ECS 235B Module 10
Schematic Protection Model

Schematic Protection Model

* Type-based model

* Protection type: entity label determining how control rights affect the entity
* Set at creation and cannot be changed
* Ticket: description of a single right over an entity
* Entity has sets of tickets (called a domain)
» Ticket is X/r, where X is entity and r right
* Functions determine rights transfer
* Link: are source, target “connected”?
 Filter: is transfer of ticket authorized?

Link Predicate

* Idea: link,(X, Y) if X can assert some control right over Y

e Conjunction of disjunction of:
* X/z € dom(X)
e X/z € dom(Y)
* Y/z € dom(X)
* Y/z € dom(Y)
* true

Examples

* Take-Grant:

link(X,Y) =Y/g € dom(X) v X/t € dom(Y)
* Broadcast:

link(X, Y) = X/b € dom(X)

e Pull:
link(X,Y) =Y/p € dom(Y)

Filter Function

* Range is set of copyable tickets
* Entity type, right
* Domain is subject pairs
* Copy a ticket X/r:c from dom(Y) to dom(2)
e X/rc € dom(Y)
* link(Y, Z)
* t(Y)/ric € fi(t(Y), 1(Z))

* One filter function per link function

Example

* flr(Y), ©(Z)) =T xR

* Any ticket can be transferred (if other conditions met)

e f(t(Y), T(2)) = T x RI

* Only tickets with inert rights can be transferred (if other conditions met)

* flx(Y), 1(2)) = ©

 No tickets can be transferred

Example

e Take-Grant Protection Model
e TS ={subjects }, TO ={ objects }
e RC={tc,gc}, RI={rc, wc}
* link(p, q) = p/t € dom(q) v a/g € dom(p)
* f(subject, subject) = { subject, object } x { tc, gc, rc, wc }

Create Operation

* Must handle type, tickets of new entity

 Relation cc(a, b) [cc for can-create]
* Subject of type a can create entity of type b

 Rule of acyclic creates:

(@O—=0> (O—(

d s

Types

e cr(a, b): tickets created when subject of type a creates entity of type b
[cr for create-rule]

* B object: cr(a, b) c { b/r:c € RI'}
* Agets B/r:ciff b/r:c € cr(a, b)
e B subject: cr(a, b) has two subsets
* crp(a, b) added to A, crda, b) added to B
* AgetsB/r:cif b/r.c € cro(a, b)
* BgetsA/r:.cifa/r.c € crda, b)

Non-Distinct Types

cr(a, a): who gets what?
e self/r:c are tickets for creator
e a/r:c tickets for created

cr(a, a) ={a/r:, self/r.c | r:c € R}

Attenuating Create Rule

cr(a, b) attenuating if:
1. crda, b) ccrpla, b) and

2. a/r:c € crp(a, b) = self/r.c € crp(a, b)

Example: Owner-Based Policy

e Users can create files, creator can give itself any
inert rights over file

e cc={ (user, file)}
 cr(user, file) ={ file/r:c | r € RI }

e Attenuating, as graph is acyclic, loop free

(owner)—{_ fite)

Example: Take-Grant

* Say subjects create subjects (type s), objects (type 0), but
get only inert rights over latter

*cc={(s,5),(s,0)}
e cr(a, b)=0
« crpls, s) ={s/tc, s/gc, s/rc, s/wc'}
* crp(s, 0) ={s/rc, s/wc}
* Not attenuating, as no self tickets provided; subject creates
subject

.
()G

Safety Analysis

* Goal: identify types of policies with tractable safety analyses

* Approach: derive a state in which additional entries, rights do not
affect the analysis; then analyze this state

e Called a maximal state

Definitions

e System begins at initial state
* Authorized operation causes legal transition

e Sequence of legal transitions moves system into final state
* This sequence is a history
* Final state is derivable from history, initial state

More Definitions

* States represented by "
* Set of subjects SUB", entities ENT"
* Link relation in context of state h is link"

 Dom relation in context of state h is dom”

path(X,Y)

* X, Y connected by one link or a sequence of links

* Formally, either of these hold:
* for some i, link"(X, Y); or

* there is a sequence of subjects X,, ..., X, such that link(X, X,), link/(X,,Y), and
fork=1, ..., n, link"(X,_;, X,)

* If multiple such paths, refer to path/(X, Y)

Capacity cap(path"(X,Y))

* Set of tickets that can flow over path”(X,Y)
* If link/(X,Y): set of tickets that can be copied over the link (i.e., f(t(X), t(Y)))

* Otherwise, set of tickets that can be copied over all links in the sequence of
links making up the path"(X,Y)

* Note: all tickets (except those for the final link) must be copyable

Flow Function

* |dea: capture flow of tickets around a given state of the system

* Let there be m path”s between subjects X and Y in state h. Then flow
function

flowh: SUB" x SUBM — 2R
IS:

flow"(X,Y) =\Up, m cap(path{(X,Y))

Properties of Maximal State

* Maximizes flow between all pairs of subjects
 State is called *
* Ticket in flow*(X,Y) means there exists a sequence of operations that can
copy the ticket from Xto Y
* Questions
* |s maximal state unique?
* Does every system have one?

Formal Definition

* Definition: g <, h holds iff for all X, Y € SUBO, flow9(X,Y) < flow"(X,Y).
* Note: if g <, hand h £, g, then g, h equivalent
* Defines set of equivalence classes on set of derivable states

* Definition: for a given system, state m is maximal iff h <, m for every
derivable state h

* Intuition: flow function contains all tickets that can be transferred
from one subject to another
* All maximal states in same equivalence class

Maximal States

* Lemma. Given arbitrary finite set of states H, there exists a derivable
state m such that forallh e H, h <, m

e Qutline of proof: induction
e Basis: H = J; trivially true

e Step: |H'| =n+1, where H' =G U {h}. By IH, thereisa g € Gsuchthatx <, g
forall x € G.

Outline of Proof

* M interleaving histories of g, h which:
* Preserves relative order of transitionsin g, h
* Omits second create operation if duplicated

* M ends up at state m
* If path9(X,Y) for X, Y € SUBY, path™(X,Y)
*Sog<sym

* If path"(X,Y) for X, Y € SUB", path™(X,Y)

*Sohgym

* Hence m maximal state in H’

Answer to Second Question

* Theorem: every system has a maximal state *

e Outline of proof: K is set of derivable states containing exactly one
state from each equivalence class of derivable states

* Consider X, Y in SUBC. Flow function’s range is 2™R, so can take at most 2/l
values. As there are |SUB?|? pairs of subjects in SUB?, at most 2I™RI | SUB?|2
distinct equivalence classes; so K'is finite

e Result follows from lemma

Safety Question

* In this model:

s it possible to have a derivable state with X/r:c in dom(A), or does there exist
a subject B with ticket X/rc in the initial state or which can demand X/rc and
t(X)/r:c in flow*(B,A)?
 To answer: construct maximal state and test
* Consider acyclic attenuating schemes; how do we construct maximal state?

Intultion

e Consider state h.

e State u corresponds to h but with minimal number of new entities
created such that maximal state m can be derived with no create
operations

* Soif in history from h to m, subject X creates two entities of type a, in u only
one would be created; surrogate for both

* m can be derived from u in polynomial time, so if u can be created by
adding a finite number of subjects to h, safety question decidable.

Fully Unfolded State

e State u derived from state O as follows:
» delete all loops in cc; new relation cc’

* mark all subjects as folded
» while any X € SUBC is folded

e mark it unfolded

 if X can create entity Y of type y, it does so (call this the y-surrogate of X); if entity Y e
SUBY, mark it folded

* if any subject in state h can create an entity of its own type, do so

e Now in state u

Termination

* First loop terminates as SUBV finite

e Second loop terminates:

* Each subject in SUB° can create at most | TS | children, and | TS | is finite
* Each folded subject in | SUB' | can create at most

| TS | —i children
* Wheni=| TS |, subject cannot create more children; thus, folded is finite
* Each loop removes one element

* Third loop terminates as SUB" is finite

Surrogate

* Intuition: surrogate collapses multiple subjects of same type into
single subject that acts for all of them

* Definition: given initial state O, for every derivable state h define
surrogate function ¢:ENT"—ENT" by:
o if Xin ENTY, then o(X) = X
e if Y creates X and t(Y) = t(X), then o(X) = o(Y)
* if Y creates X and t(Y) # t(X), then o(X) = t(Y)-surrogate of c(Y)

Implications

* 1(c(X)) = t(X)
e If T(X) = t(Y), then o(X) = o(Y)
e If T(X) # t(Y), then

e o(X) creates o(Y) in the construction of u
* o(X) creates entities X' of type t(X') = t(c(X))

* From these, for a system with an acyclic attenuating scheme, if X
creates Y, then tickets that would be introduced by pretending that
o(X) creates o(Y) are in dom¥(c(X)) and dom¥(c(Y))

Deriving Maximal State

e |dea

* Reorder operations so that all creates come first and replace history with
equivalent one using surrogates

* Show maximal state of new history is also that of original history
* Show maximal state can be derived from initial state

Reordering

* H legal history deriving state h from state O
* Order operations: first create, then demand, then copy operations

* Build new history G from H as follows:
* Delete all creates
e “X demands Y/r:c” becomes “c(X) demands o(Y)/r:c”
* “Y copies X /r:c from Y” becomes “c(Y) copies o(X)/r:c from o(Y)”

Tickets in Parallel

* Lemma
 All transitions in G legal; if X/r:c € dom"(Y), then o(X)/r:c € dom"(c(Y))

* Outline of proof: induct on number of copy operations in H

Basis

* H has create, demand only; so G has demand only. o preserves type,
so by construction every demand operation in G legal.

* 3 ways for X/r:c to be in dom"(Y):
e X/r:c € dom®(Y) means X, Y € ENTY, so trivially o(X)/r:c € dom9(c(Y)) holds

* A create added X/r:c € dom”"(Y): previous lemma says o(X)/r:c € dom9(c(Y))
holds

* A demand added X/r:c € dom"(Y): corresponding demand operation in G
gives o(X)/r:c € dom9(c(Y))

Hypothesis

* Claim holds for all histories with k copy operations

* History H has k+1 copy operations
* H' initial sequence of H composed of k copy operations
* h' state derived from H'

Step

* G’ sequence of modified operations corresponding to H’; g’ derived
state

* G’ legal history by hypothesis

* Final operation is “Z copied X/r:c from Y”
 So h, h' differ by at most X/r:c € dom"(Z)
* Construction of G means final operation is o(X)/r:c € dom9(c(Y))

* Proves second part of claim

Step

 H'legal, so for H to be legal, we have:
1. X/rc e dom"(Y)
2. link"(Y, 2)
3. 1(X/r:c) € f{z(Y), ©(2))

* BylIH, 1, 2, as X/r:c € dom"'(Y),
o(X)/r:c € dom9'(c(Y)) and link?'(c(Y), o(Z))
* As o preserves type, IH and 3 imply
t(o(X)/r:c) € fi{z((a(Y)), t(c(2)))
* |H says G’ legal, so G is legal

Corollary

* If link(X, Y), then link9(c(X), o(Y))

Main Theorem

e System has acyclic attenuating scheme

* For every history H deriving state h from initial state, there is a history
G without create operations that derives g from the fully unfolded
state u such that

(VXY € SUB")[flow"(X, Y) < flowd(c(X), o(Y))]
* Meaning: any history derived from an initial state can be simulated by

corresponding history applied to the fully unfolded state derived from
the initial state

Proof

 Outline of proof: show that every path"(X,Y) has corresponding
pathd(c(X), o(Y)) such that cap(path”(X,Y)) = cap(path?(c(X), o(Y)))

* Then corresponding sets of tickets flow through systems derived from H and
G

* As initial states correspond, so do those systems

* Proof by induction on number of links

Basis and Hypothesis

* Length of path”(X, Y) = 1. By definition of path”, link/(X, Y), hence
link9(c(X), o(Y)). As o preserves type, this means

cap(path™(X, Y)) = cap(pathd(c(X), o(Y)))
* Now assume this is true when path”(X, Y) has length k

Step

* Let path”(X, Y) have length k+1. Then there is a Z such that path”(X, Z)
has length k and link(Z, Y).

* By IH, there is a path9(c(X), o(Z)) with same capacity as path"(X, Z)
* By corollary, link9(c(Z), o(Y))
* As o preserves type, there is path9(c(X), o(Y)) with

cap(path™(X, Y)) = cap(pathd(c(X), o(Y)))

Implication

* Let maximal state corresponding to u be #u
* Deriving history has no creates
* By theorem,
(VXY € SUB")[flow"(X, Y) < flow#(c(X), c(Y))]
o If X € SUB®, 5(X) =X, so:
(VX,Y € SUBY)[flow"(X, Y) = flow*!(X, Y)]

* So #u is maximal state for system with acyclic attenuating scheme
 #u derivable from u in time polynomial to |SUBY|
* Worst case computation for flow*" is exponential in | TS|

Safety Result

* If the scheme is acyclic and attenuating, the safety question is
decidable

