ECS 235B, Lecture 24

March 8, 2019

Analyzing Covert Channels

- Policy and operational issues determine how dangerous it is
 - What follows assumes a policy saying all covert channels are a problem
- Amount of information that can be transmitted affects how serious a problem a covert channel is
 - 1 bit per hour: probably harmless in most circumstances
 - 1,000,000 bits per second: probably dangerous in most circumstances
 - Begin here . . .

Measuring Capacity

- Intuitively, difference between unmodulated, modulated channel
 - Normal uncertainty in channel is 8 bits
 - Attacker modulates channel to send information, reducing uncertainty to 5 bits
 - Covert channel capacity is 3 bits
 - Modulation in effect fixes those bits

Formally

- Inputs:
 - A input from Alice (sender)
 - V input from everyone else
 - X output of channel
- Capacity measures uncertainty in X given A
- In other terms: maximize

$$I(A; X) = H(X) - H(X \mid A)$$

with respect to A

Noninterference and Covert Channels

- If A, V are independent and A noninterfering with X, then I(A; X) = 0
- Why? Intuition is that A and X are independent
 - If so, then only V affects X (noninterference)
 - So information from A cannot affect X unless A influences V
 - But A and V are independent, so information from A does not affect X
- But noninterference is not necessary

Example: Noninterference Not Necessary

- System has 1 bit of state; 3 inputs I_A , I_B , I_C ; one output O_X
- Each input flips state, and state's value is then output
 - System initially in state 0
- *w* sequence of inputs corresponding to output *x*(*w*) = *length*(*w*) mod 2
 - I_A not noninterfering as deleting its inputs may change output
- Define terms
 - W random variable corresponding to length of input sequences
 - A random variable corresponding to length of input sequences contributed by I_A ; V random variable corresponding to other contributions; A, V independent
 - X random variable corresponding to output state

Two Cases

- V = 0; then as $W = (A + V) \mod 2$, W = A, and so A, W not independent; neither are A, X. So if V = 0, $I(A, X) \neq 0$
- I_B , I_C produce inputs such that p(V=0) = p(V=1) = 0.5; then p(X=x) = p(V=x, A=0) + p(V = 1 - x, A = 1)

Because A, V independent, this becomes

$$p(X{=}x) = p(V{=}x, A{=}0) + p(V{=}1-x)p(A{=}1)$$

and so p(X=x) = 0.5. Also,

$$p(X=x \mid A=a) = p(X = (a + x) \mod 2) = 0.5$$

establishing A, X independent; so I(A, X) = 0

Meaning

- Note A, X noninterfering, and I(A; X) = 0
- So covert channel capacity is 0 if either of the following hold:
 - Input is noninterfering with output; or
 - Input comes from independent sources, all possible values from at least one source are equally probable

Example (More Formally)

- If A, V independent, take p=p(A=0), q=p(V=0):
 - p(A=0,V=0) = pq
 - p(A=1,V=0) = (1-p)q
 - p(A=0, V=1) = p(1-q)
 - p(A=1,V=1) = (1-p)(1-q)
- So
 - p(X=0) = p(A=0, V=0) + p(A=1, V=1) = pq + (1-p)(1-q)
 - p(X=1) = p(A=0, V=1) + p(A=1, V=0) = (1-p)q + p(1-q)

Example (con't)

- Also:
 - p(X=0|A=0) = q
 - p(X=0|A=1) = 1-q
 - p(X=1|A=0) = 1-q
 - p(X=1|A=1) = q
- So you can compute:
 - $H(X) = -[(1-p)q + p(1-q)] \log [(1-p)q + p(1-q)]$
 - $H(X|A) = -q \lg q (1-q) \lg (1-q)$
 - I(A;X) = H(X)-H(X|A)

Example (*con't*)

• So
$$I(A; X) = -[pq + (1-p)(1-q)] \lg [pq + (1-p)(1-q)] - [(1-p)q + p(1-q)] \lg [(1-p)q + p(1-q)] + q \lg q + (1-q) \lg (1-q)$$

• Maximum when p = 0.5; then

$$I(A;X) = 1 + q \lg q + (1-q) \lg (1-q) = 1-H(V)$$

• So, if q = 0 (meaning V is constant) then I(A;X) = 1

Analyzing Capacity

- Assume a noisy channel
- Examine covert channel in MLS database that uses replication to ensure availability
 - 2-phase commit protocol ensures atomicity
 - Coordinator process manages global execution
 - *Participant* processes do everything else

How It Works

- Coordinator sends message to each participant asking whether to abort or commit transaction
 - If any says "abort", coordinator stops
- Coordinator gathers replies
 - If all say "commit", sends commit messages back to participants
 - If any says "abort", sends abort messages back to participants
 - Each participant that sent commit waits for reply; on receipt, acts accordingly

Exceptions

- Protocol times out, causing party to act as if transaction aborted, when:
 - Coordinator doesn't receive reply from participant
 - Participant who sends a commit doesn't receive reply from coordinator

Covert Channel Here

- Two types of components
 - One at *Low* security level, other at *High*
- Low component begins 2-phase commit
 - Both High, Low components must cooperate in the 2-phase commit protocol
- *High* sends information to *Low* by selectively aborting transactions
 - Can send abort messages
 - Can just not do anything

Note

- If transaction *always* succeeded except when *High* component sending information, channel not noisy
 - Capacity would be 1 bit per trial
 - But channel noisy as transactions may abort for reasons *other* than the sending of information

Analysis

- X random variable: what *High* user wants to send
 - Assume abort is 1, commit is 0
 - p = p(X=0) probability *High* sends 0
- A random variable: what Low receives
 - For noiseless channel *X* = *A*
- *n*+2 users
 - Sender, receiver, *n* others that act independently of one another
 - *q* probability of transaction aborting at any of these *n* users

Basic Probabilities

- Probabilities of receiving given sending
 - $p(A=0|X=0) = (1-q)^n$
 - $p(A=1|X=0) = 1-(1-q)^n$
 - p(A=0|X=1) = 0
 - p(A=1|X=1) = 1
- So probabilities of receiving values:
 - $p(A=0) = p(1-q)^n$
 - $p(A=1) = 1-p(1-q)^n$

More Probabilities

- Given sending, what is receiving?
 - p(X=0|A=0) = 1
 - p(X=1|A=0) = 0
 - $p(X=0|A=1) = p[1-(1-q)^n] / [1-p(1-q)^n]$
 - $p(X=1|A=1) = (1-p) / [1-p(1-q)^n]$

Entropies

You can compute these:

•
$$H(X) = -p \lg p - (1-p) \lg (1-p)$$

•
$$H(X|A) = -p[1-(1-q)^n] \lg p - p[1-(1-q)^n] \lg [1-(1-q)^n] + [1-p(1-q)^n] \lg [1-p(1-q)^n] - (1-p) \lg (1-p)$$

• $I(A;X) = -p(1-q)^n \lg p + p[1-(1-q)^n] \lg [1-(1-q)^n] - [1-p(1-q)^n] \lg [1-p(1-q)^n]$

Capacity

- Maximize this with respect to p (probability that High sends 0)
 - Notation: $m = (1-q)^n$, $M = (1-m)^{(1-m)}$
 - Maximum when p = M / (Mm+1)
- Capacity is:

 $I(A;X) = Mm \lg p + M(1-m) \lg (1-m) + \lg (Mm+1)$

(*Mm*+1)

Mitigation of Covert Channels

- Problem: these work by varying use of shared resources
- One solution
 - Require processes to say what resources they need before running
 - Provide access to them in a way that no other process can access them
- Cumbersome
 - Includes running (CPU covert channel)
 - Resources stay allocated for lifetime of process

Alternate Approach

- Obscure amount of resources being used
 - Receiver cannot distinguish between what the sender is using and what is added
- How? Two ways:
 - Devote uniform resources to each process
 - Inject randomness into allocation, use of resources

Uniformity

- Variation of isolation
 - Process can't tell if second process using resource
- Example: KVM/370 covert channel via CPU usage
 - Give each VM a time slice of fixed duration
 - Do not allow VM to surrender its CPU time
 - Can no longer send 0 or 1 by modulating CPU usage

Randomness

- Make noise dominate channel
 - Does not close it, but makes it useless
- Example: MLS database
 - Probability of transaction being aborted by user other than sender, receiver approaches 1
 - $q \rightarrow 1$
 - $I(A; X) \rightarrow 0$
 - How to do this: resolve conflicts by aborting increases q, or have participants abort transactions randomly

Problem: Loss of Efficiency

- Fixed allocation, constraining use
 - Wastes resources
- Increasing probability of aborts
 - Some transactions that will normally commit now fail, requiring more retries
- Policy: is the inefficiency preferable to the covert channel?

Example

- Goal: limit covert timing channels on VAX/VMM
- "Fuzzy time" reduces accuracy of system clocks by generating random clock ticks
 - Random interrupts take any desired distribution
 - System clock updates only after each timer interrupt
 - Kernel rounds time to nearest 0.1 sec before giving it to VM
 - Means it cannot be more accurate than timing of interrupts

Example

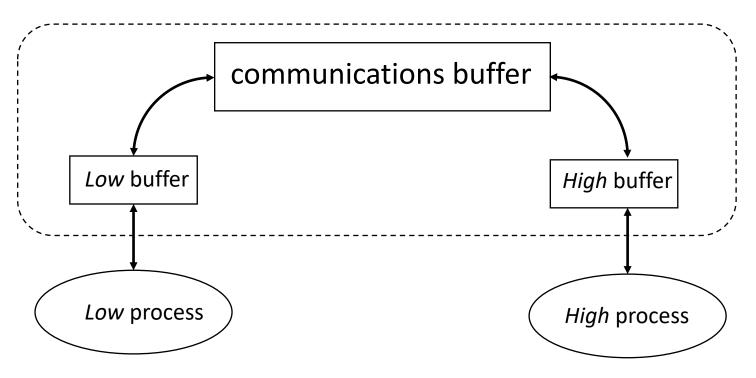
- I/O operations have random delays
- Kernel distinguishes 2 kinds of time:
 - *Event time* (when I/O event occurs)
 - Notification time (when VM told I/O event occurred)
 - Random delay between these prevents VM from figuring out when event actually occurred)
 - Delay can be randomly distributed as desired (in security kernel, it's 1–19ms)
 - Added enough noise to make covert timing channels hard to exploit

Improvement

- Modify scheduler to run processes in increasing order of security level
 - Now we're worried about "reads up", so ...
- Countermeasures needed only when transition from *dominating* VM to *dominated* VM
 - Add random intervals between quanta for these transitions

The Pump

• Tool for controlling communications path between *High* and *Low*



Details

- Communications buffer of length n
 - Means it can hold up to *n* messages
- Messages numbered
- Pump ACKs each message as it is moved from *High* (*Low*) buffer to communications buffer
- If pump crashes, communications buffer preserves messages
 - Processes using pump can recover from crash

Covert Channel

- Low fills communications buffer
 - Send messages to pump until no ACK
 - If *High* wants to send 1, it accepts 1 message from pump; if *High* wants to send 0, it does not
 - If Low gets ACK, message moved from Low buffer to communications buffer ⇒ High sent 1
 - If Low doesn't get ACK, no message moved \Rightarrow High sent 0
- Meaning: if *High* can control rate at which pump passes messages to it, a covert timing channel

Performance vs. Capacity

- Assume Low process, pump can process messages more quickly than High process
- L_i random variable: time from Low sending message to pump to Low receiving ACK
- *H_i* random variable: average time for *High* to ACK each of last *n* messages

Case1: $E(L_i) > H_i$

- *High* can process messages more quickly than *Low* can get ACKs
- Contradicts above assumption
 - Pump must be delaying ACKs
 - Low waits for ACK whether or not communications buffer is full
- Covert channel closed
- Not optimal
 - Process may wait to send message even when there is room

Case 2: $E(L_i) < H_i$

- Low sending messages faster than High can remove them
- Covert channel open
- Optimal performance

Case 3: $E(L_i) = H_i$

- Pump, processes handle messages at same rate
- Covert channel open
 - Bandwidth decreased from optimal case (can't send messages over covert channel as fast)
- Performance not optimal

Adding Noise

- Shown: adding noise to approximate case 3
 - Covert channel capacity reduced to 1/nr where r time from Low sending message to pump to Low receiving ACK when communications buffer not full
 - Conclusion: use of pump substantially reduces capacity of covert channel between *High*, *Low* processes when compared to direct connection

Key Points

- Confinement problem central to computer security
 - Arises in many contexts
- Many approaches to handle it
 - Each has benefits and drawbacks
- Covert channels are hard to close
 - But their capacity can be measured and reduced

Noninterference and Policy Composition

- Problem
 - Policy composition
- Noninterference
 - HIGH inputs affect LOW outputs
- Nondeducibility
 - HIGH inputs can be determined from LOW outputs
- Restrictiveness
 - When can policies be composed successfully

Composition of Policies

- Two organizations have two security policies
- They merge
 - How do they combine security policies to create one security policy?
 - Can they create a coherent, consistent security policy?

The Problem

- Single system with 2 users
 - Each has own virtual machine
 - Holly at system high, Lara at system low so they cannot communicate directly
- CPU shared between VMs based on load
 - Forms a covert channel through which Holly, Lara can communicate

Example Protocol

- Holly, Lara agree:
 - Begin at noon
 - Lara will sample CPU utilization every minute
 - To send 1 bit, Holly runs program
 - Raises CPU utilization to over 60%
 - To send 0 bit, Holly does not run program
 - CPU utilization will be under 40%
- Not "writing" in traditional sense
 - But information flows from Holly to Lara

Policy vs. Mechanism

- Can be hard to separate these
- In the abstract: CPU forms channel along which information can be transmitted
 - Violates *-property
 - Not "writing" in traditional sense
- Conclusion:
 - Bell-LaPadula model does not give sufficient conditions to prevent communication, *or*
 - System is improperly abstracted; need a better definition of "writing"

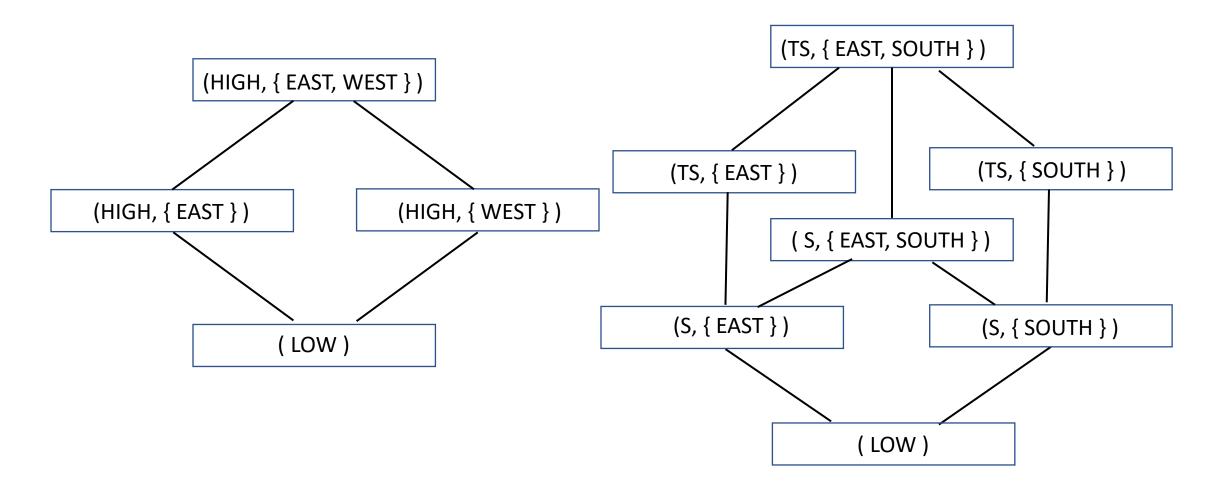
Composition of Bell-LaPadula

- Why?
 - Some standards require secure components to be connected to form secure (distributed, networked) system
- Question
 - Under what conditions is this secure?
- Assumptions
 - Implementation of systems precise with respect to each system's security policy

Issues

- Compose the lattices
- What is relationship among labels?
 - If the same, trivial
 - If different, new lattice must reflect the relationships among the levels

Example



Analysis

- Assume S < HIGH < TS
- Assume SOUTH, EAST, WEST different
- Resulting lattice has:
 - 4 clearances (LOW < S < HIGH < TS)
 - 3 categories (SOUTH, EAST, WEST)

Same Policies

- If we can change policies that components must meet, composition is trivial (as above)
- If we *cannot*, we must show composition meets the same policy as that of components; this can be very hard

Different Policies

- What does "secure" now mean?
- Which policy (components) dominates?
- Possible principles:
 - Any access allowed by policy of a component must be allowed by composition of components (*autonomy*)
 - Any access forbidden by policy of a component must be forbidden by composition of components (*security*)

Implications

- Composite system satisfies security policy of components as components' policies take precedence
- If something neither allowed nor forbidden by principles, then:
 - Allow it (Gong & Qian)
 - Disallow it (Fail-Safe Defaults)

Example

- System X: Bob can't access Alice's files
- System Y: Eve, Lilith can access each other's files
- Composition policy:
 - Bob can access Eve's files
 - Lilith can access Alice's files
- Question: can Bob access Lilith's files?

Solution (Gong & Qian)

- Notation:
 - (*a*, *b*): *a* can read *b*'s files
 - AS(x): access set of system x
- Set-up:
 - AS(X) = ∅
 - AS(Y) = { (Eve, Lilith), (Lilith, Eve) }
 - AS(X\U) = { (Bob, Eve), (Lilith, Alice), (Eve, Lilith), (Lilith, Eve) }

Solution (Gong & Qian)

- Compute transitive closure of AS(X∪Y):
 - $AS(X \cup Y)^+ = \{ (Bob, Eve), (Bob, Lilith), (Bob, Alice), (Eve, Lilith), (Eve, Alice), \}$

(Lilith, Eve), (Lilith, Alice) }

- Delete accesses conflicting with policies of components:
 - Delete (Bob, Alice)
- (Bob, Lilith) in set, so Bob can access Lilith's files

Idea

- Composition of policies allows accesses not mentioned by original policies
- Generate all possible allowed accesses
 - Computation of transitive closure
- Eliminate forbidden accesses
 - Removal of accesses disallowed by individual access policies
- Everything else is allowed
- Note: determining if access allowed is of polynomial complexity

Interference

- Think of it as something used in communication
 - Holly/Lara example: Holly interferes with the CPU utilization, and Lara detects it — communication
- Plays role of writing (interfering) and reading (detecting the interference)

Model

- System as state machine
 - Subjects $S = \{ s_i \}$
 - States $\Sigma = \{ \sigma_i \}$
 - Outputs *O* = { *o_i* }
 - Commands $Z = \{ z_i \}$
 - State transition commands *C* = *S* × *Z*
- Note: no inputs
 - Encode either as selection of commands or in state transition commands

Functions

- State transition function $T: C \times \Sigma \rightarrow \Sigma$
 - Describes effect of executing command \emph{c} in state σ
- Output function $P: C \times \Sigma \rightarrow O$
 - Output of machine when executing command *c* in state σ
- Initial state is σ_{0}

Example: 2-Bit Machine

- Users Heidi (high), Lucy (low)
- 2 bits of state, H (high) and L (low)
 - System state is (*H*, *L*) where *H*, *L* are 0, 1
- 2 commands: *xor0, xor1* do xor with 0, 1
 - Operations affect *both* state bits regardless of whether Heidi or Lucy issues it

Example: 2-bit Machine

- *S* = { Heidi, Lucy }
- $\Sigma = \{ (0,0), (0,1), (1,0), (1,1) \}$
- *C* = { *xor0*, *xor1* }

	Input States (H, L)			
	(0,0)	(0,1)	(1,0)	(1,1)
xor0	(0,0)	(0,1)	(1,0)	(1,1)
xor1	(1,1)	(1,0)	(0,1)	(0,0)

Outputs and States

- *T* is inductive in first argument, as $T(c_0, \sigma_0) = \sigma_1$; $T(c_{i+1}, \sigma_{i+1}) = T(c_{i+1}, T(c_i, \sigma_i))$
- Let C* be set of possible sequences of commands in C
- $T^*: C^* \times \Sigma \to \Sigma$ and $c_s = c_0...c_n \Rightarrow T^*(c_s, \sigma_i) = T(c_n, ..., T(c_0, \sigma_i)...)$
- *P* similar; define *P* *: $C^* \times \Sigma \rightarrow O$ similarly