
ECS 235B Module 11
Expressiveness

Module 11 ECS 235B, Foundations of Computer and Information Security 1



Expressive Power

• How do the sets of systems that models can describe compare?
• If HRU equivalent to SPM, SPM provides more specific answer to safety 

question
• If HRU describes more systems, SPM applies only to the systems it can 

describe

Module 11 ECS 235B, Foundations of Computer and Information Security 2



HRU vs. SPM

• SPM more abstract 
• Analyses focus on limits of model, not details of representation

• HRU allows revocation
• SMP has no equivalent to delete, destroy

• HRU allows multiparent creates
• SMP cannot express multiparent creates easily, and not at all if the parents 

are of different types because can•create allows for only one type of creator

Module 11 ECS 235B, Foundations of Computer and Information Security 3



Multiparent Create

• Solves mutual suspicion problem
• Create proxy jointly, each gives it needed rights

• In HRU:
command multicreate(s0, s1, o)
if r in a[s0, s1] and r in a[s1, s0]
then
create object o;
enter r into a[s0, o];
enter r into a[s1, o];

end

Module 11 ECS 235B, Foundations of Computer and Information Security 4



SPM and Multiparent Create

• cc extended in obvious way
• cc Í TS ´ … ´ TS ´ T

• Symbols
• X1, …, Xn parents, Y created
• R1,i, R2,i, R3, R4,i Í R

• Rules
• crP,i(t(X1), …, t(Xn)) = Y/R1,1È Xi/R2,i

• crC(t(X1), …, t(Xn)) = Y/R3È X1/R4,1È … È Xn/R4,n

Module 11 ECS 235B, Foundations of Computer and Information Security 5



Example

• Anna, Bill must do something cooperatively
• But they donʼt trust each other

• Jointly create a proxy
• Each gives proxy only necessary rights

• In ESPM:
• Anna, Bill type a; proxy type p; right x Î R
• cc(a, a) = p
• crAnna(a, a, p) = crBill(a, a, p) = Æ
• crproxy(a, a, p) = { Anna/x, Bill/x }

Module 11 ECS 235B, Foundations of Computer and Information Security 6



2-Parent Joint Create Suffices

• Goal: emulate 3-parent joint create with 2-parent joint create
• Definition of 3-parent joint create (subjects P1, P2, P3; child C):
• cc(t(P1), t(P2), t(P3)) = Z Í T
• crP1(t(P1), t(P2), t(P3)) = C/R1,1È P1/R2,1

• crP2(t(P1), t(P2), t(P3)) = C/R2,1È P2/R2,2

• crP3(t(P1), t(P2), t(P3)) = C/R3,1È P3/R2,3

Module 11 ECS 235B, Foundations of Computer and Information Security 7



General Approach

• Define agents for parents and child
• Agents act as surrogates for parents
• If create fails, parents have no extra rights
• If create succeeds, parents, child have exactly same rights as in 3-parent 

creates
• Only extra rights are to agents (which are never used again, and so these rights are 

irrelevant)

Module 11 ECS 235B, Foundations of Computer and Information Security 8



Entities and Types

• Parents P1, P2, P3 have types p1, p2, p3

• Child C of type c
• Parent agents A1, A2, A3 of types a1, a2, a3

• Child agent S of type s
• Type t is parentage
• if X/t Î dom(Y), X is Y’s parent

• Types t, a1, a2, a3, s are new types

Module 11 ECS 235B, Foundations of Computer and Information Security 9



can•create

• Following added to can•create:
• cc(p1) = a1

• cc(p2, a1) = a2

• cc(p3, a2) = a3
• Parents creating their agents; note agents have maximum of 2 parents

• cc(a3) = s
• Agent of all parents creates agent of child

• cc(s) = c
• Agent of child creates child

Module 11 ECS 235B, Foundations of Computer and Information Security 10



Creation Rules

• Following added to create rule:
• crP(p1, a1) = Æ
• crC(p1, a1) = p1/Rtc

• Agent’s parent set to creating parent; agent has all rights over parent
• crPfirst(p2, a1, a2) = Æ
• crPsecond(p2, a1, a2) = Æ
• crC(p2, a1, a2) = p2/Rtc È a1/tc

• Agent’s parent set to creating parent and agent; agent has all rights over parent (but not 
over agent)

Module 11 ECS 235B, Foundations of Computer and Information Security 11



Creation Rules

• crPfirst(p3, a2, a3) = Æ
• crPsecond(p3, a2, a3) = Æ
• crC(p3, a2, a3) = p3/Rtc È a2/tc

• Agent’s parent set to creating parent and agent; agent has all rights over parent (but not 
over agent)

• crP(a3, s) = Æ
• crC(a3, s) = a3/tc

• Childʼs agent has third agent as parent crP(a3, s) = Æ
• crP(s, c) = C/Rtc
• crC(s, c) = c/R3t

• Child’s agent gets full rights over child; child gets R3 rights over agent

Module 11 ECS 235B, Foundations of Computer and Information Security 12



Link Predicates

• Idea: no tickets to parents until child created
• Done by requiring each agent to have its own parent rights
• link1(A2, A1) = A1/t Î dom(A2) Ù A2/t Î dom(A2)
• link1(A3, A2) = A2/t Î dom(A3) Ù A3/t Î dom(A3)
• link2(S, A3) = A3/t Î dom(S) Ù C/t Î dom(C)
• link3(A1, C) = C/t Î dom(A1)
• link3(A2, C) = C/t Î dom(A2)
• link3(A3, C) = C/t Î dom(A3)
• link4(A1, P1) = P1/t Î dom(A1) Ù A1/t Î dom(A1)
• link4(A2, P2) = P2/t Î dom(A2) Ù A2/t Î dom(A2)
• link4(A3, P3) = P3/t Î dom(A3) Ù A3/t Î dom(A3)

Module 11 ECS 235B, Foundations of Computer and Information Security 13



Filter Functions

• f1(a2, a1) = a1/t È c/Rtc
• f1(a3, a2) = a2/t È c/Rtc
• f2(s, a3) = a3/t È c/Rtc
• f3(a1, c) = p1/R4,1

• f3(a2, c) = p2/R4,2

• f3(a3, c) = p3/R4,3
• f4(a1, p1) = c/R1,1 È p1/R2,1

• f4(a2, p2) = c/R1,2 È p2/R2,2

• f4(a3, p3) = c/R1,3 È p3/R2,3

Module 11 ECS 235B, Foundations of Computer and Information Security 14



Construction

Create A1, A2, A3, S, C; then
• P1 has no relevant tickets
• P2 has no relevant tickets
• P3 has no relevant tickets
• A1 has P1/Rtc
• A2 has P2/Rtc È A1/tc
• A3 has P3/Rtc È A2/tc
• S has A3/tc È C/Rtc
• C has C/R3t

Module 11 ECS 235B, Foundations of Computer and Information Security 15



Construction

• Only link2(S, A3) true Þ apply f2
• A3 has P3/Rtc È A2/t È A3/t È C/Rtc

• Now link1(A3, A2) true Þ apply f1
• A2 has P2/Rtc È A1/tc È A2/t È C/Rtc

• Now link1(A2, A1) true Þ apply f1
• A1 has P2/Rtc È A1/t È C/Rtc

• Now all link3s true Þ apply f3
• C has C/R3È P1/R4,1È P2/R4,2È P3/R4,3

Module 11 ECS 235B, Foundations of Computer and Information Security 16



Finish Construction

• Now link4 is true Þ apply f4
• P1 has C/R1,1È P1/R2,1

• P2 has C/R1,2È P2/R2,2

• P3 has C/R1,3È P3/R2,3

• 3-parent joint create gives same rights to P1, P2, P3, C
• If create of C fails, link2 fails, so construction fails

Module 11 ECS 235B, Foundations of Computer and Information Security 17



Theorem

• The two-parent joint creation operation can implement an n-parent 
joint creation operation with a fixed number of additional types and 
rights, and augmentations to the link predicates and filter functions.
• Proof: by construction, as above
• Difference is that the two systems need not start at the same initial state

Module 11 ECS 235B, Foundations of Computer and Information Security 18



Theorems

• Monotonic ESPM and the monotonic HRU model are equivalent.
• Safety question in ESPM also decidable if acyclic attenuating scheme
• Proof similar to that for SPM

Module 11 ECS 235B, Foundations of Computer and Information Security 19



Expressiveness

• Graph-based representation to compare models
• Graph
• Vertex: represents entity, has static type
• Edge: represents right, has static type

• Graph rewriting rules:
• Initial state operations create graph in a particular state
• Node creation operations add nodes, incoming edges
• Edge adding operations add new edges between existing vertices

Module 11 ECS 235B, Foundations of Computer and Information Security 20



Example: 3-Parent Joint Creation

• Simulate with 2-parent
• Nodes P1, P2, P3 parents
• Create node C with type c with edges of type e
• Add node A1 of type a and edge from P1 to A1 of type eʹ

P2 P3P1

A1

Module 11 ECS 235B, Foundations of Computer and Information Security 21



Next Step

• A1, P2 create A2; A2, P3 create A3

• Type of nodes, edges are a and eʹ

P2
P3P1

A1 A2
A3

Module 11 ECS 235B, Foundations of Computer and Information Security 22



Next Step

• A3 creates S, of type a
• S creates C, of type c

SC

P2
P3P1

A1 A2
A3

Module 11 ECS 235B, Foundations of Computer and Information Security 23



Last Step

• Edge adding operations:
• P1®A1®A2®A3®S®C: P1 to C edge type e
• P2®A2®A3®S®C: P2 to C edge type e
• P3®A3®S®C: P3 to C edge type e

S

C

P2
P3P1

A1

A2
A3

Module 11 ECS 235B, Foundations of Computer and Information Security 24



Definitions

• Scheme: graph representation as above
• Model: set of schemes
• Schemes A, B correspond if graph for both is identical when all nodes 

with types not in A and edges with types in A are deleted

Module 11 ECS 235B, Foundations of Computer and Information Security 25



Example

• Above 2-parent joint creation simulation in scheme TWO
• Equivalent to 3-parent joint creation scheme THREE in which P1, P2, 
P3, C are of same type as in TWO, and edges from P1, P2, P3 to C are of 
type e, and no types a and e´ exist in TWO

Module 11 ECS 235B, Foundations of Computer and Information Security 26



Simulation

Scheme A simulates scheme B iff
• every state B can reach has a corresponding state in A that A can 

reach; and
• every state that A can reach either corresponds to a state B can reach, 

or has a successor state that corresponds to a state B can reach
• The last means that A can have intermediate states not corresponding to 

states in B, like the intermediate ones in TWO in the simulation of THREE

Module 11 ECS 235B, Foundations of Computer and Information Security 27



Expressive Power

• If there is a scheme in MA that no scheme in MB can simulate, MB
less expressive than MA
• If every scheme in MA can be simulated by a scheme in MB, MB as 

expressive as MA
• If MA as expressive as MB and vice versa, MA and MB equivalent

Module 11 ECS 235B, Foundations of Computer and Information Security 28



Example

• Scheme A in model M
• Nodes X1, X2, X3

• 2-parent joint create
• 1 node type, 1 edge type
• No edge adding operations
• Initial state: X1, X2, X3, no edges

• Scheme B in model N
• All same as A except no 2-parent joint create
• 1-parent create

• Which is more expressive?

Module 11 ECS 235B, Foundations of Computer and Information Security 29



Can A Simulate B?

• Scheme A simulates 1-parent create: have both parents be same 
node
• Model M as expressive as model N

Module 11 ECS 235B, Foundations of Computer and Information Security 30



Can B Simulate A?

• Suppose X1, X2 jointly create Y in A
• Edges from X1, X2 to Y, no edge from X3 to Y

• Can B simulate this?
• Without loss of generality, X1 creates Y
• Must have edge adding operation to add edge from X2 to Y
• One type of node, one type of edge, so operation can add edge between any 

2 nodes

Module 11 ECS 235B, Foundations of Computer and Information Security 31



No

• All nodes in A have even number of incoming edges
• 2-parent create adds 2 incoming edges

• Edge adding operation in B that can edge from X2 to C can add one 
from X3 to C
• A cannot enter this state
• B cannot transition to a state in which Y has even number of incoming edges

• No remove rule

• So B cannot simulate A; N less expressive than M

Module 11 ECS 235B, Foundations of Computer and Information Security 32



Theorem

• Monotonic single-parent models are less expressive than monotonic 
multiparent models
• Proof by contradiction
• Scheme A is multiparent model
• Scheme B is single parent create
• Claim: B can simulate A, without assumption that they start in the same initial 

state
• Note: example assumed same initial state

Module 11 ECS 235B, Foundations of Computer and Information Security 33



Outline of Proof

• X1, X2 nodes in A
• They create Y1, Y2, Y3 using multiparent create rule
• Y1, Y2 create Z, again using multiparent create rule
• Note: no edge from Y3 to Z can be added, as A has no edge-adding operation

Module 11 ECS 235B, Foundations of Computer and Information Security 34

X1

X2

Y1

Y3

Y2 Z



Outline of Proof

• W, X1, X2 nodes in B
• W creates Y1, Y2, Y3 using single parent create rule, and adds edges for X1, X2 to all using 

edge adding rule
• Y1 creates Z, again using single parent create rule; now must add edge from Y2 to Z to 

simulate A
• Use same edge adding rule to add edge from Y3 to Z: cannot duplicate this in scheme A!

Module 11 ECS 235B, Foundations of Computer and Information Security

X1

X2

Y1

Y3

Y2 Z

35



Meaning

• Scheme B cannot simulate scheme A, contradicting hypothesis
• ESPM more expressive than SPM
• ESPM multiparent and monotonic
• SPM monotonic but single parent

Module 11 ECS 235B, Foundations of Computer and Information Security 36


