ECS 235B Module 18
Bell-LaPadula Model



Formal Model Definitions

* S subjects, O objects, P rights
 Defined rights: r read, a write, w read/write, e empty

* M set of possible access control matrices

* Cset of clearances/classifications, K set of categories, L = C x K set of
security levels

*F ={ (fsrfoufc)}

* f.(s) maximum security level of subject s
* f.(s) current security level of subject s
* f.(0) security level of object o



More Definitions

* Hierarchy functions H: O—P(0O)

* Requirements
1. 0;#0;,= h(o;) " h(o;) =&
2. Thereisnoset{o, .. 0,}c Osuchthatfori=1, ..,k 0,, €h(o;) and o,,; = 0;.

* Example
* Tree hierarchy; take h(o) to be the set of children of o
* No two objects have any common children (#1)
 There are no loops in the tree (#2)



States and Requests

e V/ set of states

e Each stateis (b, m, f, h)
* bis like m, but excludes rights not allowed by f

* R set of requests for access

* D set of outcomes
 yallowed, n not allowed, i illegal, o error

e W set of actions of the system
e WCRxDxVxYV



History

* X = RV set of sequences of requests
* Y= DN set of sequences of decisions
« Z= V" set of sequences of states

* Interpretation
* Attimet € N, system is in state z,_; € V; request x, € R causes system to make
decision y, € D, transitioning the system into a (possibly new) state z, € V
* System representation: 2(R, D, W, z;) e Xx Y xZ
* (x,y,2) € X(R,D, W, zp) iff (x,, ¥y, 2,1, 2;) € WTorall t
* (x,y, z) called an appearance of 2(R, D, W, z,)



Example

*S={s},0={o}, P={rw}
e C={High, Low }, K={All}
* For every f € F, either f.(s) = ( High, { All }) or f.(s) = ( Low, { All })

* |nitial State:

* by={(s,0,r)}, my € Mgives s read access over o, and for f, € F, f_,(s) = (High,
{All}), fo,1(0) = (Low, {All})
* Call this state vy =(by, mq, f1, hy) € V.



First Transition

* Now suppose in state vy: S=1s, s }

* Suppose f; 1(s’) = (Low, {All}), m; € M gives s read access over o and s’
write access to o

* As s’ not writtento o, b; ={ (s, 0,r) }

* ry: s’ requests to write to o:
* System decides d; =y (as m, gives it that right, and f; ,(s’) = f,(0))
* New statev, =(b,, my, f1, h1) € V
* by={(s,0,1),(s',0,wW) }
* Here, x=(ry), y = (y), 2= (vo, v1)



Second Transition

* Current state v, = (b,, my, f1, hy) € V
* b,={(s,0,1),(s",0,W) }
* fc1(s) = (High, { All }), f,1(0) = (Low, { All })
*r,.S FEQUEStS to write to o:
* System decides d, = n (as f,4(s) dom f, ,(0))
* New statev, =(b,, my, f1, hy) € V
* b,={(s,0,1),(s70, W)}
* S0, x=(ry, r3), y=1(y,n), z=(vy, vy, v,), Where v, = v,



Basic Security Theorem

* Define action, secure formally
* Using a bit of foreshadowing for “secure”

e Restate properties formally
* Simple security condition
e *-property
* Discretionary security property

* State conditions for properties to hold
 State Basic Security Theorem



Action

* A request and decision that causes the system to move from one state
to another

* Final state may be the same as initial state
*(r,d,v,V') € RxDxVxVisan action of Z(R, D, W, z,) iff there is an

(x,y,2) € X(R,D, W, zy) andat € Nsuchthat(r,d, v, V')=(x, vy, z;, 2,_1)

* Request r made when system in state v’; decision d moves system into (possibly
the same) state v

* Correspondence with (x,, y,, z;, Z,_;) makes states, requests, part of a sequence



Simple Security Condition

 (s,0,p) € Sx O x Psatisfies the simple security condition relative to
f (written ssc rel f) iff one of the following holds:

1. p=eorp=a
2. p=rorp=wand f(s) dom f,(o)

* Holds vacuously if rights do not involve reading

* If all elements of b satisfy ssc rel f, then state satisfies simple
security condition

* If all states satisfy simple security condition, system satisfies simple
security condition



Necessary and Sufficient

* 2(R, D, W, z,) satisfies the simple security condition for any secure
state z,iff for every action (r, d, (b, m, f, h), (b, m’, f, h")), W satisfies

* Every (s, 0, p) € b— b’ satisfies sscrel f
e Every (s, 0, p) € b’that does not satisfy sscrel fisnotin b

* Note: “secure” means z,satisfies ssc rel f

* First says every (s, o, p) added satisfies ssc rel f; second says any (s, o,
p) in b’ that does not satisfy ssc rel f is deleted



*-Property

* b(s:py, ..., p,) setof all objects that s has p,, ..., p,, access to

 State (b, m, f, h) satisfies the *-property iff for each s € S the following hold:
1.  b(s:a)# T = [Vo €b(s: a) [f,(0) dom f.(s)]]
2. b(s:w)#D = [Vo €b(s: w) [folo) =f(s) ] ]
3.  bls:n)#D=[Vo €b(s:r) [f{s) dom f,(0) ] ]

 |dea: for writing, object dominates subject; for reading, subject dominates
object



*-Property

* If a subset S’of subjects satisfy *-property, then *-property satisfied
relativetoS’'c S

* Note: tempting to conclude that *-property includes simple security
condition, but this is false
* See condition placed on w right for each
* Note simple security condition uses f,; *-property uses f,



Necessary and Sufficient

* 2(R, D, W, z,) satisfies the *-property relative to S' — S for any secure state z,iff

for every action (r, d, (b, m, f, h), (b, m’, f, h')), W satisfies the following for every
se§

* Every (s, 0, p) € b— b’ satisfies the *-property relative to S’

* Every (s, 0, p) € b’ that does not satisfy the *-property relative to S’ is notin
b

* Note: “secure” means z,satisfies *-property relative to §'

* First says every (s, o0, p) added satisfies the *-property relative to S’; second says
any (s, o, p) in b’that does not satisfy the *-property relative to S’ is deleted



Discretionary Security Property

 State (b, m, f, h) satisfies the discretionary security property iff, for
each (s, o, p) € b, then p € m[s, o]

* |dea: if s can read o, then it must have rights to do so in the access
control matrix m

* This is the discretionary access control part of the model
* The other two properties are the mandatory access control parts of the model



Necessary and Sufficient

* 2(R, D, W, z,) satisfies the ds-property for any secure state z, iff, for
every action (r, d, (b, m, f, h), (b', m', f, h')), W satisfies:
* Every (s, 0, p) € b— b’ satisfies the ds-property
e Every (s, 0, p) € b’ that does not satisfy the ds-property is notin b
* Note: “secure” means z,satisfies ds-property

* First says every (s, o, p) added satisfies the ds-property; second says
any (s, o, p) in b’ that does not satisfy the ds-property is deleted



Secure

* A state is secure iff it satisfies:
* Simple security condition
e *-property
* Discretionary security property

* A system is secure if the only states it can enter satisfy the above 3
properties



Basic Security Theorem

* 2(R, D, W, z,) is a secure system if z,is a secure state and W satisfies
the conditions for the preceding three theorems

* The theorems are on the slides titled “Necessary and Sufficient”



