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Expressive Power

• How do the sets of systems that models can describe compare?
• If HRU equivalent to SPM, SPM provides more specific answer to safety 

question
• If HRU describes more systems, SPM applies only to the systems it can 

describe
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HRU vs. SPM

• SPM more abstract 
• Analyses focus on limits of model, not details of representation

• HRU allows revocation
• SMP has no equivalent to delete, destroy

• HRU allows multiparent creates
• SMP cannot express multiparent creates easily, and not at all if the parents 

are of different types because can•create allows for only one type of creator
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Multiparent Create

• Solves mutual suspicion problem
• Create proxy jointly, each gives it needed rights

• In HRU:
command multicreate(s0, s1, o)
if r in a[s0, s1] and r in a[s1, s0]
then
create object o;
enter r into a[s0, o];
enter r into a[s1, o];

end
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SPM and Multiparent Create

• cc extended in obvious way
• cc Í TS ´ … ´ TS ´ T

• Symbols
• X1, …, Xn parents, Y created
• R1,i, R2,i, R3, R4,i Í R

• Rules
• crP,i(t(X1), …, t(Xn)) = Y/R1,1È Xi/R2,i

• crC(t(X1), …, t(Xn)) = Y/R3È X1/R4,1È … È Xn/R4,n
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Example

• Anna, Bill must do something cooperatively
• But they donʼt trust each other

• Jointly create a proxy
• Each gives proxy only necessary rights

• In ESPM:
• Anna, Bill type a; proxy type p; right x Î R
• cc(a, a) = p
• crAnna(a, a, p) = crBill(a, a, p) = Æ
• crproxy(a, a, p) = { Anna/x, Bill/x }
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2-Parent Joint Create Suffices

• Goal: emulate 3-parent joint create with 2-parent joint create
• Definition of 3-parent joint create (subjects P1, P2, P3; child C):
• cc(t(P1), t(P2), t(P3)) = Z Í T
• crP1(t(P1), t(P2), t(P3)) = C/R1,1È P1/R2,1

• crP2(t(P1), t(P2), t(P3)) = C/R2,1È P2/R2,2

• crP3(t(P1), t(P2), t(P3)) = C/R3,1È P3/R2,3
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General Approach

• Define agents for parents and child
• Agents act as surrogates for parents
• If create fails, parents have no extra rights
• If create succeeds, parents, child have exactly same rights as in 3-parent 

creates
• Only extra rights are to agents (which are never used again, and so these rights are 

irrelevant)
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Entities and Types

• Parents P1, P2, P3 have types p1, p2, p3

• Child C of type c
• Parent agents A1, A2, A3 of types a1, a2, a3

• Child agent S of type s
• Type t is parentage
• if X/t Î dom(Y), X is Y’s parent

• Types t, a1, a2, a3, s are new types
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can•create

• Following added to can•create:
• cc(p1) = a1

• cc(p2, a1) = a2

• cc(p3, a2) = a3
• Parents creating their agents; note agents have maximum of 2 parents

• cc(a3) = s
• Agent of all parents creates agent of child

• cc(s) = c
• Agent of child creates child
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Creation Rules

• Following added to create rule:
• crP(p1, a1) = Æ
• crC(p1, a1) = p1/Rtc

• Agent’s parent set to creating parent; agent has all rights over parent
• crPfirst(p2, a1, a2) = Æ
• crPsecond(p2, a1, a2) = Æ
• crC(p2, a1, a2) = p2/Rtc È a1/tc

• Agent’s parent set to creating parent and agent; agent has all rights over parent (but not 
over agent)
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Creation Rules

• crPfirst(p3, a2, a3) = Æ
• crPsecond(p3, a2, a3) = Æ
• crC(p3, a2, a3) = p3/Rtc È a2/tc

• Agent’s parent set to creating parent and agent; agent has all rights over parent (but not 
over agent)

• crP(a3, s) = Æ
• crC(a3, s) = a3/tc

• Childʼs agent has third agent as parent crP(a3, s) = Æ
• crP(s, c) = C/Rtc
• crC(s, c) = c/R3t

• Child’s agent gets full rights over child; child gets R3 rights over agent
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Link Predicates

• Idea: no tickets to parents until child created
• Done by requiring each agent to have its own parent rights
• link1(A2, A1) = A1/t Î dom(A2) Ù A2/t Î dom(A2)
• link1(A3, A2) = A2/t Î dom(A3) Ù A3/t Î dom(A3)
• link2(S, A3) = A3/t Î dom(S) Ù C/t Î dom(C)
• link3(A1, C) = C/t Î dom(A1)
• link3(A2, C) = C/t Î dom(A2)
• link3(A3, C) = C/t Î dom(A3)
• link4(A1, P1) = P1/t Î dom(A1) Ù A1/t Î dom(A1)
• link4(A2, P2) = P2/t Î dom(A2) Ù A2/t Î dom(A2)
• link4(A3, P3) = P3/t Î dom(A3) Ù A3/t Î dom(A3)
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Filter Functions

• f1(a2, a1) = a1/t È c/Rtc
• f1(a3, a2) = a2/t È c/Rtc
• f2(s, a3) = a3/t È c/Rtc
• f3(a1, c) = p1/R4,1

• f3(a2, c) = p2/R4,2

• f3(a3, c) = p3/R4,3
• f4(a1, p1) = c/R1,1 È p1/R2,1

• f4(a2, p2) = c/R1,2 È p2/R2,2

• f4(a3, p3) = c/R1,3 È p3/R2,3
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Construction

Create A1, A2, A3, S, C; then
• P1 has no relevant tickets
• P2 has no relevant tickets
• P3 has no relevant tickets
• A1 has P1/Rtc
• A2 has P2/Rtc È A1/tc
• A3 has P3/Rtc È A2/tc
• S has A3/tc È C/Rtc
• C has C/R3t
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Construction

• Only link2(S, A3) true Þ apply f2
• A3 has P3/Rtc È A2/t È A3/t È C/Rtc

• Now link1(A3, A2) true Þ apply f1
• A2 has P2/Rtc È A1/tc È A2/t È C/Rtc

• Now link1(A2, A1) true Þ apply f1
• A1 has P2/Rtc È A1/t È C/Rtc

• Now all link3s true Þ apply f3
• C has C/R3È P1/R4,1È P2/R4,2È P3/R4,3
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Finish Construction

• Now link4 is true Þ apply f4
• P1 has C/R1,1È P1/R2,1

• P2 has C/R1,2È P2/R2,2

• P3 has C/R1,3È P3/R2,3

• 3-parent joint create gives same rights to P1, P2, P3, C
• If create of C fails, link2 fails, so construction fails
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Theorem

• The two-parent joint creation operation can implement an n-parent 
joint creation operation with a fixed number of additional types and 
rights, and augmentations to the link predicates and filter functions.
• Proof: by construction, as above
• Difference is that the two systems need not start at the same initial state
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Theorems

• Monotonic ESPM and the monotonic HRU model are equivalent.
• Safety question in ESPM also decidable if acyclic attenuating scheme
• Proof similar to that for SPM
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Expressiveness

• Graph-based representation to compare models
• Graph
• Vertex: represents entity, has static type
• Edge: represents right, has static type

• Graph rewriting rules:
• Initial state operations create graph in a particular state
• Node creation operations add nodes, incoming edges
• Edge adding operations add new edges between existing vertices
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Example: 3-Parent Joint Creation

• Simulate with 2-parent
• Nodes P1, P2, P3 parents
• Create node C with type c with edges of type e
• Add node A1 of type a and edge from P1 to A1 of type eʹ

P2 P3P1

A1
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Next Step

• A1, P2 create A2; A2, P3 create A3

• Type of nodes, edges are a and eʹ

P2
P3P1

A1 A2
A3
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Next Step

• A3 creates S, of type a
• S creates C, of type c

SC

P2
P3P1

A1 A2
A3
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Last Step

• Edge adding operations:
• P1®A1®A2®A3®S®C: P1 to C edge type e
• P2®A2®A3®S®C: P2 to C edge type e
• P3®A3®S®C: P3 to C edge type e

S

C

P2
P3P1

A1

A2
A3
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Definitions

• Scheme: graph representation as above
• Model: set of schemes
• Schemes A, B correspond if graph for both is identical when all nodes 

with types not in A and edges with types in A are deleted
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Example

• Above 2-parent joint creation simulation in scheme TWO
• Equivalent to 3-parent joint creation scheme THREE in which P1, P2, 
P3, C are of same type as in TWO, and edges from P1, P2, P3 to C are of 
type e, and no types a and e´ exist in TWO
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Simulation

Scheme A simulates scheme B iff
• every state B can reach has a corresponding state in A that A can 

reach; and
• every state that A can reach either corresponds to a state B can reach, 

or has a successor state that corresponds to a state B can reach
• The last means that A can have intermediate states not corresponding to 

states in B, like the intermediate ones in TWO in the simulation of THREE
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Expressive Power

• If there is a scheme in MA that no scheme in MB can simulate, MB
less expressive than MA
• If every scheme in MA can be simulated by a scheme in MB, MB as 

expressive as MA
• If MA as expressive as MB and vice versa, MA and MB equivalent
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Example

• Scheme A in model M
• Nodes X1, X2, X3

• 2-parent joint create
• 1 node type, 1 edge type
• No edge adding operations
• Initial state: X1, X2, X3, no edges

• Scheme B in model N
• All same as A except no 2-parent joint create
• 1-parent create

• Which is more expressive?
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Can A Simulate B?

• Scheme A simulates 1-parent create: have both parents be same 
node
• Model M as expressive as model N
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Can B Simulate A?

• Suppose X1, X2 jointly create Y in A
• Edges from X1, X2 to Y, no edge from X3 to Y

• Can B simulate this?
• Without loss of generality, X1 creates Y
• Must have edge adding operation to add edge from X2 to Y
• One type of node, one type of edge, so operation can add edge between any 

2 nodes
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No

• All nodes in A have even number of incoming edges
• 2-parent create adds 2 incoming edges

• Edge adding operation in B that can edge from X2 to C can add one 
from X3 to C
• A cannot enter this state
• B cannot transition to a state in which Y has even number of incoming edges

• No remove rule

• So B cannot simulate A; N less expressive than M

Module 11 ECS 235B, Foundations of Computer and Information Security 32



Theorem

• Monotonic single-parent models are less expressive than monotonic 
multiparent models
• Proof by contradiction
• Scheme A is multiparent model
• Scheme B is single parent create
• Claim: B can simulate A, without assumption that they start in the same initial 

state
• Note: example assumed same initial state
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Outline of Proof

• X1, X2 nodes in A
• They create Y1, Y2, Y3 using multiparent create rule
• Y1, Y2 create Z, again using multiparent create rule
• Note: no edge from Y3 to Z can be added, as A has no edge-adding operation
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Outline of Proof

• W, X1, X2 nodes in B
• W creates Y1, Y2, Y3 using single parent create rule, and adds edges for X1, X2 to all using 

edge adding rule
• Y1 creates Z, again using single parent create rule; now must add edge from Y2 to Z to 

simulate A
• Use same edge adding rule to add edge from Y3 to Z: cannot duplicate this in scheme A!
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Meaning

• Scheme B cannot simulate scheme A, contradicting hypothesis
• ESPM more expressive than SPM
• ESPM multiparent and monotonic
• SPM monotonic but single parent
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