ECS 235B, Lecture 25

March 11, 2019

Model

e System as state machine
* Subjects S={s;}
e StatesX ={ o, }
* Outputs O ={o;}
e CommandsZ={z}
 State transition commands C=S x 7

* Note: no inputs
 Encode either as selection of commands or in state transition commands

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

Functions

e State transition function T: Cx X > X2
* Describes effect of executing command c in state ¢

e Qutput function P: Cx 2 —> 0O
* Output of machine when executing command c in state ¢

* Initial state is o,

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

Example: 2-Bit Machine

e Users Heidi (high), Lucy (low)
* 2 bits of state, H (high) and L (low)
e System state is (H, L) where H, L are 0, 1

e 2 commands: xor0, xor1 do xor with O, 1
* Operations affect both state bits regardless of whether Heidi or Lucy issues it

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

Example: 2-bit Machine

* S={Heidi, Lucy }

« 2={(0,0),(0,1),(1,0), (1,1) }
e C={xor0, xorl }

xor0

xorl

(0,0)

Input States (H, L)
(0,1) (1,0) (1,1)

(0,0)

(0,1) (1,0) (1,1)

(1,1)

(1,0) (0,1) (0,0)

March 11, 2019

ECS 235B, Foundations of Computer and Information Security

Outputs and States

e Tis inductive in first argument, as

T(¢co, Oo) = O1; T(Cia1, Oia) = T(€i1,T(c;,0)))
e Let C* be set of possible sequences of commands in C
e T*:C*x X —> X and

C, = Cy...C, = T*(c,,0;) = T(c,,..., T(cy,T))...)

e Psimilar; define P *: C* x 2 — O similarly

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

Projection

* T*(c,,0,) sequence of state transitions
* P*(c,,G;) corresponding outputs

* proj(s, c,, o;) set of outputs in P*(c,,c;) that subject s authorized to see

* In same order as they occur in P*(c,,G))
* Projection of outputs for s

* Intuition: list of outputs after removing outputs that s cannot see

March 11, 2019 ECS 235B, Foundations of Computer and Information Security 7

Purge

e GC S, Gagroup of subjects
e Ac Z, A aset of commands
* ts(c,) subsequence of ¢, with all elements (s,z), s € G deleted
* m,(c.) subsequence of ¢, with all elements (s,z), z € A deleted

* T alCs) subsequence of ¢, with all elements (s,z), s e Gandz € A
deleted

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

Example: 2-bit Machine

* Let Gp = (0,1)

* 3 commands applied:
* Heidi applies xor0
* Lucy applies xor1
* Heidi applies xor1

* ¢, = ((Heidi, xor0), (Lucy, xor1), (Heidi, xor1))
* Outputis 011001
e Shorthand for sequence (0,1) (1,0) (0,1)

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

Example

* proj(Heidi, c,, c5) = 011001

* proj(Lucy, c,, c,) = 101

* T ,e,(Cs) = (Heidi, xor0), (Heidi, xor1)

* ey xor1(Cs) = (Heidi, xor0), (Heidi, xor1)

* Theigi (C5) = (Lucy, xor1)

* ey xorolCs) = (Heidi, xor0), (Lucy, xor1), (Heidi, xor1)
* TheicxorolCs) = TyorolCs) = (Lucy, xor1), (Heidi, xor1)

* Theidixor1(Cs) = (Heidi, xor0), (Lucy, xor1)

* 1T,,:(C;) = (Heidi, xor0)

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

10

Noninterference

* Intuition: If set of outputs Lucy can see corresponds to set of inputs
she can see, there is no interference

* Formally: G, G' < S, G # G'; A < Z; users in G executing commands in A
are noninterfering with users in G’ iff for all c, € C*, and for all s € G/,

proj(s, ¢, ;) = proj(s, mg 4(c;), ;)
 Written A,G :| G’

March 11, 2019 ECS 235B, Foundations of Computer and Information Security 11

Example: 2-Bit Machine

* Let ¢, = ((Heidi, xor0), (Lucy, xor1), (Heidi, xor1)) and , = (0, 1)

* As before
e Take G={Heidi},G'={Lucy }, A=
* Theiai(Cs) = (Lucy, xor1)
* So proj(Lucy, Tyeigi(Cs), o) =0
* proj(Lucy, c,, c,) = 101
* So { Heidi } :| { Lucy } is false

* Makes sense; commands issued to change H bit also affect L bit

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

12

Example

e Same as before, but Heidi’s commands affect H bit only, Lucy’s the L
bit only

* Outputis 0,0,1,
* Theiai(Cs) = (Lucy, xor1)
* So proj(Lucy, Tyeigi(Cs), o) =0
* proj(Lucy, c,, G45) =0
e So { Heidi } :| { Lucy } is true

* Makes sense; commands issued to change H bit now do not affect L bit

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

13

Security Policy

* Partitions systems into authorized, unauthorized states
* Authorized states have no forbidden interferences

* Hence a security policy is a set of noninterference assertions
* See previous definition

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

14

Alternative Development

* System X is a set of protection domainsD={d,, ..., d, }

* When command ¢ executed, it is executed in protection domain
dom(c)

* Give alternate versions of definitions shown previously

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

15

Security Policy

*D={d,, ..., d,}, d;aprotection domain
* r: D x D a reflexive relation
* Then r defines a security policy

* Intuition: defines how information can flow around a system

* d;rd; means info can flow from d; to d,
* drd; as info can flow within a domain

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

16

Projection Function

* 1" analogue of t, earlier

* Commands, subjects absorbed into protection domains
deD,ce(Cc e C

* (V) =V

* ' (c,c) = ' 4(c,)c if dom(c)rd

* ' (c.c) =n'y(c,) otherwise

* Intuition: if executing c interferes with d, then c is visible; otherwise,
as if c never executed

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

17

Noninterference-Secure

e System has set of protection domains D
e System is noninterference-secure with respect to policy r if
P*(CI T*(CSI c50)) = P*(CI T*(TC’d(CS), Go))

* Intuition: if executing ¢, causes the same transitions for subjects in
domain d as does its projection with respect to domain d, then no
information flows in violation of the policy

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

18

Output-Consistency

ece (C,dom(c) e D
o ~dom(c) equivalence relation on states of system X
o ~dom(c) oytput-consistent if
o, ~Pmld 5, = P(c, o,) = P(c, 5,)

* Intuition: states are output-consistent if for subjects in dom(c),
projections of outputs for both states after c are the same

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

19

Lemma

* Let T*(c,, og) ~ T*(n'4(c,), op) forc e C

* |f ~d output-consistent, then system is noninterference-secure with
respect to policy r

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

20

Proof

e d=dom(c)force C
* By definition of output-consistent,
T*(c,, 0g) ~@ T*(1' 4(c,), ©p)
implies
P*(c, T*(c,, 69)) = P*(c, T*(1'4(c5), ©0))

* This is definition of noninterference-secure with respect to policy r

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

21

Unwinding Theorem

* Links security of sequences of state transition commands to security
of individual state transition commands

* Allows you to show a system design is multilevel-secure by showing it
matches specs from which certain lemmata derived

* Says nothing about security of system, because of implementation, operation,
etc. issues

March 11, 2019 ECS 235B, Foundations of Computer and Information Security 22

Locally Respects

* ris a policy

e System X locally respects r if dom(c) being noninterfering with d € D
implies ¢, ~? T(c, o,)

* Intuition: when X locally respects r, applying c under policy r to
system X has no effect on domain d

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

23

Transition-Consistent

e rpolicy,d € D

* If 6, ~? 5, implies T(c, c,) ~? T(c, o), system X is transition-consistent
under r

* Intuition: command ¢ does not affect equivalence of states under
policy r

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

24

Unwinding Theorem

* Links security of sequences of state transition commands to security
of individual state transition commands

* Allows you to show a system design is ML secure by showing it
matches specs from which certain lemmata derived

* Says nothing about security of system, because of implementation, operation,
etc. issues

March 11, 2019 ECS 235B, Foundations of Computer and Information Security 25

Locally Respects

* ris a policy

e System X locally respects r if dom(c) being noninterfering with d € D
implies 6, ~ T(c, c,)

* Intuition: applying c under policy r to system X has no effect on
domain d when X locally respects r

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

26

Transition-Consistent

* rpolicy, d e D

* If 5, ~9 5, implies T(c, 6,) ~? T(c, o), system X transition-consistent
under r

* Intuition: command ¢ does not affect equivalence of states under
policy r

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

27

Theorem

* r policy, X system that is output consistent, transition consistent, and
locally respects r

* Then X noninterference-secure with respect to policy r

e Significance: basis for analyzing systems claiming to enforce
noninterference policy

» Establish conditions of theorem for particular set of commands, states with
respect to some policy, set of protection domains

* Noninterference security with respect to r follows

March 11, 2019 ECS 235B, Foundations of Computer and Information Security 28

Proof

* Must show 6, ~? 6, implies
T*(cs 04) ~@ T*(1'4(cy), Op)
* Induct on length of c,
* Basis: ¢, =V, so T*(c,, 6,) = 6, ' 4(Vv) = v; claim holds
* Hypothesis: ¢, = ¢; ... ¢,; then claim holds

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

29

Induction Step

e Consider c.c,,;. Assume 6, ~? 5, and look at T*(7’ /(c.c,,,1), O})

* 2 cases:
* dom(c,,,)rd holds
* dom(c,,,)rd does not hold

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

30

dom(c,,,)rd Holds

T*(Tc’d(cscn+1); cTb) = T*(Tc’d(cs)Cn+1; cFb) = 7-(Cn+1; T*(Tc’d(cs)) cSb))
* By definition of T* and r',

G, ~d Gy = 7-(Cn+1; Ga) ~d T(Cn+1; cSb)
* As X transition-consistent

7-(Cn+1; T*(Cs; Ga)) ~d 7_(Cn+1; T*(ﬂ:,d(cs)/ cSb))
* By transition-consistency and IH

T(Cn+1;T*(Cs;Ga)) ~d T*(TC'd(CSle), cSb)
» By substitution from earlier equality

T*(CsCn1,0a) ~ T*(' 4(CsCpar), O)
* By definition of T*

proving hypothesis

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

31

dom(c,,,)rd Does Not Hold

T*(Tc'd(cscml)r Gb) = T*(Tc’d(cs); cSb)
* By definition of ',

T*(Cs' cSa) = T*(TC’d(CSle), cSb)
* By above and IH

T(Cn+11 T*(CSI cSa)) ~d T*(Cs/ Ga)
* As X locally respects r, c ~? T(c,,,, o) forany o

T(Cn+11T*(CsiGa)) ~a T*(Tc’d(cs Cn+1)I Gb)
* Substituting back

proving hypothesis

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

32

Finishing Proof

* Take 6, = G, = Gy, so from claim proved by induction,
T*(CSI cSO) ~d T*(Tc’d(cs)) GO)

* By previous lemma, as X (and so ~9) output consistent, then X is
noninterference-secure with respect to policy r

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

33

Access Control Matrix

* Example of interpretation
* Given: access control information

* Question: are given conditions enough to provide noninterference
security?

* Assume: system in a particular state
* Encapsulates values in ACM

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

34

ACM Model

* ObjectsL=1{1/, ..., |, }

* Locations in memory

* ValuesV={vy, .., v, }
e Values that L can assume

* Set of states X ={ oy, ..., 5, }
* Set of protection domains D={dy, ..., d;}

March 11, 2019 ECS 235B, Foundations of Computer and Information Security 35

Functions

value: L x 2 —>V
* returns value v stored in location / when system in state o

* read: D—2V
* returns set of objects observable from domain d

e write: D—2V
* returns set of objects observable from domain d

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

36

Interpretation of ACM

* Functions represent ACM
* Subject s in domain d, object o
e r € Als, o] if o € read(d)
e w e Als, o] if o € write(d)

* Equivalence relation:

[c,~domld) 5,]<>[VI. € read(d) [value(l, c,) = value(l,, ,)]]
* You can read the exactly the same locations in both states

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

37

Enforcing Policy r

* 5 requirements

* 3 general ones describing dependence of commands on rights over input and
output
* Hold for all ACMs and policies

» 2 that are specific to some security policies
* Hold for most policies

March 11, 2019 ECS 235B, Foundations of Computer and Information Security 38

Enforcing Policy r: General Requirements

* OQutput of command c executed in domain dom(c) depends only on
values for which subjects in dom(c) have read access
¢ g, ~%m) 5, = P(c, c,) = P(c, o,)
* If c changes [, then c can only use values of objects in read(dom(c)) to
determine new value
° [o, ~dom(c) o A
(valuell, T(c, c,)) # valuel(l, c,) V value(l,, T(c, c,)) # value(l, ,))] =
value(l, T(c, 6,)) = value(l, T(c, o)
* If c changes [, then dom(c) provides subject executing ¢ with write
access to /;

* value(l, T(c, 6,)) # value(l, c,) = I. € write(dom(c))

March 11, 2019 ECS 235B, Foundations of Computer and Information Security 39

Enforcing Policies r: Specific to Policy

* If domain u can interfere with domain v, then every object that can be
read in u can also be read in v; so if object o cannot be read in u, but
can be read in v and object 0’ in u can be read in v, then info flows
fromoto o, thentov

[u,ve DAurv] = read(u) c read(v)

* Subject s can write object o in v, subject s’ can read o in u, then
domain v can interfere with domain u

[. € read(u) A I € write(v) | = vru

March 11, 2019 ECS 235B, Foundations of Computer and Information Security 40

Theorem

* Let X be a system satisfying these five conditions. Then Xis
noninterference-secure with respecttor

* Proof: must show X output-consistent, locally respects r, transition-
consistent

* Then by unwinding theorem, this theorem holds

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

41

Output-Consistent

* Take equivalence relation to be ~9, first condition is definition of
output-consistent

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

42

Locally Respects r

Proof by contradiction: assume (dom(c),d) & r but 6, ~? T(c, o,) does not hold

Some object has value changed by c:

11, € read(d) [value(l, c,) # value(l, T(c, c,))]
Condition 3: . € write(d)
Condition 5: dom(c)rd, contradiction

* So 6, ~T(c, o,) holds, meaning X locally respects r

March 11, 2019 ECS 235B, Foundations of Computer and Information Security 43

Transition Consistency

* Assume 6,~% o,
* Must show value(l, T(c, c,)) = value(l,, T(c, ,)) for |. € read(d)

* 3 cases dealing with change that ¢ makes in /; in states 6, &,
* value(l, T(c, o,)) # valuell, c,)
* value(l, T(c, c,)) # valuell,, c})
* Neither of the above two hold

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

44

Case 1: valuel(l, T(c, c,)) # value(l, o)

e Condition 3: |, € write(dom(c))

* As |; € read(d), condition 5 says dom(c)rd

e Condition 4: read(dom(c)) < read(d)

* Asc,~c,, o,~m g,

« Condition 2: value(l,, T(c, o,)) = value(l,, T(c, o))
* So T(c, o) ~m) T(c, 5,), as desired

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

45

Case 2: valuel(l, T(c, o)) # value(l,, c,)

e Condition 3: |, € write(dom(c))

* As |; € read(d), condition 5 says dom(c)rd

e Condition 4: read(dom(c)) < read(d)

* As o, ~? G, o, ~dmld 5,

« Condition 2: value(l,, T(c, o,)) = value(l,, T(c, o))
* So T(c, o) ~m) T(c, 5,), as desired

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

46

Case 3: Neither of the Previous Two Hold

 This means the two conditions below hold:
* value(l, T(c, c,)) = value(l,, c,)
* value(l, T(c, c,)) = value(l,, c,)

* Interpretation of 6, ~? 5, is:

for I. € read(d), value(l,, c,) = value(l,, c,)
* So T(c, o,) ~?Tl(c, o,), as desired
In all 3 cases, X transition-consistent

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

47

Policies Changing Over Time

* Problem: previous analysis assumes static system
* In real life, ACM changes as system commands issued

* Example: w € C* leads to current state

e cando(w, s, z) holds if s can execute z in current state
* Condition noninterference on cando

* If —cando(w, Lara, “write f’), Lara can’t interfere with any other user by
writing file f

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

48

Generalize Noninterference

G S set of subjects, A — Z set of commands, p predicate over elements of C*
c.=(cy ..., c,) € C*
n''(v)=v

n''((cq, ..., C,)) = (c{, ..., '), where
e ¢/=vifpl(c, .. ci')andc;=(s,z) withse Gandz € A
e ¢/ =c; otherwise

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

49

Intultion

* t''(c,) = c,

* But if p holds, and element of ¢ involves both command in A and
subject in G, replace corresponding element of ¢, with empty
command v

* Just like deleting entries from ¢, as m, ; does earlier

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

50

Noninterference

* G, G' c S sets of subjects, A < Z set of commands, p predicate over C*

e Users in G executing commands in A are noninterfering with users in
G' under condition p iff, for all c, € C* and for all s € G', proj(s, c,, 5;) =
proj(s, n"'(c), o))

 Written A,G:| G'ifp

March 11, 2019 ECS 235B, Foundations of Computer and Information Security 51

Example

* From earlier one, simple security policy based on noninterference:
V(s e S)V(z e 2)[{z}, {s}:| Sif =cando(w, s, z)]

* If subject can’t execute command (the —cando part) in any state,
subject can’t use that command to interfere with another subject

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

52

Another Example

* Consider system in which rights can be passed
* pass(s, z) gives s right to execute z
* wW,=Vy .. V,sequence of v, e C*
* prev(w,) = w,_y; last(w,) = v,

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

53

Policy

* No subject s can use z to interfere if, in previous state, s did not have
right to z, and no subject gave itto s

{z},{s}:|S
if [=cando(prev(w), s, z) A [cando(prev(w), s’, pass(s, z)) =
—last(w) = (s, pass(s, z))]]

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

54

Effect

* Suppose s; € S can execute pass(s,, z)
* For all w € C*, cando(w, s, pass(s,, z)) holds
* Initially, cando(v, s,, z) false

* Let Z/ € Zbe such that (s3, Z’) noninterfering with (s,, z)
* So for each w, with v, = (s;, Z’), cando(w,, s,, z) = cando(w,_,, s,, Z)

March 11, 2019 ECS 235B, Foundations of Computer and Information Security

55

Effect

* Then policy says foralls € S
projs, ((s,, 2), (s1, pass(s,, 2)), (s3, '), (53, 2)), ©;) =
proj(sr ((51; p055(52; Z)); (53; Z’); (521 Z))I Gi)

* SO s,’s first execution of z does not affect any subject’s observation of
system

March 11, 2019 ECS 235B, Foundations of Computer and Information Security 56

