ECS 235B, Lecture 25

March 11, 2019

Model

- System as state machine
 - Subjects $S = \{ s_i \}$
 - States $\Sigma = \{ \sigma_i \}$
 - Outputs *O* = { *o_i* }
 - Commands $Z = \{ z_i \}$
 - State transition commands $C = S \times Z$
- Note: no inputs
 - Encode either as selection of commands or in state transition commands

Functions

- State transition function $T: C \times \Sigma \rightarrow \Sigma$
 - Describes effect of executing command \emph{c} in state σ
- Output function $P: C \times \Sigma \rightarrow O$
 - Output of machine when executing command *c* in state σ
- Initial state is σ_{0}

Example: 2-Bit Machine

- Users Heidi (high), Lucy (low)
- 2 bits of state, H (high) and L (low)
 - System state is (*H*, *L*) where *H*, *L* are 0, 1
- 2 commands: *xor0, xor1* do xor with 0, 1
 - Operations affect *both* state bits regardless of whether Heidi or Lucy issues it

Example: 2-bit Machine

- *S* = { Heidi, Lucy }
- $\Sigma = \{ (0,0), (0,1), (1,0), (1,1) \}$
- *C* = { *xor0*, *xor1* }

	Input States (H, L)			
	(0,0)	(0,1)	(1,0)	(1,1)
xorO	(0,0)	(0,1)	(1,0)	(1,1)
xor1	(1,1)	(1,0)	(0,1)	(0,0)

Outputs and States

- *T* is inductive in first argument, as $T(c_0, \sigma_0) = \sigma_1$; $T(c_{i+1}, \sigma_{i+1}) = T(c_{i+1}, T(c_i, \sigma_i))$
- Let C* be set of possible sequences of commands in C
- $T^*: C^* \times \Sigma \to \Sigma$ and $c_s = c_0...c_n \Rightarrow T^*(c_s, \sigma_i) = T(c_n, ..., T(c_0, \sigma_i)...)$
- *P* similar; define *P* *: $C^* \times \Sigma \rightarrow O$ similarly

Projection

- $T^*(c_s, \sigma_i)$ sequence of state transitions
- *P**(*c_s*, σ_{*i*}) corresponding outputs
- *proj*(*s*, c_s , σ_i) set of outputs in $P^*(c_s, \sigma_i)$ that subject *s* authorized to see
 - In same order as they occur in $P^*(c_s, \sigma_i)$
 - Projection of outputs for s
- Intuition: list of outputs after removing outputs that *s* cannot see

Purge

- $G \subseteq S$, G a group of subjects
- $A \subseteq Z$, A a set of commands
- $\pi_G(c_s)$ subsequence of c_s with all elements (s,z), $s \in G$ deleted
- $\pi_A(c_s)$ subsequence of c_s with all elements $(s,z), z \in A$ deleted
- $\pi_{G,A}(c_s)$ subsequence of c_s with all elements (s,z), $s \in G$ and $z \in A$ deleted

Example: 2-bit Machine

- Let $\sigma_0 = (0, 1)$
- 3 commands applied:
 - Heidi applies xor0
 - Lucy applies *xor1*
 - Heidi applies xor1
- $c_s = ($ (Heidi, xor0), (Lucy, xor1), (Heidi, xor1))
- Output is 011001
 - Shorthand for sequence (0,1) (1,0) (0,1)

Example

- *proj*(Heidi, c_s , σ_0) = 011001
- *proj*(Lucy, c_s , σ_0) = 101
- $\pi_{Lucy}(c_s) =$ (Heidi, *xor0*), (Heidi, *xor1*)
- $\pi_{Lucy,xor1}(c_s) = (Heidi, xor0), (Heidi, xor1)$
- $\pi_{\text{Heidi}}(c_s) = (\text{Lucy}, xor1)$
- $\pi_{Lucy,xor0}(c_s) =$ (Heidi, xor0), (Lucy, xor1), (Heidi, xor1)
- $\pi_{\text{Heidi},xor0}(c_s) = \pi_{xor0}(c_s) = (\text{Lucy}, xor1), (\text{Heidi}, xor1)$
- $\pi_{\text{Heidi,xor1}}(c_s) = (\text{Heidi, xor0}), (\text{Lucy, xor1})$
- $\pi_{xor1}(c_s) = (\text{Heidi}, xor0)$

Noninterference

- Intuition: If set of outputs Lucy can see corresponds to set of inputs she can see, there is no interference
- Formally: $G, G' \subseteq S, G \neq G'; A \subseteq Z$; users in G executing commands in A are *noninterfering* with users in G' iff for all $c_s \in C^*$, and for all $s \in G'$, $proj(s, c_s, \sigma_i) = proj(s, \pi_{G,A}(c_s), \sigma_i)$
 - Written *A*,*G* :| *G*'

Example: 2-Bit Machine

- Let c_s = ((Heidi, xor0), (Lucy, xor1), (Heidi, xor1)) and σ₀ = (0, 1)
 As before
- Take $G = \{ \text{Heidi} \}, G' = \{ \text{Lucy} \}, A = \emptyset$
- $\pi_{\text{Heidi}}(c_s) = (\text{Lucy, xor1})$
 - So *proj*(Lucy, $\pi_{\text{Heidi}}(c_s)$, σ_0) = 0
- *proj*(Lucy, c_s , σ_0) = 101
- So { Heidi } : | { Lucy } is false
 - Makes sense; commands issued to change *H* bit also affect *L* bit

Example

- Same as before, but Heidi's commands affect H bit only, Lucy's the L bit only
- Output is $0_H 0_L 1_H$
- $\pi_{\text{Heidi}}(c_s) = (\text{Lucy}, xor1)$
 - So *proj*(Lucy, $\pi_{\text{Heidi}}(c_s)$, σ_0) = 0
- *proj*(Lucy, c_s , σ_0) = 0
- So { Heidi } : | { Lucy } is true
 - Makes sense; commands issued to change *H* bit now do not affect *L* bit

Security Policy

- Partitions systems into authorized, unauthorized states
- Authorized states have no forbidden interferences
- Hence a *security policy* is a set of noninterference assertions
 - See previous definition

Alternative Development

- System X is a set of protection domains $D = \{ d_1, ..., d_n \}$
- When command *c* executed, it is executed in protection domain dom(c)
- Give alternate versions of definitions shown previously

Security Policy

- $D = \{ d_1, ..., d_n \}, d_i$ a protection domain
- *r*: *D* × *D* a reflexive relation
- Then r defines a security policy
- Intuition: defines how information can flow around a system
 - *d_ird_j* means info can flow from *d_i* to *d_j*
 - *d_ird_i* as info can flow within a domain

Projection Function

- π' analogue of π , earlier
- Commands, subjects absorbed into protection domains
- $d \in D$, $c \in C$, $c_s \in C^*$
- $\pi'_d(v) = v$
- $\pi'_d(c_s c) = \pi'_d(c_s)c$ if dom(c)rd
- $\pi'_d(c_s c) = \pi'_d(c_s)$ otherwise
- Intuition: if executing *c* interferes with *d*, then *c* is visible; otherwise, as if *c* never executed

Noninterference-Secure

- System has set of protection domains *D*
- System is *noninterference-secure with respect to policy r* if

 $P^*(c, T^*(c_s, \sigma_0)) = P^*(c, T^*(\pi'_d(c_s), \sigma_0))$

 Intuition: if executing c_s causes the same transitions for subjects in domain d as does its projection with respect to domain d, then no information flows in violation of the policy

Output-Consistency

- $c \in C$, $dom(c) \in D$
- ~^{dom(c)} equivalence relation on states of system X
- ~^{dom(c)} output-consistent if

$$\sigma_a \sim^{dom(c)} \sigma_b \Longrightarrow P(c, \sigma_a) = P(c, \sigma_b)$$

• Intuition: states are output-consistent if for subjects in *dom(c)*, projections of outputs for both states after *c* are the same

Lemma

- Let $T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)$ for $c \in C$
- If ~^d output-consistent, then system is noninterference-secure with respect to policy r

Proof

- d = dom(c) for $c \in C$
- By definition of output-consistent,

$$T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)$$

implies

$$P^*(c, T^*(c_s, \sigma_0)) = P^*(c, T^*(\pi'_d(c_s), \sigma_0))$$

• This is definition of noninterference-secure with respect to policy *r*

Unwinding Theorem

- Links security of sequences of state transition commands to security of individual state transition commands
- Allows you to show a system design is multilevel-secure by showing it matches specs from which certain lemmata derived
 - Says *nothing* about security of system, because of implementation, operation, *etc*. issues

Locally Respects

- *r* is a policy
- System X locally respects r if dom(c) being noninterfering with $d \in D$ implies $\sigma_a \sim^d T(c, \sigma_a)$
- Intuition: when X locally respects r, applying c under policy r to system X has no effect on domain d

Transition-Consistent

- r policy, $d \in D$
- If $\sigma_a \sim^d \sigma_b$ implies $T(c, \sigma_a) \sim^d T(c, \sigma_b)$, system X is transition-consistent under r
- Intuition: command c does not affect equivalence of states under policy r

Unwinding Theorem

- Links security of sequences of state transition commands to security of individual state transition commands
- Allows you to show a system design is ML secure by showing it matches specs from which certain lemmata derived
 - Says *nothing* about security of system, because of implementation, operation, *etc*. issues

Locally Respects

- *r* is a policy
- System X locally respects r if dom(c) being noninterfering with $d \in D$ implies $\sigma_a \sim^d T(c, \sigma_a)$
- Intuition: applying c under policy r to system X has no effect on domain d when X locally respects r

Transition-Consistent

- r policy, $d \in D$
- If $\sigma_a \sim^d \sigma_b$ implies $T(c, \sigma_a) \sim^d T(c, \sigma_b)$, system X transition-consistent under r
- Intuition: command c does not affect equivalence of states under policy r

Theorem

- r policy, X system that is output consistent, transition consistent, and locally respects r
- Then X noninterference-secure with respect to policy r
- Significance: basis for analyzing systems claiming to enforce noninterference policy
 - Establish conditions of theorem for particular set of commands, states with respect to some policy, set of protection domains
 - Noninterference security with respect to *r* follows

Proof

• Must show $\sigma_a \sim^d \sigma_b$ implies

$$T^*(c_s, \sigma_a) \sim^d T^*(\pi'_d(c_s), \sigma_b)$$

- Induct on length of c_s
- Basis: $c_s = v$, so $T^*(c_s, \sigma_a) = \sigma_a$; $\pi'_d(v) = v$; claim holds
- Hypothesis: $c_s = c_1 \dots c_n$; then claim holds

Induction Step

- Consider $c_s c_{n+1}$. Assume $\sigma_a \sim^d \sigma_b$ and look at $T^*(\pi'_d(c_s c_{n+1}), \sigma_b)$
- 2 cases:
 - $dom(c_{n+1})rd$ holds
 - $dom(c_{n+1})rd$ does not hold

$dom(c_{n+1})rd$ Holds

$$T^*(\pi'_d(c_s c_{n+1}), \sigma_b) = T^*(\pi'_d(c_s) c_{n+1}, \sigma_b) = T(c_{n+1}, T^*(\pi'_d(c_s), \sigma_b))$$

• By definition of T^* and π'_d

$$\sigma_a \sim^d \sigma_b \Rightarrow T(c_{n+1}, \sigma_a) \sim^d T(c_{n+1}, \sigma_b)$$

• As X transition-consistent

$$T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_s), \sigma_b))$$

- By transition-consistency and IH
- $T(c_{n+1},T^*(c_s,\sigma_a)) \sim^d T^*(\pi'_d(c_sc_{n+1}),\sigma_b)$
 - By substitution from earlier equality

$$T^*(c_s c_{n+1}, \sigma_a) \sim^d T^*(\pi'_d(c_s c_{n+1}), \sigma_b)$$

• By definition of *T**

proving hypothesis

$dom(c_{n+1})rd$ Does Not Hold

$$T^{*}(\pi'_{d}(c_{s}c_{n+1}), \sigma_{b}) = T^{*}(\pi'_{d}(c_{s}), \sigma_{b})$$

• By definition of π'_d

$$T^*(c_s, \sigma_a) = T^*(\pi'_d(c_s c_{n+1}), \sigma_b)$$

• By above and IH

$$T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T^*(c_s, \sigma_a)$$

• As X locally respects $r, \sigma \sim^d T(c_{n+1}, \sigma)$ for any σ

$$T(c_{n+1},T^*(c_s,\sigma_a)) \sim^d T^*(\pi'_d(c_s\,c_{n+1}\,),\,\sigma_b)$$

• Substituting back

proving hypothesis

Finishing Proof

- Take $\sigma_a = \sigma_b = \sigma_0$, so from claim proved by induction, $T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)$
- By previous lemma, as X (and so ~^d) output consistent, then X is noninterference-secure with respect to policy r

Access Control Matrix

- Example of interpretation
- Given: access control information
- Question: are given conditions enough to provide noninterference security?
- Assume: system in a particular state
 - Encapsulates values in ACM

ACM Model

- Objects $L = \{ I_1, ..., I_m \}$
 - Locations in memory
- Values *V* = { *v*₁, ..., *v_n* }
 - Values that L can assume
- Set of states $\Sigma = \{ \sigma_1, ..., \sigma_k \}$
- Set of protection domains $D = \{ d_1, ..., d_j \}$

Functions

- value: $L \times \Sigma \rightarrow V$
 - returns value v stored in location / when system in state σ
- read: $D \rightarrow 2^V$
 - returns set of objects observable from domain d
- write: $D \rightarrow 2^{V}$
 - returns set of objects observable from domain d

Interpretation of ACM

- Functions represent ACM
 - Subject *s* in domain *d*, object *o*
 - $r \in A[s, o]$ if $o \in read(d)$
 - $w \in A[s, o]$ if $o \in write(d)$
- Equivalence relation:

 $[\sigma_a \sim dom(c) \sigma_b] \Leftrightarrow [\forall I_i \in read(d) [value(I_i, \sigma_a) = value(I_i, \sigma_b)]]$

• You can read the *exactly* the same locations in both states

Enforcing Policy r

- 5 requirements
 - 3 general ones describing dependence of commands on rights over input and output
 - Hold for all ACMs and policies
 - 2 that are specific to some security policies
 - Hold for *most* policies

Enforcing Policy r: General Requirements

 Output of command c executed in domain dom(c) depends only on values for which subjects in dom(c) have read access

• $\sigma_a \sim^{dom(c)} \sigma_b \Longrightarrow P(c, \sigma_a) = P(c, \sigma_b)$

- If c changes I_i, then c can only use values of objects in read(dom(c)) to determine new value
 - $[\sigma_a \sim^{dom(c)} \sigma_b \land (value(I_i, T(c, \sigma_a)) \neq value(I_i, \sigma_a) \lor value(I_i, T(c, \sigma_b)) \neq value(I_i, \sigma_b))] \Rightarrow value(I_i, T(c, \sigma_a)) = value(I_i, T(c, \sigma_b))$
- If c changes I_i, then dom(c) provides subject executing c with write access to I_i
 - $value(I_i, T(c, \sigma_a)) \neq value(I_i, \sigma_a) \Longrightarrow I_i \in write(dom(c))$

Enforcing Policies r: Specific to Policy

 If domain u can interfere with domain v, then every object that can be read in u can also be read in v; so if object o cannot be read in u, but can be read in v and object o' in u can be read in v, then info flows from o to o', then to v

$$[u, v \in D \land urv] \Rightarrow read(u) \subseteq read(v)$$

• Subject *s* can write object *o* in *v*, subject *s*' can read *o* in *u*, then domain *v* can interfere with domain *u*

$$[I_i \in read(u) \land I_i \in write(v)] \Rightarrow vru$$

Theorem

- Let X be a system satisfying these five conditions. Then X is noninterference-secure with respect to r
- Proof: must show X output-consistent, locally respects r, transitionconsistent
 - Then by unwinding theorem, this theorem holds

Output-Consistent

 Take equivalence relation to be ~^d, first condition is definition of output-consistent

Locally Respects r

- Proof by contradiction: assume $(dom(c),d) \notin r$ but $\sigma_a \sim^d T(c, \sigma_a)$ does not hold
- Some object has value changed by c:

 $\exists I_i \in read(d) [value(I_i, \sigma_a) \neq value(I_i, T(c, \sigma_a))]$

- Condition 3: $I_i \in write(d)$
- Condition 5: *dom(c)rd*, contradiction
- So $\sigma_a \sim^d T(c, \sigma_a)$ holds, meaning X locally respects r

Transition Consistency

- Assume $\sigma_a \sim^d \sigma_b$
- Must show $value(I_i, T(c, \sigma_a)) = value(I_i, T(c, \sigma_b))$ for $I_i \in read(d)$
- 3 cases dealing with change that c makes in I_i in states σ_a , σ_b
 - $value(I_i, T(c, \sigma_a)) \neq value(I_i, \sigma_a)$
 - $value(I_i, T(c, \sigma_b)) \neq value(I_i, \sigma_b)$
 - Neither of the above two hold

Case 1: $value(I_i, T(c, \sigma_a)) \neq value(I_i, \sigma_a)$

- Condition 3: $I_i \in write(dom(c))$
- As $I_i \in read(d)$, condition 5 says dom(c)rd
- Condition 4: $read(dom(c)) \subseteq read(d)$
- As $\sigma_a \sim^d \sigma_b$, $\sigma_a \sim^{dom(c)} \sigma_b$
- Condition 2: $value(I_i, T(c, \sigma_a)) = value(I_i, T(c, \sigma_b))$
- So $T(c, \sigma_a) \sim^{dom(c)} T(c, \sigma_b)$, as desired

Case 2: $value(I_i, T(c, \sigma_b)) \neq value(I_i, \sigma_b)$

- Condition 3: $I_i \in write(dom(c))$
- As $I_i \in read(d)$, condition 5 says dom(c)rd
- Condition 4: $read(dom(c)) \subseteq read(d)$
- As $\sigma_a \sim^d \sigma_b$, $\sigma_a \sim^{dom(c)} \sigma_b$
- Condition 2: $value(I_i, T(c, \sigma_a)) = value(I_i, T(c, \sigma_b))$
- So $T(c, \sigma_a) \sim^{dom(c)} T(c, \sigma_b)$, as desired

Case 3: Neither of the Previous Two Hold

- This means the two conditions below hold:
 - $value(I_i, T(c, \sigma_a)) = value(I_i, \sigma_a)$
 - $value(I_i, T(c, \sigma_b)) = value(I_i, \sigma_b)$
- Interpretation of $\sigma_a \sim^d \sigma_b$ is:

for $I_i \in read(d)$, $value(I_i, \sigma_a) = value(I_i, \sigma_b)$

• So $T(c, \sigma_a) \sim^d T(c, \sigma_b)$, as desired

In all 3 cases, X transition-consistent

Policies Changing Over Time

- Problem: previous analysis assumes static system
 - In real life, ACM changes as system commands issued
- Example: $w \in C^*$ leads to current state
 - cando(w, s, z) holds if s can execute z in current state
 - Condition noninterference on *cando*
 - If ¬cando(w, Lara, "write f"), Lara can't interfere with any other user by writing file f

Generalize Noninterference

- $G \subseteq S$ set of subjects, $A \subseteq Z$ set of commands, p predicate over elements of C^*
- $c_s = (c_1, ..., c_n) \in C^*$
- $\pi''(v) = v$
- $\pi''((c_1, ..., c_n)) = (c_1', ..., c_n')$, where
 - $c_i' = v$ if $p(c_1', ..., c_{i-1}')$ and $c_i = (s, z)$ with $s \in G$ and $z \in A$
 - $c_i' = c_i$ otherwise

Intuition

- $\pi''(c_s) = c_s$
- But if p holds, and element of c_s involves both command in A and subject in G, replace corresponding element of c_s with empty command v
 - Just like deleting entries from c_s as $\pi_{A,G}$ does earlier

Noninterference

- G, G' \subseteq S sets of subjects, $A \subseteq Z$ set of commands, p predicate over C*
- Users in G executing commands in A are noninterfering with users in G' under condition p iff, for all $c_s \in C^*$ and for all $s \in G'$, $proj(s, c_s, \sigma_i) = proj(s, \pi''(c_s), \sigma_i)$
 - Written *A*,*G* :| *G*′ **if** *p*

Example

- From earlier one, simple security policy based on noninterference: $\forall (s \in S) \forall (z \in Z) [\{z\}, \{s\} : | S \text{ if } \neg cando(w, s, z)]$
- If subject can't execute command (the ¬cando part) in any state, subject can't use that command to interfere with another subject

Another Example

- Consider system in which rights can be passed
 - *pass(s, z)* gives *s* right to execute *z*
 - $w_n = v_1, ..., v_n$ sequence of $v_i \in C^*$
 - $prev(w_n) = w_{n-1}; last(w_n) = v_n$

Policy

No subject s can use z to interfere if, in previous state, s did not have right to z, and no subject gave it to s
 { z }, { s } :| S

if $[\neg cando(prev(w), s, z) \land [cando(prev(w), s', pass(s, z)) \Rightarrow \neg last(w) = (s', pass(s, z))]$

Effect

- Suppose $s_1 \in S$ can execute $pass(s_2, z)$
- For all $w \in C^*$, cando(w, s_1 , pass(s_2 , z)) holds
- Initially, $cando(v, s_2, z)$ false
- Let $z' \in Z$ be such that (s_3, z') noninterfering with (s_2, z)
 - So for each w_n with $v_n = (s_3, z')$, $cando(w_n, s_2, z) = cando(w_{n-1}, s_2, z)$

Effect

- Then policy says for all s ∈ S proj(s, ((s₂, z), (s₁, pass(s₂, z)), (s₃, z'), (s₂, z)), σ_i) = proj(s, ((s₁, pass(s₂, z)), (s₃, z'), (s₂, z)), σ_i)
- So s₂'s first execution of z does not affect any subject's observation of system