
ECS 235B Module 31
Role-Based Access Control

Module 31 ECS 235B, Foundations of Computer and Information Security 1

Role-Based Access Control

• Access depends on function, not identity
• Example:

• Allison, bookkeeper for Math Dept, has access to financial records.
• She leaves.
• Betty hired as the new bookkeeper, so she now has access to those records

• The role of “bookkeeper” dictates access, not the identity of the individual.

Module 31 ECS 235B, Foundations of Computer and Information Security 2

Definitions

• Role r: collection of job functions
• trans(r): set of authorized transactions for r

• Active role of subject s: role s is currently in
• actr(s)

• Authorized roles of a subject s: set of roles s is authorized to assume
• authr(s)

• canexec(s, t) iff subject s can execute transaction t at current time

Module 31 ECS 235B, Foundations of Computer and Information Security 3

Axioms

Let S be the set of subjects and T the set of transactions.
• Rule of role assignment: ("s Î S)("t Î T) [canexec(s, t) ® actr(s) ≠ Æ].
• If s can execute a transaction, it has a role
• This ties transactions to roles

• Rule of role authorization: ("s Î S) [actr(s) Í authr(s)].
• Subject must be authorized to assume an active role (otherwise, any subject

could assume any role)

Module 31 ECS 235B, Foundations of Computer and Information Security 4

Axiom

• Rule of transaction authorization:
("s Î S)("t Î T) [canexec(s, t) ® t Î trans(actr(s))].

• If a subject s can execute a transaction, then the transaction is an authorized
one for the role s has assumed

Module 31 ECS 235B, Foundations of Computer and Information Security 5

Containment of Roles

• Trainer can do all transactions that trainee can do (and then some).
This means role r contains role r¢ (r > r¢). So:

("s Î S)[rÎ authr(s) Ù r > r¢ ® r¢ Î authr(s)]

Module 31 ECS 235B, Foundations of Computer and Information Security 6

Separation of Duty

• Let r be a role, and let s be a subject such that r Î auth(s). Then the
predicate meauth(r) (for mutually exclusive authorizations) is the set
of roles that s cannot assume because of the separation of duty
requirement.
• Separation of duty:

("r1, r2 Î R) [r2 Î meauth(r1) ® [("s Î S) [r1Î authr(s) ® r2 Ï authr(s)]]]

Module 31 ECS 235B, Foundations of Computer and Information Security 7

RBAC Hierarchy

• RBAC0: basic model (you just saw it)
• RBAC1: adds role hierarchies to RBAC0

• RBAC2: adds constraints to RBAC0

• RBAC3: adds both role hierarchies, constraints to RBAC0
• It combines RBAC1 and RBAC2

Module 31 ECS 235B, Foundations of Computer and Information Security 8

RBAC0, Formally

• Set of users U, roles R, permissions P, sessions S
• Relation PA ⊆ P × R mapping permissions to roles
• Relation UA ⊆ U × R mapping users to roles
• Function user: S ➝ U mapping each session to a user
• Function roles: S ➝ 2R mapping each session s ∈ S to a set of roles

roles(s) ⊆ { r ∈ R | (user(s), r) ∈ UA }, where s has permissions
 ⋃r∈roles(s){ p ∈ P | (p, r) ∈ PA }

• When a user assumes role r during session, r and hence the user assuming r
gets the set of permissions associated with r

Module 31 ECS 235B, Foundations of Computer and Information Security 9

RBAC1, Intuitively

• Add containment of roles to RBAC0 (this is the hierarchy)
• It’s a partial ordering

• Each role less powerful than its containing role
• Containing role contains job functions (permissions) of the contained role

• Can define private roles in which one role is subordinate to two
others, and those two are not related

ombudsman line management

employee

Module 31 ECS 235B, Foundations of Computer and Information Security 10

RBAC1, Formally

• Set of users U, roles R, permissions P, sessions S
• Partial order RH ⊆ R × R

• Write (r1, r2) ∈ R as r1 ≥ r2
• Relation PA ⊆ P × R mapping permissions to roles
• Relation UA ⊆ U × R mapping users to roles
• Function user: S ➝ U mapping each session to a user
• Function roles: S ➝ 2R mapping each session s ∈ S to a set of roles roles(s)
⊆ { r ∈ R | (∃r’ ≥ r)(user(s), r’) ∈ UA }, where s has permissions

 ⋃r∈roles(s){ p ∈ P | (∃r’’ ≥ r)(p, r’’) ∈ PA }
• When a user assumes role r with subordinate role r’ during session, r and hence the

user assuming r gets the set of permissions associated with r, and hence with r’

Module 31 ECS 235B, Foundations of Computer and Information Security 11

RBAC2 and RBAC3

• RBAC2 adds constraints on values that components can assume to RBAC0
• Example: user can be in only one role at a time
• Example: make 2 roles mutually exclusive

• RBAC3 provides both role hierarchies and constraints that determine
allowable values for relations and functions
• Combines RBAC1 and RBAC2

• Can be extended to manage role and privilege assignments
• A set of administrative roles AR and permissions AP defined disjointly from R and P
• Constraints allow ap ∈ AP to be assigned to ar ∈ AR only, and p ∈ P to r ∈ R only

Module 31 ECS 235B, Foundations of Computer and Information Security 12

Role Engineering

• Role engineering: defining roles and determining needed permissions
• Often used when two organizations using RBAC merge
• Roles in one organization rarely overlap with roles in other
• Job functions often do overlap

• Role mining: analyzing existing roles, permission assignments to
determine optimal assignment of permissions to roles
• NP-complete, but in practice optimal solutions can be approximated or

produced

Module 31 ECS 235B, Foundations of Computer and Information Security 13

