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Analyzing Covert Channels

• Policy and operational issues determine how dangerous it is
• What follows assumes a policy saying all covert channels are a problem

• Amount of information that can be transmitted affects how serious a 
problem a covert channel is
• 1 bit per hour: probably harmless in most circumstances
• 1,000,000 bits per second: probably dangerous in most circumstances
• Begin here . . .
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Measuring Capacity

• Intuitively, difference between unmodulated, modulated channel
• Normal uncertainty in channel is 8 bits
• Attacker modulates channel to send information, reducing uncertainty to 5 

bits
• Covert channel capacity is 3 bits

• Modulation in effect fixes those bits
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Formally

• Inputs:
• A input from Alice (sender)
• V input from everyone else
• X output of channel

• Capacity measures uncertainty in X given A
• In other terms: maximize

I(A; X) = H(X) – H(X | A)
with respect to A
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Noninterference and Covert Channels

• If A, V are independent and A noninterfering with X, then I(A; X) = 0
• Why? Intuition is that A and X are independent
• If so, then only V affects X (noninterference)
• So information from A cannot affect X unless A influences V
• But A and V are independent, so information from A does not affect X

• But noninterference is not necessary
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Example: Noninterference Not Necessary

• System has 1 bit of state; 3 inputs IA, IB, IC; one output OX

• Each input flips state, and state’s value is then output
• System initially in state 0

• w sequence of inputs corresponding to output x(w) = length(w) mod 2
• IA not noninterfering as deleting its inputs may change output

• Define terms
• W random variable corresponding to length of input sequences
• A random variable corresponding to length of input sequences contributed by 
IA; V random variable corresponding to other contributions; A, V independent
• X random variable corresponding to output state
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Two Cases

• V = 0; then as W = (A + V) mod 2, W = A, and so A, W not 
independent; neither are A, X. So if V = 0, I(A, X) ≠ 0
• IB, IC produce inputs such that p(V=0) = p(V=1) = 0.5; then

p(X=x) = p(V=x, A=0) + p(V = 1 – x, A = 1)
Because A, V independent, this becomes

p(X=x) = p(V=x, A=0) + p(V = 1 – x)p(A = 1)
and so p(X=x) = 0.5. Also,

p(X=x | A=a) = p(X = (a + x) mod 2) = 0.5
establishing A, X independent; so I(A, X) = 0
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Meaning

• Note A, X noninterfering, and I(A; X) = 0
• So covert channel capacity is 0 if either of the following hold:
• Input is noninterfering with output; or
• Input comes from independent sources, all possible values from at least one 

source are equally probable
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Example (More Formally)

• If A, V independent, take p=p(A=0), q=p(V=0):
• p(A=0,V=0) = pq
• p(A=1,V=0) = (1–p)q
• p(A=0,V=1) = p(1–q)
• p(A=1,V=1) = (1–p)(1–q)

• So
• p(X=0) = p(A=0,V=0)+p(A=1,V=1) = pq + (1–p)(1–q)
• p(X=1) = p(A=0,V=1)+p(A=1,V=0) = (1–p)q + p(1–q)
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Example (con’t)

• Also:
• p(X=0|A=0) = q
• p(X=0|A=1) = 1–q
• p(X=1|A=0) = 1–q
• p(X=1|A=1) = q

• So you can compute:
• H(X) = –[(1–p)q + p(1–q)] lg [(1–p)q + p(1–q)]
• H(X|A) = –q lg q – (1–q) lg (1–q)
• I(A;X) = H(X)–H(X|A)
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Example (con’t)

• So I(A; X) = – [pq + (1 – p)(1 – q)] lg [pq + (1 – p)(1 – q)] –
[(1 – p)q + p(1 – q)] lg [(1 – p)q + p(1 – q)] +
q lg q + (1 – q) lg (1 – q)

• Maximum when p = 0.5; then
I(A;X) = 1 + q lg q + (1–q) lg (1–q) = 1–H(V)

• So, if q = 0 (meaning V is constant) then I(A;X) = 1
• Also, if q = p = 0.5, I(A;X) = 0

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 11



Analyzing Capacity

• Assume a noisy channel
• Examine covert channel in MLS database that uses replication to 

ensure availability
• 2-phase commit protocol ensures atomicity
• Coordinator process manages global execution
• Participant processes do everything else
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How It Works

• Coordinator sends message to each participant asking whether to 
abort or commit transaction
• If any says “abort”, coordinator stops

• Coordinator gathers replies
• If all say “commit”, sends commit messages back to participants
• If any says “abort”, sends abort messages back to participants
• Each participant that sent commit waits for reply; on receipt, acts accordingly
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Exceptions

• Protocol times out, causing party to act as if transaction aborted, 
when:
• Coordinator doesn’t receive reply from participant
• Participant who sends a commit doesn’t receive reply from coordinator
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Covert Channel Here

• Two types of components
• One at Low security level, other at High

• Low component begins 2-phase commit
• Both High, Low components must cooperate in the 2-phase commit protocol

• High sends information to Low by selectively aborting transactions
• Can send abort messages
• Can just not do anything
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Note

• If transaction always succeeded except when High component 
sending information, channel not noisy
• Capacity would be 1 bit per trial
• But channel noisy as transactions may abort for reasons other than the 

sending of information
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Analysis

• X random variable: what High user wants to send
• Assume abort is 1, commit is 0
• p = p(X=0) probability High sends 0

• A random variable: what Low receives
• For noiseless channel X = A

• n+2 users
• Sender, receiver, n others that act independently of one another
• q probability of transaction aborting at any of these n users
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Basic Probabilities

• Probabilities of receiving given sending
• p(A=0|X=0) = (1–q)n

• p(A=1|X=0) = 1–(1–q)n
• p(A=0|X=1) = 0
• p(A=1|X=1) = 1

• So probabilities of receiving values:
• p(A=0) = p(1–q)n

• p(A=1) = 1–p(1–q)n
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More Probabilities

• Given sending, what is receiving?
• p(X=0|A=0) = 1
• p(X=1|A=0) = 0
• p(X=0|A=1) = p[1–(1–q)n] / [1–p(1–q)n]
• p(X=1|A=1) = (1–p) / [1–p(1–q)n]
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Entropies

You can compute these:

• H(X) = –p lg p – (1–p) lg (1–p) 

• H(X|A) = –p[1–(1–q)n] lg p – p[1–(1–q)n] lg [1–(1–q)n] +

[1–p(1–q)n] lg [1–p(1–q)n] – (1–p) lg (1–p)

• I(A;X) = –p(1–q)n lg p + p[1–(1–q)n] lg [1–(1–q)n] –

[1–p(1–q)n] lg [1–p(1–q)n]
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Capacity

• Maximize this with respect to p (probability that High sends 0)
• Notation: m = (1–q)n, M = (1–m)(1–m)

• Maximum when p = M / (Mm+1)

• Capacity is:
I(A;X) = Mm lg p + M(1–m) lg (1–m) + lg (Mm+1)

(Mm+1)
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Mitigation of Covert Channels

• Problem: these work by varying use of shared resources
• One solution
• Require processes to say what resources they need before running
• Provide access to them in a way that no other process can access them

• Cumbersome
• Includes running (CPU covert channel)
• Resources stay allocated for lifetime of process
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Alternate Approach

• Obscure amount of resources being used
• Receiver cannot distinguish between what the sender is using and what is 

added

• How? Two ways:
• Devote uniform resources to each process
• Inject randomness into allocation, use of resources
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Uniformity

• Variation of isolation
• Process can’t tell if second process using resource

• Example: KVM/370 covert channel via CPU usage
• Give each VM a time slice of fixed duration
• Do not allow VM to surrender its CPU time

• Can no longer send 0 or 1 by modulating CPU usage
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Randomness

• Make noise dominate channel
• Does not close it, but makes it useless

• Example: MLS database
• Probability of transaction being aborted by user other than sender, receiver 

approaches 1
• q® 1

• I(A; X) ® 0
• How to do this: resolve conflicts by aborting increases q, or have participants 

abort transactions randomly
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Problem: Loss of Efficiency

• Fixed allocation, constraining use
• Wastes resources

• Increasing probability of aborts
• Some transactions that will normally commit now fail, requiring more retries

• Policy: is the inefficiency preferable to the covert channel?

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 26



Example

• Goal: limit covert timing channels on VAX/VMM
• “Fuzzy time” reduces accuracy of system clocks by generating random 

clock ticks
• Random interrupts take any desired distribution
• System clock updates only after each timer interrupt
• Kernel rounds time to nearest 0.1 sec before giving it to VM

• Means it cannot be more accurate than timing of interrupts
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Example

• I/O operations have random delays
• Kernel distinguishes 2 kinds of time:
• Event time (when I/O event occurs)
• Notification time (when VM told I/O event occurred)

• Random delay between these prevents VM from figuring out when event actually 
occurred)

• Delay can be randomly distributed as desired (in security kernel, it’s 1–19ms)
• Added enough noise to make covert timing channels hard to exploit
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Improvement

• Modify scheduler to run processes in increasing order of security level
• Now we’re worried about “reads up”, so …

• Countermeasures needed only when transition from dominating VM 
to dominated VM
• Add random intervals between quanta for these transitions
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The Pump

• Tool for controlling communications path between High and Low

communications buffer

Low buffer High buffer

Low process High process
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Details

• Communications buffer of length n
• Means it can hold up to n messages

• Messages numbered
• Pump ACKs each message as it is moved from High (Low) buffer to 

communications buffer
• If pump crashes, communications buffer preserves messages
• Processes using pump can recover from crash
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Covert Channel

• Low fills communications buffer
• Send messages to pump until no ACK
• If High wants to send 1, it accepts 1 message from pump; if High wants to 

send 0, it does not
• If Low gets ACK, message moved from Low buffer to communications 

buffer Þ High sent 1
• If Low doesn’t get ACK, no message moved Þ High sent 0

• Meaning: if High can control rate at which pump passes messages to 
it, a covert timing channel
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Performance vs. Capacity

• Assume Low process, pump can process messages more quickly than 
High process
• Li random variable: time from Low sending message to pump to Low

receiving ACK
• Hi random variable: average time for High to ACK each of last n

messages
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Case1: E(Li) > Hi

• High can process messages more quickly than Low can get ACKs
• Contradicts above assumption
• Pump must be delaying ACKs
• Low waits for ACK whether or not communications buffer is full

• Covert channel closed
• Not optimal
• Process may wait to send message even when there is room
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Case 2: E(Li) < Hi

• Low sending messages faster than High can remove them
• Covert channel open
• Optimal performance

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 35



Case 3: E(Li) = Hi

• Pump, processes handle messages at same rate

• Covert channel open
• Bandwidth decreased from optimal case (can’t send messages over covert 

channel as fast)

• Performance not optimal
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Adding Noise

• Shown: adding noise to approximate case 3
• Covert channel capacity reduced to 1/nr where r time from Low sending 

message to pump to Low receiving ACK when communications buffer not full
• Conclusion: use of pump substantially reduces capacity of covert channel 

between High, Low processes when compared to direct connection
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Key Points

• Confinement problem central to computer security
• Arises in many contexts

• Many approaches to handle it
• Each has benefits and drawbacks

• Covert channels are hard to close
• But their capacity can be measured and reduced
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Noninterference and Policy Composition

• Problem
• Policy composition

• Noninterference
• HIGH inputs affect LOW outputs

• Nondeducibility
• HIGH inputs can be determined from LOW outputs

• Restrictiveness
• When can policies be composed successfully
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Composition of Policies

• Two organizations have two security policies
• They merge
• How do they combine security policies to create one security policy?
• Can they create a coherent, consistent security policy?
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The Problem

• Single system with 2 users
• Each has own virtual machine
• Holly at system high, Lara at system low so they cannot communicate directly

• CPU shared between VMs based on load
• Forms a covert channel through which Holly, Lara can communicate
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Example Protocol

• Holly, Lara agree:
• Begin at noon
• Lara will sample CPU utilization every minute
• To send 1 bit, Holly runs program

• Raises CPU utilization to over 60%
• To send 0 bit, Holly does not run program

• CPU utilization will be under 40%

• Not “writing” in traditional sense
• But information flows from Holly to Lara
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Policy vs. Mechanism

• Can be hard to separate these
• In the abstract: CPU forms channel along which information can be 

transmitted
• Violates *-property
• Not “writing” in traditional sense

• Conclusion:
• Bell-LaPadula model does not give sufficient conditions to prevent 

communication, or
• System is improperly abstracted; need a better definition of “writing”
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Composition of Bell-LaPadula

• Why?
• Some standards require secure components to be connected to form secure 

(distributed, networked) system

• Question
• Under what conditions is this secure?

• Assumptions
• Implementation of systems precise with respect to each system’s security 

policy
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Issues

• Compose the lattices
• What is relationship among labels?
• If the same, trivial
• If different, new lattice must reflect the relationships among the levels
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Example

(HIGH, { EAST, WEST } )

(HIGH, { EAST } ) (HIGH, { WEST } )

( LOW )

(TS, { EAST, SOUTH } )

(TS, { EAST } ) (TS, { SOUTH } )

( S, { EAST, SOUTH } )

(S, { EAST } ) (S, { SOUTH } )

( LOW )
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Analysis

• Assume S < HIGH < TS

• Assume SOUTH, EAST, WEST different

• Resulting lattice has:
• 4 clearances (LOW < S < HIGH < TS)
• 3 categories (SOUTH, EAST, WEST)
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Same Policies

• If we can change policies that components must meet, composition is 
trivial (as above)
• If we cannot, we must show composition meets the same policy as 

that of components; this can be very hard
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Different Policies

• What does “secure” now mean?
• Which policy (components) dominates?
• Possible principles:
• Any access allowed by policy of a component must be allowed by composition 

of components (autonomy)
• Any access forbidden by policy of a component must be forbidden by 

composition of components (security)
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Implications

• Composite system satisfies security policy of components as 
components’ policies take precedence
• If something neither allowed nor forbidden by principles, then:
• Allow it (Gong & Qian)
• Disallow it (Fail-Safe Defaults)
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Example

• System X: Bob can’t access Alice’s files
• System Y: Eve, Lilith can access each other’s files
• Composition policy:
• Bob can access Eve’s files
• Lilith can access Alice’s files

• Question: can Bob access Lilith’s files?
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Solution (Gong & Qian)

• Notation:
• (a, b): a can read b’s files
• AS(x): access set of system x

• Set-up:
• AS(X) = Æ
• AS(Y) = { (Eve, Lilith), (Lilith, Eve) }
• AS(XÈY) = { (Bob, Eve), (Lilith, Alice), (Eve, Lilith), (Lilith, Eve) }
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Solution (Gong & Qian)

• Compute transitive closure of AS(XÈY):
• AS(XÈY)+ = { (Bob, Eve), (Bob, Lilith), (Bob, Alice), (Eve, Lilith), (Eve, Alice),

(Lilith, Eve), (Lilith, Alice) }

• Delete accesses conflicting with policies of components:
• Delete (Bob, Alice)

• (Bob, Lilith) in set, so Bob can access Lilith’s files
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Idea

• Composition of policies allows accesses not mentioned by original 
policies
• Generate all possible allowed accesses
• Computation of transitive closure

• Eliminate forbidden accesses
• Removal of accesses disallowed by individual access policies

• Everything else is allowed
• Note: determining if access allowed is of polynomial complexity
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Interference

• Think of it as something used in communication
• Holly/Lara example: Holly interferes with the CPU utilization, and Lara detects 

it — communication

• Plays role of writing (interfering) and reading (detecting the 
interference)
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Model

• System as state machine
• Subjects S = { si }
• States S = { si }
• Outputs O = { oi }
• Commands Z = { zi }
• State transition commands C = S ´ Z

• Note: no inputs
• Encode either as selection of commands or in state transition commands
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Functions

• State transition function T: C ´ S® S
• Describes effect of executing command c in state s

• Output function P: C ´ S® O
• Output of machine when executing command c in state s

• Initial state is s0
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Example: 2-Bit Machine

• Users Heidi (high), Lucy (low) 
• 2 bits of state, H (high) and L (low)
• System state is (H, L) where H, L are 0, 1

• 2 commands: xor0, xor1 do xor with 0, 1
• Operations affect both state bits regardless of whether Heidi or Lucy issues it
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Example: 2-bit Machine

• S = { Heidi, Lucy }
• S = { (0,0), (0,1), (1,0), (1,1) }
• C = { xor0, xor1 }

Input States (H, L)
(0,0) (0,1) (1,0) (1,1)

xor0 (0,0) (0,1) (1,0) (1,1)
xor1 (1,1) (1,0) (0,1) (0,0)
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Outputs and States

• T is inductive in first argument, as
T(c0, s0) = s1; T(ci+1, si+1) = T(ci+1,T(ci,si))

• Let C* be set of possible sequences of commands in C
• T*: C* ´ S® S and

cs = c0…cnÞ T*(cs,si) = T(cn,…,T(c0,si)…)

• P similar; define P *: C* ´ S® O similarly
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