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Model

e System as state machine
* Subjects S={s;}
e StatesX ={ o, }
* Outputs O ={o;}
e CommandsZ={z}
 State transition commands C=S x 7

* Note: no inputs
 Encode either as selection of commands or in state transition commands
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Functions

e State transition function T: Cx X > X2
* Describes effect of executing command c in state ¢

e Qutput function P: Cx 2 —> 0O
* Output of machine when executing command c in state ¢

* Initial state is o,

March 11, 2019 ECS 235B, Foundations of Computer and Information Security



Example: 2-Bit Machine

e Users Heidi (high), Lucy (low)
* 2 bits of state, H (high) and L (low)
e System state is (H, L) where H, L are 0, 1

e 2 commands: xor0, xor1 do xor with O, 1
* Operations affect both state bits regardless of whether Heidi or Lucy issues it
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Example: 2-bit Machine

* S={Heidi, Lucy }

« 2={(0,0),(0,1),(1,0), (1,1) }
e C={xor0, xorl }

xor0

xorl

(0,0)

Input States (H, L)
(0,1) (1,0) (1,1)

(0,0)

(0,1) (1,0) (1,1)

(1,1)

(1,0) (0,1) (0,0)
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Outputs and States

e Tis inductive in first argument, as

T(¢co, Oo) = O1; T(Cia1, Oia) = T(€i1,T(c;,0)))
e Let C* be set of possible sequences of commands in C
e T*:C*x X —> X and

C, = Cy...C, = T*(c,,0;) = T(c,,..., T(cy,T))...)

e Psimilar; define P *: C* x 2 — O similarly

March 11, 2019 ECS 235B, Foundations of Computer and Information Security



Projection

* T*(c,,0,) sequence of state transitions
* P*(c,,G;) corresponding outputs

* proj(s, c,, o;) set of outputs in P*(c,,c;) that subject s authorized to see

* In same order as they occur in P*(c,,G))
* Projection of outputs for s

* Intuition: list of outputs after removing outputs that s cannot see
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Purge

e GC S, Gagroup of subjects
e Ac Z, A aset of commands
* ts(c,) subsequence of ¢, with all elements (s,z), s € G deleted
* m,(c.) subsequence of ¢, with all elements (s,z), z € A deleted

* T alCs) subsequence of ¢, with all elements (s,z), s e Gandz € A
deleted
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Example: 2-bit Machine

* Let Gp = (0,1)

* 3 commands applied:
* Heidi applies xor0
* Lucy applies xor1
* Heidi applies xor1

* ¢, = ( (Heidi, xor0), (Lucy, xor1), (Heidi, xor1) )
* Outputis 011001
e Shorthand for sequence (0,1) (1,0) (0,1)
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Example

* proj(Heidi, c,, c5) = 011001

* proj(Lucy, c,, c,) = 101

* T ,e,(Cs) = (Heidi, xor0), (Heidi, xor1)

* ey xor1(Cs) = (Heidi, xor0), (Heidi, xor1)

* Theigi (C5) = (Lucy, xor1)

* ey xorolCs) = (Heidi, xor0), (Lucy, xor1), (Heidi, xor1)
* TheicxorolCs) = TyorolCs) = (Lucy, xor1), (Heidi, xor1)

* Theidixor1(Cs) = (Heidi, xor0), (Lucy, xor1)

* 1T,,:(C;) = (Heidi, xor0)
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Noninterference

* Intuition: If set of outputs Lucy can see corresponds to set of inputs
she can see, there is no interference

* Formally: G, G' < S, G # G'; A < Z; users in G executing commands in A
are noninterfering with users in G’ iff for all c, € C*, and for all s € G/,

proj(s, ¢, ;) = proj(s, mg 4(c;), ;)
 Written A,G :| G’
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Example: 2-Bit Machine

* Let ¢, = ( (Heidi, xor0), (Lucy, xor1), (Heidi, xor1) ) and , = (0, 1)

* As before
e Take G={Heidi},G'={Lucy }, A=
* Theiai(Cs) = (Lucy, xor1)
* So proj(Lucy, Tyeigi(Cs), o) =0
* proj(Lucy, c,, c,) = 101
* So { Heidi } :| { Lucy } is false

* Makes sense; commands issued to change H bit also affect L bit
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Example

e Same as before, but Heidi’s commands affect H bit only, Lucy’s the L
bit only

* Outputis 0,0,1,
* Theiai(Cs) = (Lucy, xor1)
* So proj(Lucy, Tyeigi(Cs), o) =0
* proj(Lucy, c,, G45) =0
e So { Heidi } :| { Lucy } is true

* Makes sense; commands issued to change H bit now do not affect L bit
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Security Policy

* Partitions systems into authorized, unauthorized states
* Authorized states have no forbidden interferences

* Hence a security policy is a set of noninterference assertions
* See previous definition
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Alternative Development

* System X is a set of protection domainsD={d,, ..., d, }

* When command ¢ executed, it is executed in protection domain
dom(c)

* Give alternate versions of definitions shown previously
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Security Policy

*D={d,, ..., d,}, d;aprotection domain
* r: D x D a reflexive relation
* Then r defines a security policy

* Intuition: defines how information can flow around a system

* d;rd; means info can flow from d; to d,
* drd; as info can flow within a domain
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Projection Function

* 1" analogue of t, earlier

* Commands, subjects absorbed into protection domains
*deD,ce(Cc e C*

* (V) =V

* ' (c,c) = ' 4(c,)c if dom(c)rd

* ' (c.c) =n'y(c,) otherwise

* Intuition: if executing c interferes with d, then c is visible; otherwise,
as if c never executed

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

17



Noninterference-Secure

e System has set of protection domains D
e System is noninterference-secure with respect to policy r if
P*(CI T*(CSI c50)) = P*(CI T*(TC’d(CS), Go))

* Intuition: if executing ¢, causes the same transitions for subjects in
domain d as does its projection with respect to domain d, then no
information flows in violation of the policy
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Output-Consistency

ece (C,dom(c) e D
o ~dom(c) equivalence relation on states of system X
o ~dom(c) oytput-consistent if
o, ~Pmld 5, = P(c, o,) = P(c, 5,)

* Intuition: states are output-consistent if for subjects in dom(c),
projections of outputs for both states after c are the same
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Lemma

* Let T*(c,, og) ~ T*(n'4(c,), op) forc e C

* |f ~d output-consistent, then system is noninterference-secure with
respect to policy r
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Proof

e d=dom(c)force C
* By definition of output-consistent,
T*(c,, 0g) ~@ T*(1' 4(c,), ©p)
implies
P*(c, T*(c,, 69)) = P*(c, T*(1'4(c5), ©0))

* This is definition of noninterference-secure with respect to policy r
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Unwinding Theorem

* Links security of sequences of state transition commands to security
of individual state transition commands

* Allows you to show a system design is multilevel-secure by showing it
matches specs from which certain lemmata derived

* Says nothing about security of system, because of implementation, operation,
etc. issues
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Locally Respects

* ris a policy

e System X locally respects r if dom(c) being noninterfering with d € D
implies ¢, ~? T(c, o,)

* Intuition: when X locally respects r, applying c under policy r to
system X has no effect on domain d
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Transition-Consistent

e rpolicy,d € D

* If 6, ~? 5, implies T(c, c,) ~? T(c, o), system X is transition-consistent
under r

* Intuition: command ¢ does not affect equivalence of states under
policy r
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Unwinding Theorem

* Links security of sequences of state transition commands to security
of individual state transition commands

* Allows you to show a system design is ML secure by showing it
matches specs from which certain lemmata derived

* Says nothing about security of system, because of implementation, operation,
etc. issues
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Locally Respects

* ris a policy

e System X locally respects r if dom(c) being noninterfering with d € D
implies 6, ~ T(c, c,)

* Intuition: applying c under policy r to system X has no effect on
domain d when X locally respects r

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

26



Transition-Consistent

* rpolicy, d e D

* If 5, ~9 5, implies T(c, 6,) ~? T(c, o), system X transition-consistent
under r

* Intuition: command ¢ does not affect equivalence of states under
policy r
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Theorem

* r policy, X system that is output consistent, transition consistent, and
locally respects r

* Then X noninterference-secure with respect to policy r

e Significance: basis for analyzing systems claiming to enforce
noninterference policy

» Establish conditions of theorem for particular set of commands, states with
respect to some policy, set of protection domains

* Noninterference security with respect to r follows
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Proof

* Must show 6, ~? 6, implies
T*(cs 04) ~@ T*(1'4(cy), Op)
* Induct on length of c,
* Basis: ¢, =V, so T*(c,, 6,) = 6, ' 4(Vv) = v; claim holds
* Hypothesis: ¢, = ¢; ... ¢,; then claim holds
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Induction Step

e Consider c.c,,;. Assume 6, ~? 5, and look at T*(7’ /(c.c,,,1), O})

* 2 cases:
* dom(c,,,)rd holds
* dom(c,,,)rd does not hold
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dom(c,,,)rd Holds

T*(Tc’d(cscn+1); cTb) = T*(Tc’d(cs )Cn+1; cFb) = 7-(Cn+1; T*(Tc’d(cs )) cSb))
* By definition of T* and r',

G, ~d Gy = 7-(Cn+1; Ga) ~d T(Cn+1; cSb)
* As X transition-consistent

7-(Cn+1; T*(Cs; Ga)) ~d 7_(Cn+1; T*(ﬂ:,d(cs )/ cSb))
* By transition-consistency and IH

T(Cn+1;T*(Cs;Ga)) ~d T*(TC'd(CSle), cSb)
» By substitution from earlier equality

T*(CsCn1,0a) ~ T*(' 4(CsCpar), O)
* By definition of T*

proving hypothesis
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dom(c,,,)rd Does Not Hold

T*(Tc'd(cscml)r Gb) = T*(Tc’d(cs ); cSb)
* By definition of ',

T*(Cs' cSa) = T*(TC’d(CSle), cSb)
* By above and IH

T(Cn+11 T*(CSI cSa)) ~d T*(Cs/ Ga)
* As X locally respects r, c ~? T(c,,,, o) forany o

T(Cn+11T*(CsiGa)) ~a T*(Tc’d(cs Cn+1 )I Gb)
* Substituting back

proving hypothesis
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Finishing Proof

* Take 6, = G, = Gy, so from claim proved by induction,
T*(CSI cSO) ~d T*(Tc’d(cs)) GO)

* By previous lemma, as X (and so ~9) output consistent, then X is
noninterference-secure with respect to policy r
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Access Control Matrix

* Example of interpretation
* Given: access control information

* Question: are given conditions enough to provide noninterference
security?

* Assume: system in a particular state
* Encapsulates values in ACM
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ACM Model

* ObjectsL=1{1/, ..., |, }

* Locations in memory

* ValuesV={vy, .., v, }
e Values that L can assume

* Set of states X ={ oy, ..., 5, }
* Set of protection domains D={dy, ..., d;}
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Functions

value: L x 2 —>V
* returns value v stored in location / when system in state o

* read: D—2V
* returns set of objects observable from domain d

e write: D—2V
* returns set of objects observable from domain d
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Interpretation of ACM

* Functions represent ACM
* Subject s in domain d, object o
e r € Als, o] if o € read(d)
e w e Als, o] if o € write(d)

* Equivalence relation:

[c,~domld) 5, ]<>[ VI. € read(d) [ value(l, c,) = value(l,, ,) ] ]
* You can read the exactly the same locations in both states
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Enforcing Policy r

* 5 requirements

* 3 general ones describing dependence of commands on rights over input and
output
* Hold for all ACMs and policies

» 2 that are specific to some security policies
* Hold for most policies
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Enforcing Policy r: General Requirements

* OQutput of command c executed in domain dom(c) depends only on
values for which subjects in dom(c) have read access
¢ g, ~%m) 5, = P(c, c,) = P(c, o,)
* If c changes [, then c can only use values of objects in read(dom(c)) to
determine new value
° [ o, ~dom(c) o A
(valuell, T(c, c,)) # valuel(l, c,) V value(l,, T(c, c,)) # value(l, ,)) ] =
value(l, T(c, 6,)) = value(l, T(c, o)
* If c changes [, then dom(c) provides subject executing ¢ with write
access to /;

* value(l, T(c, 6,)) # value(l, c,) = I. € write(dom(c))
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Enforcing Policies r: Specific to Policy

* If domain u can interfere with domain v, then every object that can be
read in u can also be read in v; so if object o cannot be read in u, but
can be read in v and object 0’ in u can be read in v, then info flows
fromoto o, thentov

[u,ve DAurv] = read(u) c read(v)

* Subject s can write object o in v, subject s’ can read o in u, then
domain v can interfere with domain u

[ . € read(u) A I € write(v) | = vru
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Theorem

* Let X be a system satisfying these five conditions. Then Xis
noninterference-secure with respecttor

* Proof: must show X output-consistent, locally respects r, transition-
consistent

* Then by unwinding theorem, this theorem holds

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

41



Output-Consistent

* Take equivalence relation to be ~9, first condition is definition of
output-consistent
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Locally Respects r

Proof by contradiction: assume (dom(c),d) & r but 6, ~? T(c, o,) does not hold

Some object has value changed by c:

11, € read(d) [ value(l, c,) # value(l, T(c, c,)) ]
Condition 3: . € write(d)
Condition 5: dom(c)rd, contradiction

* So 6, ~T(c, o,) holds, meaning X locally respects r
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Transition Consistency

* Assume 6,~% o,
* Must show value(l, T(c, c,)) = value(l,, T(c, ,)) for |. € read(d)

* 3 cases dealing with change that ¢ makes in /; in states 6, &,
* value(l, T(c, o,)) # valuell, c,)
* value(l, T(c, c,)) # valuell,, c})
* Neither of the above two hold
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Case 1: valuel(l, T(c, c,)) # value(l, o)

e Condition 3: |, € write(dom(c))

* As |; € read(d), condition 5 says dom(c)rd

e Condition 4: read(dom(c)) < read(d)

* Asc,~c,, o,~m g,

« Condition 2: value(l,, T(c, o,)) = value(l,, T(c, o))
* So T(c, o) ~m) T(c, 5,), as desired
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Case 2: valuel(l, T(c, o)) # value(l,, c,)

e Condition 3: |, € write(dom(c))

* As |; € read(d), condition 5 says dom(c)rd

e Condition 4: read(dom(c)) < read(d)

* As o, ~? G, o, ~dmld 5,

« Condition 2: value(l,, T(c, o,)) = value(l,, T(c, o))
* So T(c, o) ~m) T(c, 5,), as desired
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Case 3: Neither of the Previous Two Hold

 This means the two conditions below hold:
* value(l, T(c, c,)) = value(l,, c,)
* value(l, T(c, c,)) = value(l,, c,)

* Interpretation of 6, ~? 5, is:

for I. € read(d), value(l,, c,) = value(l,, c,)
* So T(c, o,) ~?Tl(c, o,), as desired
In all 3 cases, X transition-consistent
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Policies Changing Over Time

* Problem: previous analysis assumes static system
* In real life, ACM changes as system commands issued

* Example: w € C* leads to current state

e cando(w, s, z) holds if s can execute z in current state
* Condition noninterference on cando

* If —cando(w, Lara, “write f’), Lara can’t interfere with any other user by
writing file f
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Generalize Noninterference

G S set of subjects, A — Z set of commands, p predicate over elements of C*
c.=(cy ..., c,) € C*
n''(v)=v

n''((cq, ..., C,)) = (c{, ..., '), where
e ¢/=vifpl(c, .. ci')andc;=(s,z) withse Gandz € A
e ¢/ =c; otherwise
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Intultion

* t''(c,) = c,

* But if p holds, and element of ¢ involves both command in A and
subject in G, replace corresponding element of ¢, with empty
command v

* Just like deleting entries from ¢, as m, ; does earlier
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Noninterference

* G, G' c S sets of subjects, A < Z set of commands, p predicate over C*

e Users in G executing commands in A are noninterfering with users in
G' under condition p iff, for all c, € C* and for all s € G', proj(s, c,, 5;) =
proj(s, n"'(c), o))

 Written A,G:| G'ifp
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Example

* From earlier one, simple security policy based on noninterference:
V(s e S)V(z e 2)[{z}, {s}:| Sif =cando(w, s, z) ]

* If subject can’t execute command (the —cando part) in any state,
subject can’t use that command to interfere with another subject
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Another Example

* Consider system in which rights can be passed
* pass(s, z) gives s right to execute z
* wW,=Vy .. V,sequence of v, e C*
* prev(w,) = w,_y; last(w,) = v,
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Policy

* No subject s can use z to interfere if, in previous state, s did not have
right to z, and no subject gave itto s

{z},{s}:|S
if [ =cando(prev(w), s, z) A [ cando(prev(w), s’, pass(s, z)) =
—last(w) = (s, pass(s, z)) ] ]
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Effect

* Suppose s; € S can execute pass(s,, z)
* For all w € C*, cando(w, s, pass(s,, z)) holds
* Initially, cando(v, s,, z) false

* Let Z/ € Zbe such that (s3, Z’) noninterfering with (s,, z)
* So for each w, with v, = (s;, Z’), cando(w,, s,, z) = cando(w,_,, s,, Z)
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Effect

* Then policy says foralls € S
projs, ((s,, 2), (s1, pass(s,, 2)), (s3, '), (53, 2)), ©;) =
proj(sr ((51; p055(52; Z)); (53; Z’); (521 Z))I Gi)

* SO s,’s first execution of z does not affect any subject’s observation of
system
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