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Goals

• Ensure a resource can be accessed in a timely fashion
• Called “quality of service”
• “Timely fashion” depends on nature of resource, the goals of using it

• Closely related to safety and liveness
• Safety: resource does not perform correctly the functions that client is 

expecting
• Liveness: resource cannot be accessed
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Key Difference

• Mechanisms to support availability in general
• Lack of availability assumes average case, follows a statistical model

• Mechanisms to support availability as security requirement
• Lack of availability assumes worst case, adversary deliberately makes resource 

unavailable
• Failures are non-random, may not conform to any useful statistical model
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Deadlock

• A state in which some set of processes block each waiting for another 
process in set to take come action
• Mutual exclusion: resource not shared
• Hold and wait: process must hold resource and block, waiting other needed 

resources to become available
• No preemption: resource being held cannot be released
• Circular wait: set of entities holding resources such that each process waiting 

for another process in set to release resources

• Usually not due to an attack
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Approaches to Solving Deadlocks

• Prevention: prevent 1 of the 4 conditions from holding
• Do not acquire resources until all needed ones are available
• When needing a new resource, release all held

• Avoidance: ensure process stays in state where deadlock cannot occur
• Safe state: deadlock can not occur
• Unsafe state: may lead to state in which deadlock can occur

• Detection: allow deadlocks to occur, but detect and recover
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Denial of Service

• Occurs when a group of authorized users of a service make that 
service unavailable to a (disjoint) group of authorized users for a 
period of time exceeding a defined maximum waiting time
• First “group of authorized users” here is group of users with access to service, 

whether or not the security policy grants them access
• Often abbreviated “DoS” or “DOS”

• Assumes that, in the absence of other processes, there are enough 
resources
• Otherwise problem is not solvable unless more resources created
• Inadequate resources is another type of problem
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Components of DoS Model

• Waiting time policy: controls the time between a process requesting a 
resource and being allocated that resource
• Denial of service occurs when this waiting time exceeded
• Amount of time depends on environment, goals

• User agreement: establishes constraints that process must meet in 
order to access resource
• Here, “user” means a process
• These ensure a process will receive service within the waiting time
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Constraint-Based Model (Yu-Gligor)

• Framed in terms of users accessing a server for some services
• User agreement: describes properties that users of servers must meet
• Finite waiting time policy: ensures no user is excluded from using 

resource
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User Agreement

• Set of constraints designed to prevent denial of service
• Sseq sequence of all possible invocations of a service
• Useq set of sequences of all possible invocations by a user
• UIi,seq⊆ Useq that user Ui can invoke
• C set of operations Ui can perform to consume service
• P set of operations to produce service user Ui consumes
• p < c means operation p ∈ P must precede operation c ∈ C
• Ai set of operations allowed for user Ui

• Ri set of relations between every pair of allowed operations for Ui
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Example

Mutually exclusive resource
• C = { acquire }
• P = { release }
• For p1, p2, Ai = { acquirei, releasei } for i = 1, 2
• For p1, p2, Ri = { ( acquirei < releasei ) } for i = 1, 2
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Sequences of Operations

• Ui(k) initial subsequence of Ui of length k
• no(Ui(k)) number of times operation o occurs in Ui(k)

• Ui(k) safe if the following 2 conditions hold:
• if o ∈ Ui,seq, then o ∈ Ai; and

• That is, if Ui executes o, it must be an allowed operation for Ui

• for all k, if (o < oʹ) ∈ Ri, then no(Ui(k)) ≥ noʹ(Ui(k))
• That is, if one operation precedes another, the first one must occur more times than the 

second
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Resources of Services

• s ∈ Sseq possible sequence of invocations of services
• s blocks on condition c
• May be waiting for service to become available, or processing some response, 

etc. 

• oi
*(c) represents operation oi blocked, waiting for c to become true
• When execution results, oi(c) represents operation
• Note that when c becomes true, oi

*(c) may not resume immediately
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Resources of Services

• s(0) initial subsequence of s up to operation oi
*(c)

• s(k) subsequence of operations between (k-1)st, kth time c becomes 
true after oi

*(c)
• oi*(c) ➝s(k) oi(c): oi blocks waiting on c at end of s(0), resumes 

operation at end of s(k)
• Sseq live if for every oi*(c) there is a set of subsequences s(0), ..., s(k) 

such that it is initial subsequence of some s ∈ Sseq and oi*(c) ➝s(k) oi(c)
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Example

• Mutually exclusive resource; consider sequence
( acquirei, releasei, acquirei, acquirei, releasei )

with acquirei, releasei ∈ Ai, (acquirei, releasei) ∈ Ri;o = acquirei, oʹ = releasei
• Ui(1) = (acquirei ) ⇒ no(Ui(1)) = 1, noʹ(Ui(1)) = 0
• Ui(2) = (acquirei, releasei ) ⇒ no(Ui(2)) = 1, noʹ(Ui(2)) = 1
• Ui(3) = (acquirei, releasei, acquirei) ⇒ no(Ui(3)) = 2, noʹ(Ui(3)) = 1
• Ui(4) = (acquirei, releasei, acquirei, acquirei) ⇒ no(Ui(4)) = 3, noʹ(Ui(4)) = 1
• Ui(5) = (acquirei, releasei, acquirei, acquirei, releasei) ⇒

no(Ui(5)) = 3, noʹ(Ui(5)) = 2
• As no(Ui(k)) ≥ noʹ(Ui(k)) for k = 1, ..., 5, the sequence is safe
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Example (con’t)

• Let c be true whenever resource can be released
• That is, initially and whenever a releasei operation is performed

• Consider sequence: (acquire1, acquire2*(c), release1, release2, ... , 
acquirek, acquirek+1(c), releasek, releasek+1, ...)
• For all k ≥ 1, acquirei*(c) ➝s(1) acquirek+1(c), so this is live sequence
• Here, acquirek+1(c) occurs between releasek and releasek+1
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Expressing User Agreements

• Use temporal logics
• Symbols
• ☐: henceforth (the predicate is true and will remain true)
• ◇: eventually (the predicate is either true now, or will become true in the 

future)
• ⤳: will  lead to (if the first part is true, the second part will eventually become 

true); so A ⤳ B is shorthand for A ⇒◇B
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Example

• Acquiring and releasing mutually exclusive resource type
• User agreement: once a process is blocked on an acquire operation, 

enough release operations will release enough resources of that type 
to allow blocked process to proceed

service resource_allocator
User agreement

in(acquire) ⤳ ((☐◇(#active_release > 0) ∨ (free ≥ acquire.n))
• When a process issues an acquire request, at some later time at least 

1 release operation occurs, and enough resources will be freed for the 
requesting process to acquire the needed resources
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Finite Waiting Time Policy

• Fairness policy: prevents starvation; ensures process using a resource 
will not block indefinitely if given the opportunity to progress
• Simultaneity policy: ensures progress; provides opportunities process 

needs to use resource
• User agreement: see earlier
• If these three hold, no process will wait an indefinite time before 

accessing and using the resource
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Example

• Continuing example ... these and above user agreement ensure no 
indefinite blocking

sharing policies
fairness

(at(acquire) ∧☐◇((free ≥ acquire.n) ∧ (#active = 0))) ⤳ after(acquire)
(at(release) ∧☐◇(#active = 0)) ⤳ after(release)

simultaneity
(in(acquire) ∧ (☐◇(free ≥ acquire.n)) ∧ (☐◇(#active = 0))) ⤳

((free ≥ acquire.n) ∧ (#active = 0))
(in(release) ∧☐◇(#active_release > 0)) ⤳ (free ≥ acquire.n)
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Service Specification

• Interface operations
• Private operations not available outside service
• Resource constraints
• Concurrency constraints
• Finite waiting time policy
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Example: 

• Interface operations of the resource allocation/deallocation example
interface operations
acquire(n: units)

exception conditions: quota[id] < own[id] + n
effects: freeʹ = free – n

own[id]ʹ = own[id] + n
release(n: units)

exception conditions: n > own[id]
effects: freeʹ = free + n

own[id]ʹ = own[id] – n
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Example (con’t) 

Resource constrains of the resource allocation/deallocation example
resource constraints
1. ☐((free ≥ 0) ∧ (free ≤ size))
2. (∀ id) [☐(own[id] ≥ 0) ∧ (own[id] ≤ quota[id]))]
3. (free = N) ⇒ ((free = N) UNTIL (after(acquire) ∨ after(release)))
4. (∀ id) [ (own[id] = M) ⇒ ((own[id] = M) UNTIL (after(acquire) ∨

after(release)))]
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Example (con’t) 

Concurrency constraints of the resource allocation/deallocation 
example
concurrency constraints
1. ☐(#active ≤ 1)
2. (#active = 1) ⤳ (#active = 1)
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Denial of Service

• Service specification policies, user agreements prevent denial of 
service if enforced
• These do not prevent a long wait time; they simply ensure the wait 

time is finite
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