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Composition of Policies

• Two organizations have two security policies
• They merge
• How do they combine security policies to create one security policy?
• Can they create a coherent, consistent security policy?
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The Problem

• Single system with 2 users
• Each has own virtual machine
• Holly at system high, Lara at system low so they cannot communicate directly

• CPU shared between VMs based on load
• Forms a covert channel through which Holly, Lara can communicate
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Example Protocol

• Holly, Lara agree:
• Begin at noon
• Lara will sample CPU utilization every minute
• To send 1 bit, Holly runs program

• Raises CPU utilization to over 60%
• To send 0 bit, Holly does not run program

• CPU utilization will be under 40%

• Not “writing” in traditional sense
• But information flows from Holly to Lara
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Policy vs. Mechanism

• Can be hard to separate these
• In the abstract: CPU forms channel along which information can be 

transmitted
• Violates *-property
• Not “writing” in traditional sense

• Conclusion:
• Bell-LaPadula model does not give sufficient conditions to prevent 

communication, or
• System is improperly abstracted; need a better definition of “writing”
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Composition of Bell-LaPadula

• Why?
• Some standards require secure components to be connected to form secure 

(distributed, networked) system

• Question
• Under what conditions is this secure?

• Assumptions
• Implementation of systems precise with respect to each system’s security 

policy
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Issues

• Compose the lattices
• What is relationship among labels?
• If the same, trivial
• If different, new lattice must reflect the relationships among the levels
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Example

(HIGH, { EAST, WEST } )

(HIGH, { EAST } ) (HIGH, { WEST } )

( LOW )

(TS, { EAST, SOUTH } )

(TS, { EAST } ) (TS, { SOUTH } )

( S, { EAST, SOUTH } )

(S, { EAST } ) (S, { SOUTH } )

( LOW )
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Analysis

• Assume S < HIGH < TS

• Assume SOUTH, EAST, WEST different

• Resulting lattice has:
• 4 clearances (LOW < S < HIGH < TS)
• 3 categories (SOUTH, EAST, WEST)
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Same Policies

• If we can change policies that components must meet, composition is 
trivial (as above)
• If we cannot, we must show composition meets the same policy as 

that of components; this can be very hard
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Different Policies

• What does “secure” now mean?
• Which policy (components) dominates?
• Possible principles:
• Any access allowed by policy of a component must be allowed by composition 

of components (autonomy)
• Any access forbidden by policy of a component must be forbidden by 

composition of components (security)
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Implications

• Composite system satisfies security policy of components as 
components’ policies take precedence
• If something neither allowed nor forbidden by principles, then:
• Allow it (Gong & Qian)
• Disallow it (Fail-Safe Defaults)
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Example

• System X: Bob can’t access Alice’s files
• System Y: Eve, Lilith can access each other’s files
• Composition policy:
• Bob can access Eve’s files
• Lilith can access Alice’s files

• Question: can Bob access Lilith’s files?
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Solution (Gong & Qian)

• Notation:
• (a, b): a can read b’s files
• AS(x): access set of system x

• Set-up:
• AS(X) = Æ
• AS(Y) = { (Eve, Lilith), (Lilith, Eve) }
• AS(XÈY) = { (Bob, Eve), (Lilith, Alice), (Eve, Lilith), (Lilith, Eve) }
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Solution (Gong & Qian)

• Compute transitive closure of AS(XÈY):
• AS(XÈY)+ = { (Bob, Eve), (Bob, Lilith), (Bob, Alice), (Eve, Lilith), (Eve, Alice),

(Lilith, Eve), (Lilith, Alice) }

• Delete accesses conflicting with policies of components:
• Delete (Bob, Alice)

• (Bob, Lilith) in set, so Bob can access Lilith’s files
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Idea

• Composition of policies allows accesses not mentioned by original 
policies
• Generate all possible allowed accesses
• Computation of transitive closure

• Eliminate forbidden accesses
• Removal of accesses disallowed by individual access policies

• Everything else is allowed
• Note: determining if access allowed is of polynomial complexity
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Information Flow

• Basics and background
• Entropy

• Non-lattice flow policies
• Compiler-based mechanisms
• Execution-based mechanisms
• Examples
• Privacy and cell phones
• Firewalls
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Nontransitive Flow Policies

• Government agency information flow policy (on next slide)
• Entities public relations officers PRO, analysts A, spymasters S
• confine(PRO) = [ public, analysis ]
• confine(A) = [ analysis, top-level ]
• confine(S) = [ covert, top-level ]
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Information Flow

• By confinement flow model:
• PRO ≤ A, A ≤ PRO
• PRO ≤ S
• A ≤ S, S ≤ A

• Data cannot flow to public 
relations officers; not transitive
• S ≤ A, A ≤ PRO
• S ≤ PRO is false

top-level

analysis covert

public

February 22, 2019 ECS 235B, Foundations of Computer and Information 
Security Slide 17-19



Transforming Into Lattice

• Rough idea: apply a special mapping to generate a subset of the 
power set of the set of classes
• Done so this set is partially ordered
• Means it can be transformed into a lattice

• Can show this mapping preserves ordering relation
• So it preserves non-orderings and non-transitivity of elements corresponding 

to those of original set
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Dual Mapping

• R = (SCR, ≤R, joinR) reflexive info flow policy
• P = (SP, ≤P) ordered set
• Define dual mapping functions lR, hR: SCR®SP

• lR(x) = { x }
• hR(x) = { y | y Î SCR Ù y ≤R x }

• SP contains subsets of SCR; ≤P subset relation
• Dual mapping function order preserving iff

("a, b Î SCR )[ a ≤R b Û lR(a) ≤P hR(b) ]
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Theorem

Dual mapping from reflexive information flow policy R to ordered set P
order-preserving
Proof sketch: all notation as before
(Þ) Let a ≤R b. Then a Î lR(a), a Î hR(b), so lR(a) Í hR(b), or lR(a) ≤P hR(b)
(Ü) Let lR(a) ≤P hR(b). Then lR(a) Í hR(b). But lR(a) = { a }, so a Î hR(b), 
giving a ≤R b

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 22



Information Flow Requirements

• Interpretation: let confine(x) = [ xL, xU ], consider class y
• Information can flow from x to element of y iff xL ≤R y, or lR(xL) Í hR(y)
• Information can flow from element of y to x iff y ≤R xU, or lR(y) Í hR(xU)
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Revisit Government Example

• Information flow policy is R
• Flow relationships among classes are:

public ≤R public
public ≤R analysis analysis ≤R analysis
public ≤R covert covert ≤R covert
public ≤R top-level covert ≤R top-level
analysis ≤R top-level top-level ≤R top-level
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Dual Mapping of R

• Elements lR, hR:
lR(public) = { public }
hR(public = { public }
lR(analysis) = { analysis }
hR(analysis) = { public, analysis }
lR(covert) = { covert }
hR(covert) = { public, covert }
lR(top-level) = { top-level }
hR(top-level) = { public, analysis, covert, top-level }
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confine

• Let p be entity of type PRO, a of type A, s of type S
• In terms of P (not R), we get:
• confine(p) = [ { public }, { public, analysis } ]
• confine(a) = [ { analysis }, { public, analysis, covert, top-level } ]
• confine(s) = [ { covert }, { public, analysis, covert, top-level } ]
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And the Flow Relations Are …

• p ® a as lR(p) Í hR(a)
• lR(p) = { public }
• hR(a) = { public, analysis, covert, top-level }

• Similarly: a ® p, p ® s, a ® s, s ® a
• But s ® p is false as lR(s) Ë hR(p)
• lR(s) = { covert }
• hR(p) = { public, analysis }
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Analysis

• (SP, ≤P) is a lattice, so it can be analyzed like a lattice policy
• Dual mapping preserves ordering, hence non-ordering and non-

transitivity, of original policy
• So results of analysis of (SP, ≤P) can be mapped back into (SCR, ≤R, joinR)
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Compiler-Based Mechanisms

• Detect unauthorized information flows in a program during 
compilation
• Analysis not precise, but secure
• If a flow could violate policy (but may not), it is unauthorized
• No unauthorized path along which information could flow remains 

undetected

• Set of statements certified with respect to information flow policy if 
flows in set of statements do not violate that policy
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Example

if x = 1 then y := a;
else y := b;
• Information flows from x and a to y, or from x and b to y
• Certified only if x ≤ y and a ≤ y and b ≤ y
• Note flows for both branches must be true unless compiler can determine 

that one branch will never be taken
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Declarations

• Notation:
x: int class { A, B }

means x is an integer variable with security class at least lub{ A, B }, so 
lub{ A, B } ≤ x
• Distinguished classes Low, High
• Constants are always Low

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 31



Input Parameters

• Parameters through which data passed into procedure
• Class of parameter is class of actual argument

ip: type class { ip }
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Output Parameters

• Parameters through which data passed out of procedure
• If data passed in, called input/output parameter

• As information can flow from input parameters to output parameters, 
class must include this:

op: type class { r1, …, rn }
where ri is class of ith input or input/output argument 
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Example

proc sum(x: int class { A };
var out: int class { A, B });

begin
out := out + x;

end;
• Require x ≤ out and out ≤ out
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Array Elements

• Information flowing out:
… := a[i]

Value of i, a[i] both affect result, so class is lub{ a[i], i }
• Information flowing in:

a[i] := …
• Only value of a[i] affected, so class is a[i]
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Assignment Statements

x := y + z;
• Information flows from y, z to x, so this requires lub{ y, z } ≤ x
More generally:
y := f(x1, …, xn)
• the relation lub{ x1, …, xn } ≤ y must hold
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Compound Statements

x := y + z; a := b * c – x;
• First statement: lub{ y, z } ≤ x
• Second statement: lub{ b, c, x } ≤ a
• So, both must hold (i.e., be secure)
More generally:
S1; … Sn;
• Each individual Si must be secure
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Conditional Statements

if x + y < z then a := b else d := b * c – x; end
• Statement executed reveals information about x, y, z, so lub{ x, y, z } ≤ 

glb{ a, d }

More generally:
if f(x1, …, xn) then S1 else S2; end
• S1, S2 must be secure

• lub{ x1, …, xn } ≤ glb{y | y target of assignment in S1, S2 }
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Iterative Statements

while i < n do begin a[i] := b[i]; i := i + 1; end
• Same ideas as for “if”, but must terminate

More generally:
while f(x1, …, xn) do S;
• Loop must terminate;
• S must be secure
• lub{ x1, …, xn } ≤ glb{y | y target of assignment in S }
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Goto Statements

• No assignments
• Hence no explicit flows

• Need to detect implicit flows
• Basic block is sequence of statements that have one entry point and 

one exit point
• Control in block always flows from entry point to exit point
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Example Program
proc tm(x: array[1..10][1..10] of integer class {x};

var y: array[1..10][1..10] of integer class {y});
var i, j: integer class {i};
begin
b1 i := 1;
b2 L2: if i > 10 goto L7;
b3 j := 1;
b4 L4: if j > 10 then goto L6;
b5 y[j][i] := x[i][j]; j := j + 1; goto L4;
b6 L6: i := i + 1; goto L2;
b7 L7:
end;
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Flow of Control

b1 b2 b7

b6 b3

b4

b5

i > n
i ≤ n

j > n

j ≤ n
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IFDs

• Idea: when two paths out of basic block, implicit flow occurs
• Because information says which path to take

• When paths converge, either:
• Implicit flow becomes irrelevant; or
• Implicit flow becomes explicit

• Immediate forward dominator of basic block b (written IFD(b)) is first 
basic block lying on all paths of execution passing through b

February 22, 2019 ECS 235B, Foundations of Computer and Information Security 43



IFD Example

• In previous procedure:
• IFD(b1) = b2 one path
• IFD(b2) = b7 b2®b7 or b2®b3®b6®b2®b7

• IFD(b3) = b4 one path
• IFD(b4) = b6 b4®b6 or b4®b5®b6

• IFD(b5) = b4 one path
• IFD(b6) = b2 one path
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Requirements

• Bi is set of basic blocks along an execution path from bi to IFD(bi)
• Analogous to statements in conditional statement

• xi1, …, xin variables in expression selecting which execution path 
containing basic blocks in Bi used
• Analogous to conditional expression

• Requirements for secure:
• All statements in each basic blocks are secure
• lub{ xi1, …, xin } ≤ glb{ y | y target of assignment in Bi }
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Example of Requirements

• Within each basic block:
b1: Low ≤ i b3: Low ≤ j b6: lub{ Low, i } ≤ i
b5: lub{ x[i][j], i, j } ≤ y[j][i] }; lub{ Low, j } ≤ j
• Combining, lub{ x[i][j], i, j } ≤ y[j][i] }
• From declarations, true when lub{ x, i } ≤ y

• B2 = {b3, b4, b5, b6}
• Assignments to i, j, y[j][i]; conditional is i ≤ 10
• Requires i ≤ glb{ i, j, y[j][i] }
• From declarations, true when i ≤ y
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Example (continued)

• B4 = { b5 }
• Assignments to j, y[j][i]; conditional is j ≤ 10
• Requires j ≤ glb{ j, y[j][i] }
• From declarations, means i ≤ y

• Result:
• Combine lub{ x, i } ≤ y; i ≤ y; i ≤ y
• Requirement is lub{ x, i } ≤ y
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Procedure Calls

tm(a, b);
From previous slides, to be secure, lub{ x, i } ≤ y must hold
• In call, x corresponds to a, y to b
• Means that lub{ a, i } ≤ b, or a ≤ b
More generally:
proc pn(i1, …, im: int; var o1, …, on: int); begin S end;
• S must be secure
• For all j and k, if ij ≤ ok, then xj ≤ yk
• For all j and k, if oj ≤ ok, then  yj ≤ yk
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Exceptions

proc copy(x: integer class { x };
var y: integer class Low);

var sum: integer class { x };
z: int class Low;

begin
y := z := sum := 0;
while z = 0 do begin

sum := sum + x;
y := y + 1;

end
end
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Exceptions (cont)

• When sum overflows, integer overflow trap
• Procedure exits
• Value of x is MAXINT/y
• Information flows from y to x, but x ≤ y never checked

• Need to handle exceptions explicitly
• Idea: on integer overflow, terminate loop

on integer_overflow_exception sum do z := 1;
• Now information flows from sum to z, meaning sum ≤ z
• This is false (sum = { x } dominates z = Low)
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