
ECS 235B, Lecture 24
March 8, 2019

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 1

Analyzing Covert Channels

• Policy and operational issues determine how dangerous it is
• What follows assumes a policy saying all covert channels are a problem

• Amount of information that can be transmitted affects how serious a
problem a covert channel is
• 1 bit per hour: probably harmless in most circumstances
• 1,000,000 bits per second: probably dangerous in most circumstances
• Begin here . . .

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 2

Measuring Capacity

• Intuitively, difference between unmodulated, modulated channel
• Normal uncertainty in channel is 8 bits
• Attacker modulates channel to send information, reducing uncertainty to 5

bits
• Covert channel capacity is 3 bits

• Modulation in effect fixes those bits

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 3

Formally

• Inputs:
• A input from Alice (sender)
• V input from everyone else
• X output of channel

• Capacity measures uncertainty in X given A
• In other terms: maximize

I(A; X) = H(X) – H(X | A)
with respect to A

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 4

Noninterference and Covert Channels

• If A, V are independent and A noninterfering with X, then I(A; X) = 0
• Why? Intuition is that A and X are independent
• If so, then only V affects X (noninterference)
• So information from A cannot affect X unless A influences V
• But A and V are independent, so information from A does not affect X

• But noninterference is not necessary

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 5

Example: Noninterference Not Necessary

• System has 1 bit of state; 3 inputs IA, IB, IC; one output OX

• Each input flips state, and state’s value is then output
• System initially in state 0

• w sequence of inputs corresponding to output x(w) = length(w) mod 2
• IA not noninterfering as deleting its inputs may change output

• Define terms
• W random variable corresponding to length of input sequences
• A random variable corresponding to length of input sequences contributed by
IA; V random variable corresponding to other contributions; A, V independent
• X random variable corresponding to output state

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 6

Two Cases

• V = 0; then as W = (A + V) mod 2, W = A, and so A, W not
independent; neither are A, X. So if V = 0, I(A, X) ≠ 0
• IB, IC produce inputs such that p(V=0) = p(V=1) = 0.5; then

p(X=x) = p(V=x, A=0) + p(V = 1 – x, A = 1)
Because A, V independent, this becomes

p(X=x) = p(V=x, A=0) + p(V = 1 – x)p(A = 1)
and so p(X=x) = 0.5. Also,

p(X=x | A=a) = p(X = (a + x) mod 2) = 0.5
establishing A, X independent; so I(A, X) = 0

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 7

Meaning

• Note A, X noninterfering, and I(A; X) = 0
• So covert channel capacity is 0 if either of the following hold:
• Input is noninterfering with output; or
• Input comes from independent sources, all possible values from at least one

source are equally probable

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 8

Example (More Formally)

• If A, V independent, take p=p(A=0), q=p(V=0):
• p(A=0,V=0) = pq
• p(A=1,V=0) = (1–p)q
• p(A=0,V=1) = p(1–q)
• p(A=1,V=1) = (1–p)(1–q)

• So
• p(X=0) = p(A=0,V=0)+p(A=1,V=1) = pq + (1–p)(1–q)
• p(X=1) = p(A=0,V=1)+p(A=1,V=0) = (1–p)q + p(1–q)

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 9

Example (con’t)

• Also:
• p(X=0|A=0) = q
• p(X=0|A=1) = 1–q
• p(X=1|A=0) = 1–q
• p(X=1|A=1) = q

• So you can compute:
• H(X) = –[(1–p)q + p(1–q)] lg [(1–p)q + p(1–q)]
• H(X|A) = –q lg q – (1–q) lg (1–q)
• I(A;X) = H(X)–H(X|A)

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 10

Example (con’t)

• So I(A; X) = – [pq + (1 – p)(1 – q)] lg [pq + (1 – p)(1 – q)] –
[(1 – p)q + p(1 – q)] lg [(1 – p)q + p(1 – q)] +
q lg q + (1 – q) lg (1 – q)

• Maximum when p = 0.5; then
I(A;X) = 1 + q lg q + (1–q) lg (1–q) = 1–H(V)

• So, if q = 0 (meaning V is constant) then I(A;X) = 1
• Also, if q = p = 0.5, I(A;X) = 0

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 11

Analyzing Capacity

• Assume a noisy channel
• Examine covert channel in MLS database that uses replication to

ensure availability
• 2-phase commit protocol ensures atomicity
• Coordinator process manages global execution
• Participant processes do everything else

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 12

How It Works

• Coordinator sends message to each participant asking whether to
abort or commit transaction
• If any says “abort”, coordinator stops

• Coordinator gathers replies
• If all say “commit”, sends commit messages back to participants
• If any says “abort”, sends abort messages back to participants
• Each participant that sent commit waits for reply; on receipt, acts accordingly

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 13

Exceptions

• Protocol times out, causing party to act as if transaction aborted,
when:
• Coordinator doesn’t receive reply from participant
• Participant who sends a commit doesn’t receive reply from coordinator

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 14

Covert Channel Here

• Two types of components
• One at Low security level, other at High

• Low component begins 2-phase commit
• Both High, Low components must cooperate in the 2-phase commit protocol

• High sends information to Low by selectively aborting transactions
• Can send abort messages
• Can just not do anything

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 15

Note

• If transaction always succeeded except when High component
sending information, channel not noisy
• Capacity would be 1 bit per trial
• But channel noisy as transactions may abort for reasons other than the

sending of information

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 16

Analysis

• X random variable: what High user wants to send
• Assume abort is 1, commit is 0
• p = p(X=0) probability High sends 0

• A random variable: what Low receives
• For noiseless channel X = A

• n+2 users
• Sender, receiver, n others that act independently of one another
• q probability of transaction aborting at any of these n users

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 17

Basic Probabilities

• Probabilities of receiving given sending
• p(A=0|X=0) = (1–q)n

• p(A=1|X=0) = 1–(1–q)n
• p(A=0|X=1) = 0
• p(A=1|X=1) = 1

• So probabilities of receiving values:
• p(A=0) = p(1–q)n

• p(A=1) = 1–p(1–q)n

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 18

More Probabilities

• Given sending, what is receiving?
• p(X=0|A=0) = 1
• p(X=1|A=0) = 0
• p(X=0|A=1) = p[1–(1–q)n] / [1–p(1–q)n]
• p(X=1|A=1) = (1–p) / [1–p(1–q)n]

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 19

Entropies

You can compute these:

• H(X) = –p lg p – (1–p) lg (1–p)

• H(X|A) = –p[1–(1–q)n] lg p – p[1–(1–q)n] lg [1–(1–q)n] +

[1–p(1–q)n] lg [1–p(1–q)n] – (1–p) lg (1–p)

• I(A;X) = –p(1–q)n lg p + p[1–(1–q)n] lg [1–(1–q)n] –

[1–p(1–q)n] lg [1–p(1–q)n]

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 20

Capacity

• Maximize this with respect to p (probability that High sends 0)
• Notation: m = (1–q)n, M = (1–m)(1–m)

• Maximum when p = M / (Mm+1)

• Capacity is:
I(A;X) = Mm lg p + M(1–m) lg (1–m) + lg (Mm+1)

(Mm+1)

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 21

Mitigation of Covert Channels

• Problem: these work by varying use of shared resources
• One solution
• Require processes to say what resources they need before running
• Provide access to them in a way that no other process can access them

• Cumbersome
• Includes running (CPU covert channel)
• Resources stay allocated for lifetime of process

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 22

Alternate Approach

• Obscure amount of resources being used
• Receiver cannot distinguish between what the sender is using and what is

added

• How? Two ways:
• Devote uniform resources to each process
• Inject randomness into allocation, use of resources

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 23

Uniformity

• Variation of isolation
• Process can’t tell if second process using resource

• Example: KVM/370 covert channel via CPU usage
• Give each VM a time slice of fixed duration
• Do not allow VM to surrender its CPU time

• Can no longer send 0 or 1 by modulating CPU usage

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 24

Randomness

• Make noise dominate channel
• Does not close it, but makes it useless

• Example: MLS database
• Probability of transaction being aborted by user other than sender, receiver

approaches 1
• q® 1

• I(A; X) ® 0
• How to do this: resolve conflicts by aborting increases q, or have participants

abort transactions randomly

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 25

Problem: Loss of Efficiency

• Fixed allocation, constraining use
• Wastes resources

• Increasing probability of aborts
• Some transactions that will normally commit now fail, requiring more retries

• Policy: is the inefficiency preferable to the covert channel?

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 26

Example

• Goal: limit covert timing channels on VAX/VMM
• “Fuzzy time” reduces accuracy of system clocks by generating random

clock ticks
• Random interrupts take any desired distribution
• System clock updates only after each timer interrupt
• Kernel rounds time to nearest 0.1 sec before giving it to VM

• Means it cannot be more accurate than timing of interrupts

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 27

Example

• I/O operations have random delays
• Kernel distinguishes 2 kinds of time:
• Event time (when I/O event occurs)
• Notification time (when VM told I/O event occurred)

• Random delay between these prevents VM from figuring out when event actually
occurred)

• Delay can be randomly distributed as desired (in security kernel, it’s 1–19ms)
• Added enough noise to make covert timing channels hard to exploit

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 28

Improvement

• Modify scheduler to run processes in increasing order of security level
• Now we’re worried about “reads up”, so …

• Countermeasures needed only when transition from dominating VM
to dominated VM
• Add random intervals between quanta for these transitions

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 29

The Pump

• Tool for controlling communications path between High and Low

communications buffer

Low buffer High buffer

Low process High process

March 8, 2019 ECS 235B, Foundations of Computer and Information
Security Slide 18-30

Details

• Communications buffer of length n
• Means it can hold up to n messages

• Messages numbered
• Pump ACKs each message as it is moved from High (Low) buffer to

communications buffer
• If pump crashes, communications buffer preserves messages
• Processes using pump can recover from crash

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 31

Covert Channel

• Low fills communications buffer
• Send messages to pump until no ACK
• If High wants to send 1, it accepts 1 message from pump; if High wants to

send 0, it does not
• If Low gets ACK, message moved from Low buffer to communications

buffer Þ High sent 1
• If Low doesn’t get ACK, no message moved Þ High sent 0

• Meaning: if High can control rate at which pump passes messages to
it, a covert timing channel

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 32

Performance vs. Capacity

• Assume Low process, pump can process messages more quickly than
High process
• Li random variable: time from Low sending message to pump to Low

receiving ACK
• Hi random variable: average time for High to ACK each of last n

messages

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 33

Case1: E(Li) > Hi

• High can process messages more quickly than Low can get ACKs
• Contradicts above assumption
• Pump must be delaying ACKs
• Low waits for ACK whether or not communications buffer is full

• Covert channel closed
• Not optimal
• Process may wait to send message even when there is room

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 34

Case 2: E(Li) < Hi

• Low sending messages faster than High can remove them
• Covert channel open
• Optimal performance

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 35

Case 3: E(Li) = Hi

• Pump, processes handle messages at same rate

• Covert channel open
• Bandwidth decreased from optimal case (can’t send messages over covert

channel as fast)

• Performance not optimal

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 36

Adding Noise

• Shown: adding noise to approximate case 3
• Covert channel capacity reduced to 1/nr where r time from Low sending

message to pump to Low receiving ACK when communications buffer not full
• Conclusion: use of pump substantially reduces capacity of covert channel

between High, Low processes when compared to direct connection

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 37

Key Points

• Confinement problem central to computer security
• Arises in many contexts

• Many approaches to handle it
• Each has benefits and drawbacks

• Covert channels are hard to close
• But their capacity can be measured and reduced

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 38

Noninterference and Policy Composition

• Problem
• Policy composition

• Noninterference
• HIGH inputs affect LOW outputs

• Nondeducibility
• HIGH inputs can be determined from LOW outputs

• Restrictiveness
• When can policies be composed successfully

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 39

Composition of Policies

• Two organizations have two security policies
• They merge
• How do they combine security policies to create one security policy?
• Can they create a coherent, consistent security policy?

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 40

The Problem

• Single system with 2 users
• Each has own virtual machine
• Holly at system high, Lara at system low so they cannot communicate directly

• CPU shared between VMs based on load
• Forms a covert channel through which Holly, Lara can communicate

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 41

Example Protocol

• Holly, Lara agree:
• Begin at noon
• Lara will sample CPU utilization every minute
• To send 1 bit, Holly runs program

• Raises CPU utilization to over 60%
• To send 0 bit, Holly does not run program

• CPU utilization will be under 40%

• Not “writing” in traditional sense
• But information flows from Holly to Lara

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 42

Policy vs. Mechanism

• Can be hard to separate these
• In the abstract: CPU forms channel along which information can be

transmitted
• Violates *-property
• Not “writing” in traditional sense

• Conclusion:
• Bell-LaPadula model does not give sufficient conditions to prevent

communication, or
• System is improperly abstracted; need a better definition of “writing”

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 43

Composition of Bell-LaPadula

• Why?
• Some standards require secure components to be connected to form secure

(distributed, networked) system

• Question
• Under what conditions is this secure?

• Assumptions
• Implementation of systems precise with respect to each system’s security

policy

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 44

Issues

• Compose the lattices
• What is relationship among labels?
• If the same, trivial
• If different, new lattice must reflect the relationships among the levels

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 45

Example

(HIGH, { EAST, WEST })

(HIGH, { EAST }) (HIGH, { WEST })

(LOW)

(TS, { EAST, SOUTH })

(TS, { EAST }) (TS, { SOUTH })

(S, { EAST, SOUTH })

(S, { EAST }) (S, { SOUTH })

(LOW)

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 46

Analysis

• Assume S < HIGH < TS

• Assume SOUTH, EAST, WEST different

• Resulting lattice has:
• 4 clearances (LOW < S < HIGH < TS)
• 3 categories (SOUTH, EAST, WEST)

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 47

Same Policies

• If we can change policies that components must meet, composition is
trivial (as above)
• If we cannot, we must show composition meets the same policy as

that of components; this can be very hard

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 48

Different Policies

• What does “secure” now mean?
• Which policy (components) dominates?
• Possible principles:
• Any access allowed by policy of a component must be allowed by composition

of components (autonomy)
• Any access forbidden by policy of a component must be forbidden by

composition of components (security)

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 49

Implications

• Composite system satisfies security policy of components as
components’ policies take precedence
• If something neither allowed nor forbidden by principles, then:
• Allow it (Gong & Qian)
• Disallow it (Fail-Safe Defaults)

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 50

Example

• System X: Bob can’t access Alice’s files
• System Y: Eve, Lilith can access each other’s files
• Composition policy:
• Bob can access Eve’s files
• Lilith can access Alice’s files

• Question: can Bob access Lilith’s files?

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 51

Solution (Gong & Qian)

• Notation:
• (a, b): a can read b’s files
• AS(x): access set of system x

• Set-up:
• AS(X) = Æ
• AS(Y) = { (Eve, Lilith), (Lilith, Eve) }
• AS(XÈY) = { (Bob, Eve), (Lilith, Alice), (Eve, Lilith), (Lilith, Eve) }

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 52

Solution (Gong & Qian)

• Compute transitive closure of AS(XÈY):
• AS(XÈY)+ = { (Bob, Eve), (Bob, Lilith), (Bob, Alice), (Eve, Lilith), (Eve, Alice),

(Lilith, Eve), (Lilith, Alice) }

• Delete accesses conflicting with policies of components:
• Delete (Bob, Alice)

• (Bob, Lilith) in set, so Bob can access Lilith’s files

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 53

Idea

• Composition of policies allows accesses not mentioned by original
policies
• Generate all possible allowed accesses
• Computation of transitive closure

• Eliminate forbidden accesses
• Removal of accesses disallowed by individual access policies

• Everything else is allowed
• Note: determining if access allowed is of polynomial complexity

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 54

Interference

• Think of it as something used in communication
• Holly/Lara example: Holly interferes with the CPU utilization, and Lara detects

it — communication

• Plays role of writing (interfering) and reading (detecting the
interference)

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 55

Model

• System as state machine
• Subjects S = { si }
• States S = { si }
• Outputs O = { oi }
• Commands Z = { zi }
• State transition commands C = S ´ Z

• Note: no inputs
• Encode either as selection of commands or in state transition commands

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 56

Functions

• State transition function T: C ´ S® S
• Describes effect of executing command c in state s

• Output function P: C ´ S® O
• Output of machine when executing command c in state s

• Initial state is s0

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 57

Example: 2-Bit Machine

• Users Heidi (high), Lucy (low)
• 2 bits of state, H (high) and L (low)
• System state is (H, L) where H, L are 0, 1

• 2 commands: xor0, xor1 do xor with 0, 1
• Operations affect both state bits regardless of whether Heidi or Lucy issues it

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 58

Example: 2-bit Machine

• S = { Heidi, Lucy }
• S = { (0,0), (0,1), (1,0), (1,1) }
• C = { xor0, xor1 }

Input States (H, L)
(0,0) (0,1) (1,0) (1,1)

xor0 (0,0) (0,1) (1,0) (1,1)
xor1 (1,1) (1,0) (0,1) (0,0)

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 59

Outputs and States

• T is inductive in first argument, as
T(c0, s0) = s1; T(ci+1, si+1) = T(ci+1,T(ci,si))

• Let C* be set of possible sequences of commands in C
• T*: C* ´ S® S and

cs = c0…cnÞ T*(cs,si) = T(cn,…,T(c0,si)…)

• P similar; define P *: C* ´ S® O similarly

March 8, 2019 ECS 235B, Foundations of Computer and Information Security 60

