ECS 235B Module 25
Constraint-Based Availability
Models

Goals

* Ensure a resource can be accessed in a timely fashion
e Called “quality of service”
* “Timely fashion” depends on nature of resource, the goals of using it

* Closely related to safety and liveness

» Safety: resource does not perform correctly the functions that client is
expecting
* Liveness: resource cannot be accessed

Key Difference

* Mechanisms to support availability in general
* Lack of availability assumes average case, follows a statistical model

* Mechanisms to support availability as security requirement

* Lack of availability assumes worst case, adversary deliberately makes resource
unavailable

* Failures are non-random, may not conform to any useful statistical model

Deadlock

* A state in which some set of processes block each waiting for another
process in set to take come action

* Mutual exclusion: resource not shared

* Hold and wait: process must hold resource and block, waiting other needed
resources to become available

* No preemption: resource being held cannot be released
 Circular wait: set of entities holding resources such that each process waiting
for another process in set to release resources

e Usually not due to an attack

Approaches to Solving Deadlocks

* Prevention: prevent 1 of the 4 conditions from holding
* Do not acquire resources until all needed ones are available
* When needing a new resource, release all held

* Avoidance: ensure process stays in state where deadlock cannot occur
* Safe state: deadlock can not occur
* Unsafe state: may lead to state in which deadlock can occur

* Detection: allow deadlocks to occur, but detect and recover

Denial of Service

* Occurs when a group of authorized users of a service make that
service unavailable to a (disjoint) group of authorized users for a
period of time exceeding a defined maximum waiting time

* First “group of authorized users” here is group of users with access to service,
whether or not the security policy grants them access

* Often abbreviated “DoS” or “D0OS”

* Assumes that, in the absence of other processes, there are enough
resources

e Otherwise problem is not solvable unless more resources created
* Inadequate resources is another type of problem

Components of DoS Model

* Waiting time policy: controls the time between a process requesting a
resource and being allocated that resource
* Denial of service occurs when this waiting time exceeded
 Amount of time depends on environment, goals

* User agreement: establishes constraints that process must meet in
order to access resource
* Here, “user” means a process
* These ensure a process will receive service within the waiting time

Constraint-Based Model (Yu-Gligor)

* Framed in terms of users accessing a server for some services
* User agreement: describes properties that users of servers must meet

* Finite waiting time policy: ensures no user is excluded from using
resource

User Agreement

 Set of constraints designed to prevent denial of service
* Sseqg S€quence of all possible invocations of a service
* U, set of sequences of all possible invocations by a user

* Ujiseq & Useq that user U, can invoke
* Cset of operations U; can perform to consume service
* P set of operations to produce service user U; consumes
* p <c means operation p € P must precede operationc € C
* A;set of operations allowed for user U,
* R;set of relations between every pair of allowed operations for U,

Example

Mutually exclusive resource

 C={acquire }

e P={release }

* For p,, p,, A; ={acquire, release; } fori=1, 2

* For p4, p,, Ri={(acquire;< release;) } fori=1, 2

Sequences of Operations

* U{k) initial subsequence of U, of length k
* n,(U(k)) number of times operation o occurs in U(k)

* U{k) safe if the following 2 conditions hold:
e ifoeU,,., theno € A; and

i,seq’
* That is, if U; executes o, it must be an allowed operation for U;

 forall k, if (0 <0’) € R, then n_(U(k)) =2 n,(U{k))

* That is, if one operation precedes another, the first one must occur more times than the
second

Resources of Services

* S € S, POssible sequence of invocations of services

* s blocks on condition ¢
* May be waiting for service to become available, or processing some response,
etc.
* 0,"(c) represents operation o, blocked, waiting for ¢ to become true
* When execution results, o/(c) represents operation
* Note that when ¢ becomes true, 0,"(c) may not resume immediately

Resources of Services

* 5(0) initial subsequence of s up to operation o;(c)

* s(k) subsequence of operations between (k-1)3t, kth time ¢ becomes
true after o,"(c)

* 0*(c) =) o/c): o; blocks waiting on ¢ at end of s(0), resumes
operation at end of s(k)

* Sieq live it for every 0,*(c) there is a set of subsequences s(0), ..., s(k)
such that it is initial subsequence of some s € S, and 0;*(c) =¥ o/(c)

Example

* Mutually exclusive resource; consider sequence
(acquire,, release;, acquire;, acquire;, release;)
with acquire;, release; € A, (acquire;, release;) € R;; 0 = acquire;, o' = release;
* Ui(1) = (acquire;) = n,(U{1)) = 1, ny(U(1)) = 0
* U{(2) = (acquire;, release;) = n,(U(2)) =1, n(U(2)) =1
* U{(3) = (acquire, release;, acquire;) = n,(U(3)) =2, n,(U(3)) =1
* U{(4) = (acquire, release;, acquire;, acquire;) = n,(U(4)) =3, n,(U(4)) =1
* U(5) = (acquire, release;, acquire;, acquire; release;) =
no(U(5)) = 3, n,(U(5)) = 2
* Asn, (Uik)) 2n,(U{(k)) fork=1, ..., 5, the sequence is safe

Example (con’t)

e Let c be true whenever resource can be released
* That is, initially and whenever a release; operation is performed

* Consider sequence: (acquire,, acquire,”(c), release,, release,, ...,
acquire,, acquire,,,(c), release,, release,,, ...)

* Forall k > 1, acquire*(c) =) acquire,,,(c), so this is live sequence
* Here, acquire,,(c) occurs between release, and release,,,

Expressing User Agreements

* Use temporal logics
* Symbols

e [1: henceforth (the predicate is true and will remain true)
« &:eventually (the predicate is either true now, or will become true in the
future)

* ~: will lead to (if the first part is true, the second part will eventually become
true); so A ~ Bis shorthand for A = B

Example

* Acquiring and releasing mutually exclusive resource type

* User agreement: once a process is blocked on an acquire operation,
enough release operations will release enough resources of that type
to allow blocked process to proceed

service resource_allocator

User agreement
in(acquire) ~ ((

O (#active release > 0) V (free 2 acquire.n))

* When a process issues an acquire request, at some later time at least
1 release operation occurs, and enough resources will be freed for the
requesting process to acquire the needed resources

Finite Waiting Time Policy

* Fairness policy: prevents starvation; ensures process using a resource
will not block indefinitely if given the opportunity to progress

* Simultaneity policy: ensures progress; provides opportunities process
needs to use resource

* User agreement: see earlier

* If these three hold, no process will wait an indefinite time before
accessing and using the resource

Example

e Continuing example ... these and above user agreement ensure no
indefinite blocking

sharing policies
fairness

(at(acquire) A

(at(release) N\

simultaneity
(in(acquire) A (

O ((free =2 acquire.n) A (#active = 0))) ~ after(acquire)

O (#active = 0)) ~ after(release)

O(free 2 acquire.n)) A (

(in(release) A

O (#active = 0))) ~

((free = acquire.n) A\ (#active = 0))

O (#active release > 0)) ~ (free 2 acquire.n)

Service Specification

* Interface operations

* Private operations not available outside service
* Resource constraints

* Concurrency constraints

* Finite waiting time policy

Example:

* Interface operations of the resource allocation/deallocation example
interface operations
acquire(n: units)
exception conditions: guotalid] < ownlid] + n
effects: free' =free—n
ownlid]' = ownlid] + n
release(n: units)
exception conditions: n > ownlid]
effects: free' =free +n
ownlid]’ = ownlid] — n

Example (con’t)

Resource constrains of the resource allocation/deallocation example

resource constraints

1. U((free = 0) A (free < size))

2. (Vid) [L(ownlid] 2 0) A (ownlid] £ quotalid]))]

3. (free = N) = ((free = N) UNTIL (after(acquire) V after(release)))
4. (Vid) [(ownlid] = M) = ((ownlid] = M) UNTIL (after(acquire) V

after(release)))]

Example (con’t)

Concurrency constraints of the resource allocation/deallocation
example

concurrency constraints
1. O(#active < 1)
2. (#active = 1) ~ (#active = 1)

Denial of Service

* Service specification policies, user agreements prevent denial of
service if enforced

* These do not prevent a long wait time; they simply ensure the wait
time is finite

