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Model

• System as state machine
• Subjects S = { si }
• States S = { si }
• Outputs O = { oi }
• Commands Z = { zi }
• State transition commands C = S ´ Z

• Note: no inputs
• Encode either as selection of commands or in state transition commands
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Functions

• State transition function T: C ´ S® S
• Describes effect of executing command c in state s

• Output function P: C ´ S® O
• Output of machine when executing command c in state s

• Initial state is s0
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Example: 2-Bit Machine

• Users Heidi (high), Lucy (low) 
• 2 bits of state, H (high) and L (low)
• System state is (H, L) where H, L are 0, 1

• 2 commands: xor0, xor1 do xor with 0, 1
• Operations affect both state bits regardless of whether Heidi or Lucy issues it
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Example: 2-bit Machine

• S = { Heidi, Lucy }
• S = { (0,0), (0,1), (1,0), (1,1) }
• C = { xor0, xor1 }

Input States (H, L)
(0,0) (0,1) (1,0) (1,1)

xor0 (0,0) (0,1) (1,0) (1,1)
xor1 (1,1) (1,0) (0,1) (0,0)
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Outputs and States

• T is inductive in first argument, as
T(c0, s0) = s1; T(ci+1, si+1) = T(ci+1,T(ci,si))

• Let C* be set of possible sequences of commands in C
• T*: C* ´ S® S and

cs = c0…cnÞ T*(cs,si) = T(cn,…,T(c0,si)…)

• P similar; define P *: C* ´ S® O similarly
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Projection

• T*(cs,si) sequence of state transitions
• P*(cs,si) corresponding outputs
• proj(s, cs, si) set of outputs in P*(cs,si) that subject s authorized to see
• In same order as they occur in P*(cs,si)
• Projection of outputs for s

• Intuition: list of outputs after removing outputs that s cannot see
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Purge

• G Í S, G a group of subjects
• A Í Z, A a set of commands
• pG(cs) subsequence of cs with all elements (s,z), s Î G deleted
• pA(cs) subsequence of cs with all elements (s,z), z Î A deleted
• pG,A(cs) subsequence of cs with all elements (s,z), s Î G and z Î A

deleted
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Example: 2-bit Machine

• Let s0 = (0,1)
• 3 commands applied:
• Heidi applies xor0
• Lucy applies xor1
• Heidi applies xor1

• cs = ( (Heidi, xor0), (Lucy, xor1), (Heidi, xor1) )
• Output is 011001
• Shorthand for sequence (0,1) (1,0) (0,1)
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Example

• proj(Heidi, cs, s0) = 011001
• proj(Lucy, cs, s0) = 101
• pLucy(cs) = (Heidi, xor0), (Heidi, xor1)
• pLucy,xor1(cs) = (Heidi, xor0), (Heidi, xor1)
• pHeidi (cs) = (Lucy, xor1)
• pLucy,xor0(cs) = (Heidi, xor0), (Lucy, xor1), (Heidi, xor1)
• pHeidi,xor0(cs) = pxor0(cs) = (Lucy, xor1), (Heidi, xor1)
• pHeidi,xor1(cs) = (Heidi, xor0), (Lucy, xor1)
• pxor1(cs) = (Heidi, xor0)
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Noninterference

• Intuition: If set of outputs Lucy can see corresponds to set of inputs 
she can see, there is no interference
• Formally: G, G¢ Í S, G ≠ G¢; A Í Z; users in G executing commands in A

are noninterfering with users in G¢ iff for all cs Î C*, and for all s Î G¢,
proj(s, cs, si) = proj(s, pG,A(cs), si)

• Written A,G :| G¢
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Example: 2-Bit Machine

• Let cs = ( (Heidi, xor0), (Lucy, xor1), (Heidi, xor1) ) and s0 = (0, 1)
• As before

• Take G = { Heidi }, G¢ = { Lucy }, A = Æ
• pHeidi(cs) = (Lucy, xor1)
• So proj(Lucy, pHeidi(cs), s0) = 0

• proj(Lucy, cs, s0) = 101
• So { Heidi } :| { Lucy } is false
• Makes sense; commands issued to change H bit also affect L bit
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Example

• Same as before, but Heidi’s commands affect H bit only, Lucy’s the L
bit only
• Output is 0H0L1H

• pHeidi(cs) = (Lucy, xor1)
• So proj(Lucy, pHeidi(cs), s0) = 0

• proj(Lucy, cs, s0) = 0
• So { Heidi } :| { Lucy } is true
• Makes sense; commands issued to change H bit now do not affect L bit
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Security Policy

• Partitions systems into authorized, unauthorized states
• Authorized states have no forbidden interferences
• Hence a security policy is a set of noninterference assertions
• See previous definition
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Alternative Development

• System X is a set of protection domains D = { d1, …, dn }
• When command c executed, it is executed in protection domain 
dom(c)
• Give alternate versions of definitions shown previously
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Security Policy

• D = { d1, …, dn }, di a protection domain
• r: D ´ D a reflexive relation
• Then r defines a security policy
• Intuition: defines how information can flow around a system
• dirdj means info can flow from di to dj
• dirdi as info can flow within a domain
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Projection Function

• p¢ analogue of p, earlier
• Commands, subjects absorbed into protection domains
• d Î D, c Î C, cs Î C*
• p¢d(n) = n
• p¢d(csc) = p¢d(cs)c if dom(c)rd
• p¢d(csc) = p¢d(cs) otherwise
• Intuition: if executing c interferes with d, then c is visible; otherwise, 

as if c never executed
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Noninterference-Secure

• System has set of protection domains D
• System is noninterference-secure with respect to policy r if

P*(c, T*(cs, s0)) = P*(c, T*(p¢d(cs), s0))
• Intuition: if executing cs causes the same transitions for subjects in 

domain d as does its projection with respect to domain d, then no 
information flows in violation of the policy
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Output-Consistency

• c Î C, dom(c) Î D
• ~dom(c) equivalence relation on states of system X
• ~dom(c) output-consistent if

sa ~dom(c) sbÞ P(c, sa) = P(c, sb)
• Intuition: states are output-consistent if for subjects in dom(c), 

projections of outputs for both states after c are the same
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Lemma

• Let T*(cs, s0) ~d T*(p¢d(cs), s0) for c Î C
• If ~d output-consistent, then system is noninterference-secure with 

respect to policy r
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Proof

• d = dom(c) for c Î C
• By definition of output-consistent,

T*(cs, s0) ~d T*(p¢d(cs), s0)
implies

P*(c, T*(cs, s0)) = P*(c, T*(p¢d(cs), s0))
• This is definition of noninterference-secure with respect to policy r
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Unwinding Theorem

• Links security of sequences of state transition commands to security 
of individual state transition commands
• Allows you to show a system design is multilevel-secure by showing it 

matches specs from which certain lemmata derived
• Says nothing about security of system, because of implementation, operation, 
etc. issues
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Locally Respects

• r is a policy
• System X locally respects r if dom(c) being noninterfering with d Î D

implies sa ~d T(c, sa)
• Intuition: when X locally respects r, applying c under policy r to 

system X has no effect on domain d
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Transition-Consistent

• r policy, d Î D
• If sa ~d sb implies T(c, sa) ~d T(c, sb), system X is transition-consistent

under r
• Intuition: command c does not affect equivalence of states under 

policy r
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Unwinding Theorem

• Links security of sequences of state transition commands to security 
of individual state transition commands
• Allows you to show a system design is ML secure by showing it 

matches specs from which certain lemmata derived
• Says nothing about security of system, because of implementation, operation, 
etc. issues
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Locally Respects

• r is a policy
• System X locally respects r if dom(c) being noninterfering with d Î D

implies sa ~d T(c, sa)
• Intuition: applying c under policy r to system X has no effect on 

domain d when X locally respects r

March 11, 2019 ECS 235B, Foundations of Computer and Information Security 26



Transition-Consistent

• r policy, d Î D
• If sa ~d sb implies T(c, sa) ~d T(c, sb), system X transition-consistent 

under r
• Intuition: command c does not affect equivalence of states under 

policy r
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Theorem

• r policy, X system that is output consistent, transition consistent, and 
locally respects r
• Then X noninterference-secure with respect to policy r
• Significance: basis for analyzing systems claiming to enforce 

noninterference policy
• Establish conditions of theorem for particular set of commands, states with 

respect to some policy, set of protection domains
• Noninterference security with respect to r follows
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Proof

• Must show sa ~d sb implies
T*(cs, sa) ~d T*(p¢d(cs), sb)

• Induct on length of cs
• Basis: cs = n, so T*(cs, sa) = sa; p¢d(n) = n; claim holds
• Hypothesis: cs = c1 … cn; then claim holds
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Induction Step

• Consider cscn+1. Assume sa ~d sb and look at T*(p¢d(cscn+1), sb)
• 2 cases:
• dom(cn+1)rd holds
• dom(cn+1)rd does not hold

March 11, 2019 ECS 235B, Foundations of Computer and Information Security 30



dom(cn+1)rd Holds

T*(p¢d(cscn+1), sb) = T*(p¢d(cs )cn+1, sb) = T(cn+1, T*(p¢d(cs ), sb))
• By definition of T* and p¢d

sa ~d sb ⇒ T(cn+1, sa) ~d T(cn+1, sb)
• As X transition-consistent

T(cn+1, T*(cs, sa)) ~d T(cn+1, T*(p¢d(cs ), sb))
• By transition-consistency and IH

T(cn+1,T*(cs,sa)) ~d T*(p¢d(cscn+1), sb)
• By substitution from earlier equality

T*(cscn+1,sa) ~d T*(p¢d(cscn+1), sb)
• By definition of T*

proving hypothesis
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dom(cn+1)rd Does Not Hold

T*(p¢d(cscn+1), sb) = T*(p¢d(cs ), sb)
• By definition of p¢d

T*(cs, sa) = T*(p¢d(cscn+1), sb)
• By above and IH

T(cn+1, T*(cs, sa)) ~d T*(cs, sa)
• As X locally respects r, s ~d T(cn+1, s) for any s

T(cn+1,T*(cs,sa)) ~d T*(p¢d(cs cn+1 ), sb)
• Substituting back

proving hypothesis

March 11, 2019 ECS 235B, Foundations of Computer and Information Security 32



Finishing Proof

• Take sa = sb = s0, so from claim proved by induction,
T*(cs, s0) ~d T*(p¢d(cs), s0)

• By previous lemma, as X (and so ~d) output consistent, then X is 
noninterference-secure with respect to policy r
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Access Control Matrix

• Example of interpretation
• Given: access control information
• Question: are given conditions enough to provide noninterference 

security?
• Assume: system in a particular state
• Encapsulates values in ACM
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ACM Model

• Objects L = { l1, …, lm }
• Locations in memory

• Values V = { v1, …, vn }
• Values that L can assume

• Set of states S = { s1, …, sk }
• Set of protection domains D = { d1, …, dj }
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Functions

• value: L ´ S® V
• returns value v stored in location l when system in state s

• read: D®2V

• returns set of objects observable from domain d
• write: D®2V

• returns set of objects observable from domain d
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Interpretation of ACM

• Functions represent ACM
• Subject s in domain d, object o
• r Î A[s, o] if o Î read(d)
• w Î A[s, o] if o Î write(d)

• Equivalence relation:
[sa ~dom(c) sb]Û[ "li Î read(d) [ value(li, sa) = value(li, sb) ] ]

• You can read the exactly the same locations in both states

March 11, 2019 ECS 235B, Foundations of Computer and Information Security 37



Enforcing Policy r

• 5 requirements
• 3 general ones describing dependence of commands on rights over input and 

output
• Hold for all ACMs and policies

• 2 that are specific to some security policies
• Hold for most policies
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Enforcing Policy r: General Requirements

• Output of command c executed in domain dom(c) depends only on 
values for which subjects in dom(c) have read access
• sa ~dom(c) sbÞ P(c, sa) = P(c, sb)

• If c changes li, then c can only use values of objects in read(dom(c)) to 
determine new value
• [ sa ~dom(c) sb ∧

(value(li, T(c, sa)) ≠ value(li, sa) ∨ value(li, T(c, sb)) ≠ value(li, sb)) ] Þ
value(li, T(c, sa)) = value(li, T(c, sb)

• If c changes li, then dom(c) provides subject executing c with write 
access to li
• value(li, T(c, sa)) ≠ value(li, sa) Þ li Î write(dom(c))
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Enforcing Policies r: Specific to Policy

• If domain u can interfere with domain v, then every object that can be 
read in u can also be read in v; so if object o cannot be read in u, but 
can be read in v and object o¢ in u can be read in v, then info flows 
from o to o¢, then to v

[ u, v Î D ∧ urv ] Þ read(u) Í read(v)
• Subject s can write object o in v, subject s¢ can read o in u, then 

domain v can interfere with domain u
[ li Î read(u) ∧ li Î write(v) ] Þ vru
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Theorem

• Let X be a system satisfying these five conditions. Then X is 
noninterference-secure with respect to r
• Proof: must show X output-consistent, locally respects r, transition-

consistent
• Then by unwinding theorem, this theorem holds
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Output-Consistent

• Take equivalence relation to be ~d, first condition is definition of 
output-consistent
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Locally Respects r

• Proof by contradiction: assume (dom(c),d) ∉ r but sa ~d T(c, sa) does not hold
• Some object has value changed by c:

$ li Î read(d) [ value(li, sa) ≠ value(li, T(c, sa)) ]
• Condition 3: li Î write(d)
• Condition 5: dom(c)rd, contradiction
• So sa ~d T(c, sa) holds, meaning X locally respects r
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Transition Consistency

• Assume sa ~d sb

• Must show value(li, T(c, sa)) = value(li, T(c, sb)) for li Î read(d)
• 3 cases dealing with change that c makes in li in states sa, sb
• value(li, T(c, sa)) ≠ value(li, sa)
• value(li, T(c, sb)) ≠ value(li, sb)
• Neither of the above two hold
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Case 1: value(li, T(c, sa)) ≠ value(li, sa)

• Condition 3: li Î write(dom(c))
• As li Î read(d), condition 5 says dom(c)rd
• Condition 4: read(dom(c)) Í read(d)
• As sa ~d sb, sa ~dom(c) sb

• Condition 2: value(li, T(c, sa)) = value(li, T(c, sb))
• So T(c, sa) ~dom(c) T(c, sb), as desired
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Case 2: value(li, T(c, sb)) ≠ value(li, sb)

• Condition 3: li Î write(dom(c))
• As li Î read(d), condition 5 says dom(c)rd
• Condition 4: read(dom(c)) Í read(d)
• As sa ~d sb, sa ~dom(c) sb

• Condition 2: value(li, T(c, sa)) = value(li, T(c, sb))
• So T(c, sa) ~dom(c) T(c, sb), as desired
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Case 3: Neither of the Previous Two Hold

• This means the two conditions below hold:
• value(li, T(c, sa)) = value(li, sa)
• value(li, T(c, sb)) = value(li, sb)

• Interpretation of sa ~d sb is:

for li Î read(d), value(li, sa) = value(li, sb)

• So T(c, sa) ~d T(c, sb), as desired

In all 3 cases, X transition-consistent
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Policies Changing Over Time

• Problem: previous analysis assumes static system
• In real life, ACM changes as system commands issued

• Example: w Î C* leads to current state
• cando(w, s, z) holds if s can execute z in current state
• Condition noninterference on cando
• If ¬cando(w, Lara, “write f”), Lara can’t interfere with any other user by 

writing file f
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Generalize Noninterference

• G Í S set of subjects, A Í Z set of commands, p predicate over elements of C*
• cs = (c1, …, cn) Î C*
• p¢¢(n) = n
• p¢¢((c1, …, cn)) = (c1¢, …, cn¢), where

• ci¢ = n if p(c1¢, …, ci–1¢) and ci = (s, z) with s Î G and z Î A
• ci¢ = ci otherwise
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Intuition

• p¢¢(cs) = cs
• But if p holds, and element of cs involves both command in A and 

subject in G, replace corresponding element of cs with empty 
command n
• Just like deleting entries from cs as pA,G does earlier
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Noninterference

• G, G¢ Í S sets of subjects, A Í Z set of commands, p predicate over C*
• Users in G executing commands in A are noninterfering with users in 

G¢ under condition p iff, for all cs Î C* and for all s Î G¢, proj(s, cs, si) = 
proj(s, p¢¢(cs), si)
• Written A,G :| G¢ if p
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Example

• From earlier one, simple security policy based on noninterference:
"(s Î S) "(z Î Z) [ {z}, {s} :| S if ¬cando(w, s, z) ]

• If subject can’t execute command (the ¬cando part) in any state, 
subject can’t use that command to interfere with another subject
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Another Example

• Consider system in which rights can be passed
• pass(s, z) gives s right to execute z
• wn = v1, …, vn sequence of vi Î C*
• prev(wn) = wn–1; last(wn) = vn
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Policy

• No subject s can use z to interfere if, in previous state, s did not have 
right to z, and no subject gave it to s
{ z }, { s } :| S

if [ ¬cando(prev(w), s, z) Ù [ cando(prev(w), s¢, pass(s, z)) Þ
¬last(w) = (s¢, pass(s, z)) ] ]
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Effect

• Suppose s1 Î S can execute pass(s2, z)
• For all w Î C*, cando(w, s1, pass(s2, z)) holds
• Initially, cando(n, s2, z) false
• Let z¢ Î Z be such that (s3, z¢) noninterfering with (s2, z)
• So for each wn with vn = (s3, z¢), cando(wn, s2, z) = cando(wn–1, s2, z)

March 11, 2019 ECS 235B, Foundations of Computer and Information Security 55



Effect

• Then policy says for all s Î S
proj(s, ((s2, z), (s1, pass(s2, z)), (s3, z¢), (s2, z)), si) =

proj(s, ((s1, pass(s2, z)), (s3, z¢), (s2, z)), si)

• So s2’s first execution of z does not affect any subject’s observation of 
system
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