ECS 235B Module 4
Access Control Matrix

Description

objects (entities)

. Oy ... 0y S1 ... S, « Subjects S={s,,..., 5, }
N * Objects 0={o0,,..., 0,, }
g RightsR={ry,..., 1.}
E * Entries A[s;, o] C R
: * Als;, 0] ={r,, ..., r, } means subject s;has

rights r,, ..., r, over object o

Example 1

* Processes p, g

* Filesf, g
* Rightsr, w, x, a0, 0

f g p q
rwo r rwxo w
a ro r rwxXxo

Example 2

* Host names telegraph, nob, toadflax
* Rights own, ftp, nfs, mail

telegraph nob toadflax
telegraph own ftp ftp
nob ftp, mail, nfs, own| ftp, nfs, mail

toadflax ftp, mail ftp, mail, nfs, own

Example 3

* Procedures inc_ctr, dec _ctr, manage
* Variable counter
* Rights +, —, call
counter inc ctr dec ctr manage

inc_ctr +

dec ctr -

manager call call call

UNIX/Linux Access Controls

* Files
* Ais ~bishop/a.out (0755, or rwxr-xr-x)
* Bis /etc/passwd (0644, or rw-r--r--)
* His /home/bishop (0711, or rwx--x--x)
e Sis /bin/su (4711, or s--rwx--x--x)

A B S H
bishop rwxo r X rwxo
zheng rx r X X
root rwx rwo rwxo rwx

UNIX/Linux Access Controls

* Access control matrices are dynamic:

 After bishop executes chmod 700 /home/bishop:
e Same as chmod u=rwx,g-rwx,o-rwx /home/bishop

A B S H
bishop rwxo r X rwxo
muwei r X

root rwx rwo rwxo rwx

Boolean Expression Evaluation

* ACM controls access to database fields
* Subjects have attributes
* Verbs define type of access
* Rules associated with objects, verb pair

* Subject attempts to access object
* Rule for object, verb evaluated, grants or denies access

Example

e Subject annie
e Attributes role (artist), group (creative)

* Verb paint
» Default O (deny unless explicitly granted)

* Object picture
* Rule:
paint: ‘artist’ in subject.role and
‘creative’ in subject.groups and
time.hour > 0 and time.hour <4

ACM at 3AM and 10AM

At 3AM, time condition met At 10AM, time condition not met
ACM is: ACM is:

picture picture ...

paint

... annie ...

... annie ...

History

* Problem: what a process has accessed may affect what it can access
now

* Example: procedure in a web applet can access other procedures
depending on what procedures it has already accessed
* S set of static rights associated with procedure
» Cset of current rights associated with each executing process
 When process calls procedure, rightsare S n C

Example Program

// This routine has no filesystem access rights
// beyond those in a limited, temporary area
procedure helper proc()

return sys_kernel_file

// But this has the right to delete files

program main()
sys_load_file(helper proc)
tmp_file = helper_proc()
sys_delete_file(tmp _file)

sys _kernel file
contains system
kernel

tmp_file is in
limited area that
helper _proc() can
access

Before helper proc Called

e Static rights of program
sys _kernel file tmp_file

main delete delete

helper _proc delete

e When program starts, current rights:
sys_kernel file tmp_file

main delete delete

helper _proc delete

process delete delete

After helper proc Called

e Process rights are intersection of static, previous “current” rights:

sys_kernel file tmp_file
main delete delete
helper _proc delete
process delete

State Transitions

* Change the protection state of system

* | represents transition
* X . X.,;: command Tt moves system from state X; to X,
* X. " Y: a sequence of commands moves system from state X;to Y

 Commands often called transformation procedures

Primitive Operations

* create subject s; create object o
* Creates new row, column in ACM; creates new column in ACM

* destroy subject s; destroy object o
* Deletes row, column from ACM; deletes column from ACM

e enter rinto A[s, o]
* Adds r rights for subject s over object o

e delete r from A[s, 0]
 Removes r rights from subject s over object o

Create Subject

* Precondition:s ¢ S
* Primitive command: create subject s

e Postconditions:
e S'=S s}, O0O=0uU{s}
* (Vy e O) [A'ls,y] =), (Vx € §') [A'lx, 5] =]
* (Vx € S)(Vy € O) [A'[x, y] = Alx, yl]

Create Object

* Precondition: o ¢ O
* Primitive command: create object o

* Postconditions:
e $'=5,0'=0uU{o0}
e (Vxe§')[A'[x, 0] =]
* (Vx € S)(Vy € O) [A']x, y] = Alx, yl]

Add Right

* Precondition:s € S,0€ O
* Primitive command: enter r into A[s, 0]

* Postconditions:
+§'=50+=0
e A'[s,0] =A[s,o]l]u{r}
* (Vx e S')(Vye O'—{o}) [A'lx, yl =Alx, yll
* (Vxe S —{s})(VyeO)[Alx, y] =Alx, yl]

Delete Right

* Precondition:s € S,0€ O
* Primitive command: delete r from A[s, 0]

* Postconditions:
+§'=50+=0
e A'[s,0] =A[s, 0] —{r}
* (Vx e S')(Vye O'—{o}) [A'lx, yl =Alx, yll
* (Vxe S —{s})(VyeO)[Alx, y] =Alx, yl]

Destroy Subject

* Precondition:s € S

* Primitive command: destroy subject s

e Postconditions:
e '=5—-{s},0'=0—-{s}
* (Vy e O) [A'[s,y] =), (Vx € §') [A'[x, s] = O]
* (Vx e §')(Vy e O) [A'lx, y] = Alx, yl]

Destroy Object

* Precondition: 0 € O
* Primitive command: destroy object o
e Postconditions:

+§'=5,0=0-{0}

e (Vxe§')[A'[x, 0] =]

* (Vx e §')(Vy e O) [A'lx, y] = Alx, yl]

Creating File

* Process p creates file f with r and w permission

command createefile(p, 1)
create object 7;
enter own into A[p, f]:
enter r into A[p, f];
enter w into A[p, f];
end

Mono-Operational Commands

* Make process p the owner of file g

command makeeowner (p, Q)
enter own into A[p, g];
end

* Mono-operational command
 Single primitive operation in this command

Conditional Commands

* Let p give g r rights over f, if p owns f
command grantereadefile*l(p, £, Q)
if own in A[p, 1]
then
enter r into A[qg, f];
end

e Mono-conditional command
* Single condition in this command

Biconditional Commands (and)

* Let p give g r and w rights over f, if p owns f and p has c rights over g

command grantereadefile*’(p, £, Q)
if own in A[p, f] and c in A[p, d]
then
enter r into Al[g, f];
enter w into A[g, f];
end

There Is No “or”

* Let p give g r and w rights over f, if p owns f or p has c rights over g

command grantereadefile*3(p, f, Q)
if own in A[p, f£]
then
enter r into A[qg, f];
enter w into A[qg, f];
end
command grantereadefile*4(p, f, Q)
if ¢ in Alp, qg]
then
enter r into A[qg, f];
enter w into A[qg, f];
end
grantereadefile*3(p, f, Qq);
grantereadefile4(p, f, Q)

General Form

command name of command(parameters)
if conditions (if many, separate with and)
then

list of commands or primitive
operations to be executed;

end

* Only one 1£, and it must come before any primitive operations or
subcommands

* When there is an 1 £, no commands may follow it (but there can be
commands in the body of the if)

* Thereis no else

Copy Flag and Right

* Allows possessor to give rights to another

* Often attached to a right (called a flag), so only applies to that right
* ris read right that cannot be copied
* rcis read right that can be copied

* Is copy flag copied when giving r rights?
* Depends on model, instantiation of model

Own Right

* Usually allows possessor to change entries in ACM column
* So owner of object can add, delete rights for others

* May depend on what system allows

* Can’t give rights to specific (set of) users
* Can’t pass copy flag to specific (set of) users

Attenuation of Privilege

* Principle says you can’t increase your rights, or give rights you do not
pOSssess
* Restricts addition of rights within a system

* Usually ignored for owner
 Why? Owner gives herself rights, gives them to others, deletes her rights.

