ECS 235B, Lecture 25

March 11, 2019

Model

- System as state machine
	- Subjects $S = \{ s_i \}$
	- States $\Sigma = \{\sigma_i\}$
	- Outputs $O = \{ O_i \}$
	- Commands $Z = \{ z_i \}$
	- State transition commands $C = S \times Z$
- Note: no inputs
	- Encode either as selection of commands or in state transition commands

Functions

- State transition function $T: C \times \Sigma \rightarrow \Sigma$
	- Describes effect of executing command c in state σ
- Output function $P: C \times \Sigma \rightarrow O$
	- Output of machine when executing command c in state σ
- Initial state is σ_0

Example: 2-Bit Machine

- Users Heidi (high), Lucy (low)
- 2 bits of state, *H* (high) and *L* (low)
	- System state is (*H*, *L*) where *H*, *L* are 0, 1
- 2 commands: *xor0*, *xor1* do xor with 0, 1
	- Operations affect *both* state bits regardless of whether Heidi or Lucy issues it

Example: 2-bit Machine

- *S* = { Heidi, Lucy }
- $\Sigma = \{ (0,0), (0,1), (1,0), (1,1) \}$
- $C = \{ xor0, xor1 \}$

Outputs and States

- *T* is inductive in first argument, as $T(c_0, \sigma_0) = \sigma_1$; $T(c_{i+1}, \sigma_{i+1}) = T(c_{i+1}, T(c_i, \sigma_i))$
- Let *C** be set of possible sequences of commands in *C*
- $T^*: C^* \times \Sigma \rightarrow \Sigma$ and $c_s = c_0...c_n \implies T^*(c_s, \sigma_i) = T(c_n,...,T(c_0, \sigma_i)...)$
- *P* similar; define P^* : $C^* \times \Sigma \rightarrow O$ similarly

Projection

- $T^*(c_{s}, \sigma_i)$ sequence of state transitions
- $P^*(c_{s}, \sigma_i)$ corresponding outputs
- *proj*(s, c_s , σ_i) set of outputs in $P^*(c_s, \sigma_i)$ that subject *s* authorized to see
	- In same order as they occur in $P^*(c_{s}, \sigma_i)$
	- Projection of outputs for *s*
- Intuition: list of outputs after removing outputs that *s* cannot see

Purge

- $G \subset S$, *G* a group of subjects
- \bullet *A* \subset *Z*, *A* a set of commands
- $\pi_G(c_s)$ subsequence of c_s with all elements (*s*,*z*), $s \in G$ deleted
- $\pi_A(c_s)$ subsequence of c_s with all elements (*s*,*z*), $z \in A$ deleted
- $\pi_{G,A}(c_s)$ subsequence of c_s with all elements (*s*,*z*), $s \in G$ and $z \in A$ deleted

Example: 2-bit Machine

- Let $\sigma_0 = (0,1)$
- 3 commands applied:
	- Heidi applies *xor0*
	- Lucy applies *xor1*
	- Heidi applies *xor1*
- c_s = ((Heidi, *xor0*), (Lucy, *xor1*), (Heidi, *xor1*))
- Output is 011001
	- Shorthand for sequence $(0,1)$ $(1,0)$ $(0,1)$

Example

- *proj*(Heidi, c_{s} , σ_{0}) = 011001
- *proj*(Lucy, c_s , σ_0) = 101
- $\pi_{\text{Lucv}}(c_s)$ = (Heidi, *xor0*), (Heidi, *xor1*)
- $\pi_{\text{Lucv} \times \text{or1}}(c_s)$ = (Heidi, *xor0*), (Heidi, *xor1*)
- $\pi_{\text{Heldi}}(c_s)$ = (Lucy, *xor1*)
- $\pi_{\text{Lucv},xor0}(c_s)$ = (Heidi, *xor0*), (Lucy, *xor1*), (Heidi, *xor1*)
- $\pi_{\text{Heidi xor0}}(c_s) = \pi_{\text{zero}}(c_s) =$ (Lucy, *xor1*), (Heidi, *xor1*)
- $\pi_{\text{Heidi}, xor1}(c_s)$ = (Heidi, *xor0*), (Lucy, *xor1*)
- $\pi_{\text{vort}}(c_s)$ = (Heidi, *xor0*)

Noninterference

- Intuition: If set of outputs Lucy can see corresponds to set of inputs she can see, there is no interference
- Formally: *G*, $G' \subseteq S$, $G \neq G'$; $A \subseteq Z$; users in *G* executing commands in *A* are *noninterfering* with users in G' iff for all $c_s \in C^*$, and for all $s \in G'$, $proj(s, c_s, \sigma_i) = proj(s, \pi_{G, A}(c_s), \sigma_i)$
	- Written *A*,*G* :| *G*¢

Example: 2-Bit Machine

- Let $c_s = ($ (Heidi, *xor0*), (Lucy, *xor1*), (Heidi, *xor1*)) and $\sigma_0 = (0, 1)$ • As before
- Take $G = \{$ Heidi $\}, G' = \{$ Lucy $\}, A = \emptyset$
- $\pi_{\text{Heldi}}(c_s)$ = (Lucy, *xor1*)
	- So *proj*(Lucy, $\pi_{\text{Heidi}}(c_s)$, σ_0) = 0
- *proj*(Lucy, c_s , σ_0) = 101
- So { Heidi } : <a>[{ Lucy } is false
	- Makes sense; commands issued to change *H* bit also affect *L* bit

Example

- Same as before, but Heidi's commands affect *H* bit only, Lucy's the *L* bit only
- Output is $0_H0_11_H$
- $\pi_{\text{Heidi}}(c_s)$ = (Lucy, *xor1*)
	- So *proj*(Lucy, $\pi_{\text{Heidi}}(c_s)$, σ_0) = 0
- *proj*(Lucy, c_s , σ_0) = 0
- So { Heidi } : | { Lucy } is true
	- Makes sense; commands issued to change *H* bit now do not affect *L* bit

Security Policy

- Partitions systems into authorized, unauthorized states
- Authorized states have no forbidden interferences
- Hence a *security policy* is a set of noninterference assertions
	- See previous definition

Alternative Development

- System *X* is a set of protection domains $D = \{d_1, ..., d_n\}$
- When command *c* executed, it is executed in protection domain *dom*(*c*)
- Give alternate versions of definitions shown previously

Security Policy

- $D = \{d_1, ..., d_n\}$, d_i a protection domain
- $r: D \times D$ a reflexive relation
- Then *r* defines a security policy
- Intuition: defines how information can flow around a system
	- *di rdj* means info can flow from *di* to *dj*
	- d_i rd_i as info can flow within a domain

Projection Function

- π' analogue of π , earlier
- Commands, subjects absorbed into protection domains
- $d \in D$, $c \in C$, $c_{s} \in C^{*}$
- $\pi'_{d}(v) = v$
- $\pi'_{d}(c_{s}c) = \pi'_{d}(c_{s})c$ if $dom(c)rd$
- $\pi'_{d}(c_{s}c) = \pi'_{d}(c_{s})$ otherwise
- Intuition: if executing *c* interferes with *d*, then *c* is visible; otherwise, as if *c* never executed

Noninterference-Secure

- System has set of protection domains *D*
- System is *noninterference-secure with respect to policy r* if

$$
P^*(c, T^*(c_s, \sigma_0)) = P^*(c, T^*(\pi'_d(c_s), \sigma_0))
$$

• Intuition: if executing c_s causes the same transitions for subjects in domain *d* as does its projection with respect to domain *d*, then no information flows in violation of the policy

Output-Consistency

- $c \in C$, $dom(c) \in D$
- ~*dom*(*c*) equivalence relation on states of system *X*
- ~*dom*(*c*) *output-consistent* if

$$
\sigma_a \sim^{dom(c)} \sigma_b \Longrightarrow P(c, \sigma_a) = P(c, \sigma_b)
$$

• Intuition: states are output-consistent if for subjects in *dom*(*c*), projections of outputs for both states after *c* are the same

Lemma

- Let $T^*(c_{\scriptscriptstyle S},\,\sigma_0)$ $\sim^d T^*(\pi'_{\scriptscriptstyle d}(c_{\scriptscriptstyle S}),\,\sigma_0)$ for $c\in C$
- If $\sim d$ output-consistent, then system is noninterference-secure with respect to policy *r*

Proof

- $d = dom(c)$ for $c \in C$
- By definition of output-consistent,

$$
T^*(c_{s}, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)
$$

implies

$$
P^*(c, T^*(c_s, \sigma_0)) = P^*(c, T^*(\pi'_d(c_s), \sigma_0))
$$

• This is definition of noninterference-secure with respect to policy *r*

Unwinding Theorem

- Links security of sequences of state transition commands to security of individual state transition commands
- Allows you to show a system design is multilevel-secure by showing it matches specs from which certain lemmata derived
	- Says *nothing* about security of system, because of implementation, operation, *etc*. issues

Locally Respects

- *r* is a policy
- System *X* locally respects r if $dom(c)$ being noninterfering with $d \in D$ implies s*^a* ~*^d T*(*c*, s*a*)
- Intuition: when *X* locally respects *r*, applying *c* under policy *r* to system *X* has no effect on domain *d*

Transition-Consistent

- *r* policy, $d \in D$
- If σ_a $\sim^d\sigma_b$ implies *T*(*c*, σ_a) \sim^d *T*(*c*, σ_b), system *X* is *transition-consistent* under *r*
- Intuition: command *c* does not affect equivalence of states under policy *r*

Unwinding Theorem

- Links security of sequences of state transition commands to security of individual state transition commands
- Allows you to show a system design is ML secure by showing it matches specs from which certain lemmata derived
	- Says *nothing* about security of system, because of implementation, operation, *etc*. issues

Locally Respects

- *r* is a policy
- System X locally respects r if $dom(c)$ being noninterfering with $d \in D$ implies s*^a* ~*^d T*(*c*, s*a*)
- Intuition: applying *c* under policy *r* to system *X* has no effect on domain *d* when *X* locally respects *r*

Transition-Consistent

- *r* policy, $d \in D$
- If σ_a $\sim d$ σ_b implies *T*(*c*, σ_a) $\sim d$ *T*(*c*, σ_b), system *X* transition-consistent under *r*
- Intuition: command *c* does not affect equivalence of states under policy *r*

Theorem

- *r* policy, *X* system that is output consistent, transition consistent, and locally respects *r*
- Then *X* noninterference-secure with respect to policy *r*
- Significance: basis for analyzing systems claiming to enforce noninterference policy
	- Establish conditions of theorem for particular set of commands, states with respect to some policy, set of protection domains
	- Noninterference security with respect to *r* follows

Proof

• Must show σ_a \sim ^{*d*} σ_b implies

$$
T^*(c_s, \sigma_a) \sim^d T^*(\pi'_d(c_s), \sigma_b)
$$

- Induct on length of c_s
- Basis: $c_s = v$, so $T^*(c_s, \sigma_a) = \sigma_a$; $\pi'_d(v) = v$; claim holds
- Hypothesis: $c_s = c_1 ... c_n$; then claim holds

Induction Step

- Consider $c_s c_{n+1}$. Assume $\sigma_a \sim d \sigma_b$ and look at $T^*(\pi'_d(c_s c_{n+1}), \sigma_b)$
- 2 cases:
	- $dom(c_{n+1})$ *rd* holds
	- $dom(c_{n+1})$ *rd* does not hold

$dom(c_{n+1})$ *rd* Holds

$$
T^*(\pi'_d(c_s c_{n+1}), \sigma_b) = T^*(\pi'_d(c_s)c_{n+1}, \sigma_b) = T(c_{n+1}, T^*(\pi'_d(c_s), \sigma_b))
$$

• By definition of \mathcal{T}^* and π'_{d}

$$
\sigma_a \sim d \sigma_b \Rightarrow T(c_{n+1}, \sigma_a) \sim d T(c_{n+1}, \sigma_b)
$$

• As *X* transition-consistent

$$
T(c_{n+1}, T^*(c_s, \sigma_a)) \sim d T(c_{n+1}, T^*(\pi'_d(c_s), \sigma_b))
$$

• By transition-consistency and IH

$$
T(c_{n+1},T^*(c_s,\sigma_a)) \sim^d T^*(\pi'_d(c_s c_{n+1}),\sigma_b)
$$

• By substitution from earlier equality

$$
T^*(c_s c_{n+1}, \sigma_a) \sim^d T^*(\pi'_d(c_s c_{n+1}), \sigma_b)
$$

• By definition of *T**

proving hypothesis

dom(*cn*+1)*rd* Does Not Hold

- $T^*(\pi'_d(c_s c_{n+1}), \sigma_b) = T^*(\pi'_d(c_s), \sigma_b)$
	- By definition of π'_{d}

$$
T^*(c_s, \sigma_a) = T^*(\pi'_d(c_s c_{n+1}), \sigma_b)
$$

• By above and IH

$$
T(c_{n+1}, T^*(c_s, \sigma_a)) \sim d T^*(c_s, \sigma_a)
$$

• As *X* locally respects r , $\sigma \sim d T(c_{n+1}, \sigma)$ for any σ

$$
T(c_{n+1},T^*(c_s,\sigma_a)) \sim d T^*(\pi'_d(c_s c_{n+1}), \sigma_b)
$$

• Substituting back

proving hypothesis

Finishing Proof

- Take $\sigma_a = \sigma_b = \sigma_0$, so from claim proved by induction, $T^*(c_s, \sigma_0) \sim d \ T^*(\pi'_d(c_s), \sigma_0)$
- By previous lemma, as *X* (and so ~*^d*) output consistent, then *X* is noninterference-secure with respect to policy *r*

Access Control Matrix

- Example of interpretation
- Given: access control information
- Question: are given conditions enough to provide noninterference security?
- Assume: system in a particular state
	- Encapsulates values in ACM

ACM Model

- Objects $L = \{I_1, ..., I_m\}$
	- Locations in memory
- Values $V = \{v_1, ..., v_n\}$
	- Values that L can assume
- Set of states $\Sigma = \{ \sigma_1, ..., \sigma_k \}$
- Set of protection domains $D = \{d_1, ..., d_i\}$

Functions

- *value*: $L \times \Sigma \rightarrow V$
	- returns value *v* stored in location *l* when system in state σ
- *read*: $D \rightarrow 2^V$
	- returns set of objects observable from domain *d*
- *write*: $D\rightarrow 2^V$
	- returns set of objects observable from domain *d*

Interpretation of ACM

- Functions represent ACM
	- Subject *s* in domain *d*, object *o*
	- $r \in A[s, o]$ if $o \in read(d)$
	- $w \in A[s, o]$ if $o \in write(d)$
- Equivalence relation:

 $[\sigma_a^{\text{~volume}}(\sigma_b) \Longleftrightarrow [\forall I_i \in read(d) \mid value(I_i, \sigma_a) = value(I_i, \sigma_b)]$]

• You can read the *exactly* the same locations in both states

Enforcing Policy *r*

- 5 requirements
	- 3 general ones describing dependence of commands on rights over input and output
		- Hold for all ACMs and policies
	- 2 that are specific to some security policies
		- Hold for *most* policies

Enforcing Policy *r*: General Requirements

• Output of command *c* executed in domain *dom*(*c*) depends only on values for which subjects in *dom*(*c*) have read access

• σ_a ² σ_b \Rightarrow $P(c, \sigma_a) = P(c, \sigma_b)$

- If *c* changes I_i , then *c* can only use values of objects in $read(dom(c))$ to determine new value
	- $\int \sigma_a \frac{\Delta \text{dom}(c)}{\Delta h} d\rho_b \wedge$ $(\text{value}(l_i, T(c, \sigma_a)) \ne \text{value}(l_i, \sigma_a) \lor \text{value}(l_i, T(c, \sigma_b)) \ne \text{value}(l_i, \sigma_b)) \implies$ $value(I_i, T(c, \sigma_a)) = value(I_i, T(c, \sigma_b))$
- If *c* changes I_i , then $dom(c)$ provides subject executing *c* with write access to *li*
	- $value(I_i, T(c, \sigma_a)) \neq value(I_i, \sigma_a) \Rightarrow I_i \in write(dom(c))$

Enforcing Policies *r*: Specific to Policy

• If domain *u* can interfere with domain *v*, then every object that can be read in *u* can also be read in *v*; so if object *o* cannot be read in *u*, but can be read in *v* and object *o*¢ in *u* can be read in *v*, then info flows from *o* to *o*¢, then to *v*

$$
[u, v \in D \land urv] \Longrightarrow read(u) \subseteq read(v)
$$

• Subject *s* can write object *o* in *v*, subject *s*¢ can read *o* in *u*, then domain *v* can interfere with domain *u*

$$
[l_i \in read(u) \land l_i \in write(v)] \Longrightarrow vru
$$

Theorem

- Let *X* be a system satisfying these five conditions. Then *X* is noninterference-secure with respect to r
- Proof: must show *X* output-consistent, locally respects *r*, transitionconsistent
	- Then by unwinding theorem, this theorem holds

Output-Consistent

• Take equivalence relation to be ~*^d*, first condition *is* definition of output-consistent

Locally Respects *r*

- Proof by contradiction: assume $dom(c), d) \notin r$ but $\sigma_a \sim d \tau(c, \sigma_a)$ does not hold
- Some object has value changed by *c*:

 \exists $l_i \in read(d)$ [$value(l_i, \sigma_a) \neq value(l_i, T(c, \sigma_a))$]

- Condition 3: $l_i \in write(d)$
- Condition 5: *dom*(*c*)*rd*, contradiction
- So $\sigma_a \sim d$ *T*(*c*, σ_a) holds, meaning *X* locally respects *r*

Transition Consistency

- Assume s*^a* ~*^d* s*^b*
- Must show *value*(I_i , $T(c, \sigma_a)$) = *value*(I_i , $T(c, \sigma_b)$) for $I_i \in read(d)$
- 3 cases dealing with change that *c* makes in l_i in states σ_a , σ_b
	- *value*(l_i , $T(c, \sigma_a)$) ≠ *value*(l_i , σ_a)
	- *value*(l_i , $T(c, \sigma_b)$) ≠ *value*(l_i , σ_b)
	- Neither of the above two hold

Case 1: $value(I_i, T(c, \sigma_a)) \neq value(I_i, \sigma_a)$

- Condition 3: $l_i \in write(dom(c))$
- As $I_i \in read(d)$, condition 5 says $dom(c)rd$
- Condition 4: $read(dom(c)) \subset read(d)$
- As $\sigma_a \sim d \sigma_b$, $\sigma_a \sim d \sigma$ *m(c)* σ_b
- Condition 2: *value*(l_i , $T(c, \sigma_a)$) = *value*(l_i , $T(c, \sigma_b)$)
- So $T(c, \sigma_a) \sim^{dom(c)} T(c, \sigma_b)$, as desired

Case 2: $value(I_i, T(c, \sigma_b)) \neq value(I_i, \sigma_b)$

- Condition 3: $l_i \in write(dom(c))$
- As $I_i \in read(d)$, condition 5 says $dom(c)rd$
- Condition 4: $read(dom(c)) \subset read(d)$
- As $\sigma_a \sim d \sigma_b$, $\sigma_a \sim d \sigma_m(c) \sigma_b$
- Condition 2: *value*(l_i , $T(c, \sigma_a)$) = *value*(l_i , $T(c, \sigma_b)$)
- So $T(c, \sigma_a) \sim^{dom(c)} T(c, \sigma_b)$, as desired

Case 3: Neither of the Previous Two Hold

- This means the two conditions below hold:
	- *value*(l_i , $T(c, \sigma_a)$) = *value*(l_i , σ_a)
	- *value*(l_i , $T(c, \sigma_b)$) = *value*(l_i , σ_b)
- Interpretation of σ_a $\sim d$ σ_b is:

for $I_i \in read(d)$, $value(I_i, \sigma_a) = value(I_i, \sigma_b)$

• So $T(c, \sigma_a) \sim d T(c, \sigma_b)$, as desired

In all 3 cases, *X* transition-consistent

Policies Changing Over Time

- Problem: previous analysis assumes static system
	- In real life, ACM changes as system commands issued
- Example: $w \in C^*$ leads to current state
	- *cando*(*w*, *s*, *z*) holds if *s* can execute *z* in current state
	- Condition noninterference on *cando*
	- If $\neg \text{c}$ *ando*(*w*, Lara, "write f"), Lara can't interfere with any other user by writing file *f*

Generalize Noninterference

- $G \subseteq S$ set of subjects, $A \subseteq Z$ set of commands, p predicate over elements of C^*
- $c_s = (c_1, ..., c_n) \in C^*$
- $\pi''(\nu) = \nu$
- $\pi''((c_1, ..., c_n)) = (c_1', ..., c_n')$, where
	- $c_i' = v$ if $p(c_1', ..., c_{i-1}')$ and $c_i = (s, z)$ with $s \in G$ and $z \in A$
	- $c_i' = c_i$ otherwise

Intuition

- $\pi''(c_s) = c_s$
- But if p holds, and element of c_s involves both command in A and subject in G , replace corresponding element of c_s with empty command v
	- Just like deleting entries from c_s as $\pi_{A,G}$ does earlier

Noninterference

- *G*, $G' \subseteq S$ sets of subjects, $A \subseteq Z$ set of commands, p predicate over C^*
- Users in *G* executing commands in *A* are *noninterfering with users in G*^{\prime} under condition p iff, for all $c_s \in C^*$ and for all $s \in G'$, $proj(s, c_s, \sigma_i) =$ *proj*(s, π''(c_s), σ _i)
	- Written *A*,*G* :| *G*¢ **if** *p*

Example

- From earlier one, simple security policy based on noninterference: $\forall (s \in S) \; \forall (z \in Z) \; [\; \{z\}, \; \{s\} : \; \; \; S \; \text{if } \; \neg \text{c} \text{and} \text{o}(w, s, z) \;]$
- If subject can't execute command (the ¬*cando* part) in any state, subject can't use that command to interfere with another subject

Another Example

- Consider system in which rights can be passed
	- *pass*(*s*, *z*) gives *s* right to execute *z*
	- $w_n = v_1, ..., v_n$ sequence of $v_i \in C^*$
	- $prev(w_n) = w_{n-1}$; $last(w_n) = v_n$

Policy

• No subject *s* can use *z* to interfere if, in previous state, *s* did not have right to *z*, and no subject gave it to *s* { *z* }, { *s* } :| *S*

 $\mathbf{if}~[~\neg \mathit{cando}(\mathit{prev}(w), s, z) \land [~\mathit{cando}(\mathit{prev}(w), s', \mathit{pass}(s, z)) \Longrightarrow$ ¬*last*(*w*) = (*s*¢ , *pass*(*s*, *z*))]]

Effect

- Suppose $s_1 \in S$ can execute $pass(s_2, z)$
- For all $w \in C^*$, *cando*(*w*, s_1 , $pass(s_2, z)$) holds
- Initially, *cando*(v , $s₂$, z) false
- Let $z' \in Z$ be such that (s_3, z') noninterfering with (s_2, z)
	- So for each w_n with $v_n = (s_3, z')$, *cando* $(w_n, s_2, z) = \text{cando}(w_{n-1}, s_2, z)$

Effect

- Then policy says for all $s \in S$ *proj*(*s*, ((*s*2, *z*), (*s*1, *pass*(*s*2, *z*)), (*s*3, *z*¢), (*s*2, *z*)), s*ⁱ*) = $proj(s, ((s₁, pass(s₂, z)), (s₃, z'), (s₂, z)), \sigma_i)$
- So $s₂'s$ first execution of *z* does not affect any subject's observation of system