
ECS 235B Module 25
Constraint-Based Availability

Models

Module 25 ECS 235B, Foundations of Computer and Information Security 1

Goals

• Ensure a resource can be accessed in a timely fashion
• Called “quality of service”
• “Timely fashion” depends on nature of resource, the goals of using it

• Closely related to safety and liveness
• Safety: resource does not perform correctly the functions that client is

expecting
• Liveness: resource cannot be accessed

Module 25 ECS 235B, Foundations of Computer and Information Security 2

Key Difference

• Mechanisms to support availability in general
• Lack of availability assumes average case, follows a statistical model

• Mechanisms to support availability as security requirement
• Lack of availability assumes worst case, adversary deliberately makes resource

unavailable
• Failures are non-random, may not conform to any useful statistical model

Module 25 ECS 235B, Foundations of Computer and Information Security 3

Deadlock

• A state in which some set of processes block each waiting for another
process in set to take come action
• Mutual exclusion: resource not shared
• Hold and wait: process must hold resource and block, waiting other needed

resources to become available
• No preemption: resource being held cannot be released
• Circular wait: set of entities holding resources such that each process waiting

for another process in set to release resources

• Usually not due to an attack

Module 25 ECS 235B, Foundations of Computer and Information Security 4

Approaches to Solving Deadlocks

• Prevention: prevent 1 of the 4 conditions from holding
• Do not acquire resources until all needed ones are available
• When needing a new resource, release all held

• Avoidance: ensure process stays in state where deadlock cannot occur
• Safe state: deadlock can not occur
• Unsafe state: may lead to state in which deadlock can occur

• Detection: allow deadlocks to occur, but detect and recover

Module 25 ECS 235B, Foundations of Computer and Information Security 5

Denial of Service

• Occurs when a group of authorized users of a service make that
service unavailable to a (disjoint) group of authorized users for a
period of time exceeding a defined maximum waiting time
• First “group of authorized users” here is group of users with access to service,

whether or not the security policy grants them access
• Often abbreviated “DoS” or “DOS”

• Assumes that, in the absence of other processes, there are enough
resources
• Otherwise problem is not solvable unless more resources created
• Inadequate resources is another type of problem

Module 25 ECS 235B, Foundations of Computer and Information Security 6

Components of DoS Model

• Waiting time policy: controls the time between a process requesting a
resource and being allocated that resource
• Denial of service occurs when this waiting time exceeded
• Amount of time depends on environment, goals

• User agreement: establishes constraints that process must meet in
order to access resource
• Here, “user” means a process
• These ensure a process will receive service within the waiting time

Module 25 ECS 235B, Foundations of Computer and Information Security 7

Constraint-Based Model (Yu-Gligor)

• Framed in terms of users accessing a server for some services
• User agreement: describes properties that users of servers must meet
• Finite waiting time policy: ensures no user is excluded from using

resource

Module 25 ECS 235B, Foundations of Computer and Information Security 8

User Agreement

• Set of constraints designed to prevent denial of service
• Sseq sequence of all possible invocations of a service
• Useq set of sequences of all possible invocations by a user
• UIi,seq⊆ Useq that user Ui can invoke
• C set of operations Ui can perform to consume service
• P set of operations to produce service user Ui consumes
• p < c means operation p ∈ P must precede operation c ∈ C
• Ai set of operations allowed for user Ui

• Ri set of relations between every pair of allowed operations for Ui

Module 25 ECS 235B, Foundations of Computer and Information Security 9

Example

Mutually exclusive resource
• C = { acquire }
• P = { release }
• For p1, p2, Ai = { acquirei, releasei } for i = 1, 2
• For p1, p2, Ri = { (acquirei < releasei) } for i = 1, 2

Module 25 ECS 235B, Foundations of Computer and Information Security 10

Sequences of Operations

• Ui(k) initial subsequence of Ui of length k
• no(Ui(k)) number of times operation o occurs in Ui(k)

• Ui(k) safe if the following 2 conditions hold:
• if o ∈ Ui,seq, then o ∈ Ai; and

• That is, if Ui executes o, it must be an allowed operation for Ui

• for all k, if (o < oʹ) ∈ Ri, then no(Ui(k)) ≥ noʹ(Ui(k))
• That is, if one operation precedes another, the first one must occur more times than the

second

Module 25 ECS 235B, Foundations of Computer and Information Security 11

Resources of Services

• s ∈ Sseq possible sequence of invocations of services
• s blocks on condition c
• May be waiting for service to become available, or processing some response,

etc.

• oi
*(c) represents operation oi blocked, waiting for c to become true
• When execution results, oi(c) represents operation
• Note that when c becomes true, oi

*(c) may not resume immediately

Module 25 ECS 235B, Foundations of Computer and Information Security 12

Resources of Services

• s(0) initial subsequence of s up to operation oi
*(c)

• s(k) subsequence of operations between (k-1)st, kth time c becomes
true after oi

*(c)
• oi*(c) ➝s(k) oi(c): oi blocks waiting on c at end of s(0), resumes

operation at end of s(k)
• Sseq live if for every oi*(c) there is a set of subsequences s(0), ..., s(k)

such that it is initial subsequence of some s ∈ Sseq and oi*(c) ➝s(k) oi(c)

Module 25 ECS 235B, Foundations of Computer and Information Security 13

Example

• Mutually exclusive resource; consider sequence
(acquirei, releasei, acquirei, acquirei, releasei)

with acquirei, releasei ∈ Ai, (acquirei, releasei) ∈ Ri;o = acquirei, oʹ = releasei
• Ui(1) = (acquirei) ⇒ no(Ui(1)) = 1, noʹ(Ui(1)) = 0
• Ui(2) = (acquirei, releasei) ⇒ no(Ui(2)) = 1, noʹ(Ui(2)) = 1
• Ui(3) = (acquirei, releasei, acquirei) ⇒ no(Ui(3)) = 2, noʹ(Ui(3)) = 1
• Ui(4) = (acquirei, releasei, acquirei, acquirei) ⇒ no(Ui(4)) = 3, noʹ(Ui(4)) = 1
• Ui(5) = (acquirei, releasei, acquirei, acquirei, releasei) ⇒

no(Ui(5)) = 3, noʹ(Ui(5)) = 2
• As no(Ui(k)) ≥ noʹ(Ui(k)) for k = 1, ..., 5, the sequence is safe

Module 25 ECS 235B, Foundations of Computer and Information Security 14

Example (con’t)

• Let c be true whenever resource can be released
• That is, initially and whenever a releasei operation is performed

• Consider sequence: (acquire1, acquire2*(c), release1, release2, ... ,
acquirek, acquirek+1(c), releasek, releasek+1, ...)
• For all k ≥ 1, acquirei*(c) ➝s(1) acquirek+1(c), so this is live sequence
• Here, acquirek+1(c) occurs between releasek and releasek+1

Module 25 ECS 235B, Foundations of Computer and Information Security 15

Expressing User Agreements

• Use temporal logics
• Symbols
• ☐: henceforth (the predicate is true and will remain true)
• ◇: eventually (the predicate is either true now, or will become true in the

future)
• ⤳: will lead to (if the first part is true, the second part will eventually become

true); so A ⤳ B is shorthand for A ⇒◇B

Module 25 ECS 235B, Foundations of Computer and Information Security 16

Example

• Acquiring and releasing mutually exclusive resource type
• User agreement: once a process is blocked on an acquire operation,

enough release operations will release enough resources of that type
to allow blocked process to proceed

service resource_allocator
User agreement

in(acquire) ⤳ ((☐◇(#active_release > 0) ∨ (free ≥ acquire.n))
• When a process issues an acquire request, at some later time at least

1 release operation occurs, and enough resources will be freed for the
requesting process to acquire the needed resources

Module 25 ECS 235B, Foundations of Computer and Information Security 17

Finite Waiting Time Policy

• Fairness policy: prevents starvation; ensures process using a resource
will not block indefinitely if given the opportunity to progress
• Simultaneity policy: ensures progress; provides opportunities process

needs to use resource
• User agreement: see earlier
• If these three hold, no process will wait an indefinite time before

accessing and using the resource

Module 25 ECS 235B, Foundations of Computer and Information Security 18

Example

• Continuing example ... these and above user agreement ensure no
indefinite blocking

sharing policies
fairness

(at(acquire) ∧☐◇((free ≥ acquire.n) ∧ (#active = 0))) ⤳ after(acquire)
(at(release) ∧☐◇(#active = 0)) ⤳ after(release)

simultaneity
(in(acquire) ∧ (☐◇(free ≥ acquire.n)) ∧ (☐◇(#active = 0))) ⤳

((free ≥ acquire.n) ∧ (#active = 0))
(in(release) ∧☐◇(#active_release > 0)) ⤳ (free ≥ acquire.n)

Module 25 ECS 235B, Foundations of Computer and Information Security 19

Service Specification

• Interface operations
• Private operations not available outside service
• Resource constraints
• Concurrency constraints
• Finite waiting time policy

Module 25 ECS 235B, Foundations of Computer and Information Security 20

Example:

• Interface operations of the resource allocation/deallocation example
interface operations
acquire(n: units)

exception conditions: quota[id] < own[id] + n
effects: freeʹ = free – n

own[id]ʹ = own[id] + n
release(n: units)

exception conditions: n > own[id]
effects: freeʹ = free + n

own[id]ʹ = own[id] – n

Module 25 ECS 235B, Foundations of Computer and Information Security 21

Example (con’t)

Resource constrains of the resource allocation/deallocation example
resource constraints
1. ☐((free ≥ 0) ∧ (free ≤ size))
2. (∀ id) [☐(own[id] ≥ 0) ∧ (own[id] ≤ quota[id]))]
3. (free = N) ⇒ ((free = N) UNTIL (after(acquire) ∨ after(release)))
4. (∀ id) [(own[id] = M) ⇒ ((own[id] = M) UNTIL (after(acquire) ∨

after(release)))]

Module 25 ECS 235B, Foundations of Computer and Information Security 22

Example (con’t)

Concurrency constraints of the resource allocation/deallocation
example
concurrency constraints
1. ☐(#active ≤ 1)
2. (#active = 1) ⤳ (#active = 1)

Module 25 ECS 235B, Foundations of Computer and Information Security 23

Denial of Service

• Service specification policies, user agreements prevent denial of
service if enforced
• These do not prevent a long wait time; they simply ensure the wait

time is finite

Module 25 ECS 235B, Foundations of Computer and Information Security 24

