
ECS 235B Module 15
Precise and Secure Policies

Module 15 ECS 235B, Foundations of Computer and Information Security 1

Module 15

Types of Mechanisms

secure precise broad

set of reachable states set of secure states

ECS 235B, Foundations of Computer and Information Security 2

Secure, Precise Mechanisms

• Can one devise a procedure for developing a mechanism that is both
secure and precise?
• Consider confidentiality policies only here
• Integrity policies produce same result

• Program a function with multiple inputs and one output
• Let p be a function p: I1 ´ ... ´ In® R. Then p is a program with n inputs ik Î Ik,

1 ≤ k ≤ n, and one output r Î R

Module 15 ECS 235B, Foundations of Computer and Information Security 3

Programs and Postulates

• Observability Postulate: the output of a function encodes all available
information about its inputs
• Covert channels considered part of the output

• Example: authentication function
• Inputs name, password; output Good or Bad
• If name invalid, immediately print Bad; else access database
• Problem: time output of Bad, can determine if name valid
• This means timing is part of output

Module 15 ECS 235B, Foundations of Computer and Information Security 4

Protection Mechanism

• Let p be a function p: I1 ´ ... ´ In® R. A protection mechanism m is a
function

m: I1 ´ ... ´ In® R È E
for which, when ik Î Ik, 1 ≤ k ≤ n, either
• m(i1, ..., in) = p(i1, ..., in) or
• m(i1, ..., in) Î E.

• E is set of error outputs
• In above example, E = { “Password Database Missing”, “Password Database

Locked” }

Module 15 ECS 235B, Foundations of Computer and Information Security 5

Confidentiality Policy

• Confidentiality policy for program p says which inputs can be revealed
• Formally, for p: I1 ´ ... ´ In® R, it is a function c: I1 ´ ... ´ In® A, where

A Í I1 ´ ... ´ In
• A is set of inputs available to observer

• Security mechanism is function
m: I1 ´ ... ´ In® R È E

• m is secure if and only if $ m´: A ® R È E such that,
"ik Î Ik, 1 ≤ k ≤ n, m(i1, ..., in) = m´(c(i1, ..., in))

• m returns values consistent with c

Module 15 ECS 235B, Foundations of Computer and Information Security 6

Examples

• c(i1, ..., in) = C, a constant
• Deny observer any information (output does not vary with inputs)

• c(i1, ..., in) = (i1, ..., in), and mʹ = m
• Allow observer full access to information

• c(i1, ..., in) = i1
• Allow observer information about first input but no information about other

inputs.

Module 15 ECS 235B, Foundations of Computer and Information Security 7

Precision

• Security policy may be over-restrictive
• Precision measures how over-restrictive

• m1, m2 distinct protection mechanisms for program p under policy c
• m1 as precise as m2 (m1 ≈ m2) if, for all inputs i1, …, in,

m2(i1, …, in) = p(i1, …, in) Þ m1(i1, …, in) = p(i1, …, in)
• m1 more precise than m2 (m1 ~ m2) if there is an input (i1ʹ, …, inʹ) such that

m1(i1ʹ, …, inʹ) = p(i1ʹ, …, inʹ) and m2(i1ʹ, …, inʹ) ≠ p(i1ʹ, …, inʹ).

Module 15 ECS 235B, Foundations of Computer and Information Security 8

Combining Mechanisms

• m1, m2 protection mechanisms
• m3 = m1È m2
• For inputs on which m1 and m2 return same value as p, m3 does also;

otherwise, m3 returns same value as m1

• Theorem: if m1, m2 secure, then m3 secure
• Also, m3 ≈ m1 and m3 ≈ m2

• Follows from definitions of secure, precise, and m3

Module 15 ECS 235B, Foundations of Computer and Information Security 9

Existence Theorem

• For any program p and security policy c, there exists a precise, secure
mechanism m* such that, for all secure mechanisms m associated
with p and c, m* ≈ m
• Maximally precise mechanism
• Ensures security
• Minimizes number of denials of legitimate actions

Module 15 ECS 235B, Foundations of Computer and Information Security 10

Lack of Effective Procedure

• There is no effective procedure that determines a maximally precise,
secure mechanism for any policy and program.
• Sketch of proof: let policy c be constant function, and p compute function

T(x). Assume T(x) = 0. Consider program q, where

z = p;
if z = 0 then y := 1 else y := 2;
halt;

Module 15 ECS 235B, Foundations of Computer and Information Security 11

Rest of Sketch

• m associated with q, y value of m, z output of p corresponding to T(x)
• "x [T(x) = 0] ® m(x) = 1
• $x´ [T(x´) ≠ 0] ® m(x) = 2 or m(x) undefined
• If you can determine m, you can determine whether T(x) = 0 for all x
• Determines some information about input (is it 0?)
• Contradicts constancy of c.
• Therefore no such procedure exists

Module 15 ECS 235B, Foundations of Computer and Information Security 12

