must hold

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 36

Compound Statements

x := y + z; a := b * c – x;
• First statement: lub{ y, z } ≤ x
• Second statement: lub{ b, c, x } ≤ a
• So, both must hold (i.e., be secure)
More generally:
S1; … Sn;
• Each individual Si must be secure

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 37

Conditional Statements

if x + y < z then a := b else d := b * c – x; end
• Statement executed reveals information about x, y, z, so lub{ x, y, z } ≤

glb{ a, d }

More generally:
if f(x1, …, xn) then S1 else S2; end
• S1, S2 must be secure

• lub{ x1, …, xn } ≤ glb{y | y target of assignment in S1, S2 }

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 38

Iterative Statements

while i < n do begin a[i] := b[i]; i := i + 1; end
• Same ideas as for “if”, but must terminate

More generally:
while f(x1, …, xn) do S;
• Loop must terminate;
• S must be secure
• lub{ x1, …, xn } ≤ glb{y | y target of assignment in S }

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 39

Goto Statements

• No assignments
• Hence no explicit flows

• Need to detect implicit flows
• Basic block is sequence of statements that have one entry point and

one exit point
• Control in block always flows from entry point to exit point

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 40

Example Program
proc tm(x: array[1..10][1..10] of integer class {x};

var y: array[1..10][1..10] of integer class {y});
var i, j: integer class {i};
begin
b1 i := 1;
b2 L2: if i > 10 goto L7;
b3 j := 1;
b4 L4: if j > 10 then goto L6;
b5 y[j][i] := x[i][j]; j := j + 1; goto L4;
b6 L6: i := i + 1; goto L2;
b7 L7:
end;
February 22, 2019 ECS 235B, Foundations of Computer and Information Security 41

Flow of Control

b1 b2 b7

b6 b3

b4

b5

i > n
i ≤ n

j > n

j ≤ n

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 42

IFDs

• Idea: when two paths out of basic block, implicit flow occurs
• Because information says which path to take

• When paths converge, either:
• Implicit flow becomes irrelevant; or
• Implicit flow becomes explicit

• Immediate forward dominator of basic block b (written IFD(b)) is first
basic block lying on all paths of execution passing through b

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 43

IFD Example

• In previous procedure:
• IFD(b1) = b2 one path
• IFD(b2) = b7 b2®b7 or b2®b3®b6®b2®b7

• IFD(b3) = b4 one path
• IFD(b4) = b6 b4®b6 or b4®b5®b6

• IFD(b5) = b4 one path
• IFD(b6) = b2 one path

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 44

Requirements

• Bi is set of basic blocks along an execution path from bi to IFD(bi)
• Analogous to statements in conditional statement

• xi1, …, xin variables in expression selecting which execution path
containing basic blocks in Bi used
• Analogous to conditional expression

• Requirements for secure:
• All statements in each basic blocks are secure
• lub{ xi1, …, xin } ≤ glb{ y | y target of assignment in Bi }

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 45

Example of Requirements

• Within each basic block:
b1: Low ≤ i b3: Low ≤ j b6: lub{ Low, i } ≤ i
b5: lub{ x[i][j], i, j } ≤ y[j][i] }; lub{ Low, j } ≤ j
• Combining, lub{ x[i][j], i, j } ≤ y[j][i] }
• From declarations, true when lub{ x, i } ≤ y

• B2 = {b3, b4, b5, b6}
• Assignments to i, j, y[j][i]; conditional is i ≤ 10
• Requires i ≤ glb{ i, j, y[j][i] }
• From declarations, true when i ≤ y

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 46

Example (continued)

• B4 = { b5 }
• Assignments to j, y[j][i]; conditional is j ≤ 10
• Requires j ≤ glb{ j, y[j][i] }
• From declarations, means i ≤ y

• Result:
• Combine lub{ x, i } ≤ y; i ≤ y; i ≤ y
• Requirement is lub{ x, i } ≤ y

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 47

Procedure Calls

tm(a, b);
From previous slides, to be secure, lub{ x, i } ≤ y must hold
• In call, x corresponds to a, y to b
• Means that lub{ a, i } ≤ b, or a ≤ b
More generally:
proc pn(i1, …, im: int; var o1, …, on: int); begin S end;
• S must be secure
• For all j and k, if ij ≤ ok, then xj ≤ yk
• For all j and k, if oj ≤ ok, then yj ≤ yk

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 48

Exceptions

proc copy(x: integer class { x };
var y: integer class Low);

var sum: integer class { x };
z: int class Low;

begin
y := z := sum := 0;
while z = 0 do begin

sum := sum + x;
y := y + 1;

end
end

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 49

Exceptions (cont)

• When sum overflows, integer overflow trap
• Procedure exits
• Value of x is MAXINT/y
• Information flows from y to x, but x ≤ y never checked

• Need to handle exceptions explicitly
• Idea: on integer overflow, terminate loop

on integer_overflow_exception sum do z := 1;
• Now information flows from sum to z, meaning sum ≤ z
• This is false (sum = { x } dominates z = Low)

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 50

