ECS 235B Module 31
Role-Based Access Control

Module 31 ECS 235B, Foundations of Computer and Information Security

Role-Based Access Control

* Access depends on function, not identity

 Example:
* Allison, bookkeeper for Math Dept, has access to financial records.
* She leaves.
e Betty hired as the new bookkeeper, so she now has access to those records

* The role of “bookkeeper” dictates access, not the identity of the individual.

Module 31 ECS 235B, Foundations of Computer and Information Security

Definitions

* Role r: collection of job functions
* trans(r): set of authorized transactions for r

 Active role of subject s: role s is currently in
e actr(s)

* Authorized roles of a subject s: set of roles s is authorized to assume
e authr(s)

* canexec(s, t) iff subject s can execute transaction t at current time

Module 31 ECS 235B, Foundations of Computer and Information Security

AXIOoms

Let S be the set of subjects and T the set of transactions.

* Rule of role assignment: (Vs € S)(Vt € T) [canexec(s, t) — actr(s) # CO)].
* If s can execute a transaction, it has a role
* This ties transactions to roles

* Rule of role authorization: (Vs € S) [actr(s) < authr(s)].

e Subject must be authorized to assume an active role (otherwise, any subject
could assume any role)

Module 31 ECS 235B, Foundations of Computer and Information Security 4

AXiom

* Rule of transaction authorization:

(Vs € S)(Vt € T) [canexec(s, t) — t € trans(actr(s))].

* If a subject s can execute a transaction, then the transaction is an authorized
one for the role s has assumed

Module 31 ECS 235B, Foundations of Computer and Information Security

Containment of Roles

* Trainer can do all transactions that trainee can do (and then some).
This means role r contains role r’(r > r’). So:

(Vs € S)[re authr(s) Ar>r’— r’ e authr(s)]

Module 31 ECS 235B, Foundations of Computer and Information Security

Separation of Duty

* Let r be arole, and let s be a subject such that r € auth(s). Then the
predicate meauth(r) (for mutually exclusive authorizations) is the set
of roles that s cannot assume because of the separation of duty
requirement.

e Separation of duty:
(VMry, ry € R) [r, € meauth(ry) > [(Vs € S) [rye authr(s) — r, ¢ authr(s)]]]

Module 31 ECS 235B, Foundations of Computer and Information Security

RBAC Hierarchy

* RBAC,: basic model (you just saw it)
* RBAC;: adds role hierarchies to RBAC,
* RBAC,: adds constraints to RBAC,

* RBAC;: adds both role hierarchies, constraints to RBAC,
* It combines RBAC,; and RBAC,

Module 31 ECS 235B, Foundations of Computer and Information Security

RBAC,, Formally

 Set of users U, roles R, permissions P, sessions S

* Relation PA € P x R mapping permissions to roles

* Relation UA € U x R mapping users to roles

* Function user: S = U mapping each session to a user

* Function roles: S — 2R mapping each session s € S to a set of roles
roles(s) € {r € R | (user(s), r) € UA }, where s has permissions

U eroresis{P EP | (p, r) EPA}

* When a user assumes role r during session, r and hence the user assuming r
gets the set of permissions associated with r

Module 31 ECS 235B, Foundations of Computer and Information Security

RBAC,, Intuitively

* Add containment of roles to RBAC, (this is the hierarchy)
* |t's a partial ordering

e Each role less powerful than its containing role
e Containing role contains job functions (permissions) of the contained role

e Can define private roles in which one role is subordinate to two
others, and those two are not related

ombudsman line management

\ /

employee

Module 31 ECS 235B, Foundations of Computer and Information Security

10

RBAC,, Formally

* Set of users U, roles R, permissions P, sessions S

* Partial order RH<S R xR
* Write (r;, r,) ERasry2r,

* Relation PA € P x R mapping permissions to roles
* Relation UA € U x R mapping users to roles
* Function user: S = U mapping each session to a user

* Function roles: S — 2% mapping each session s € S to a set of roles roles(s)
C{reR | (3r =r)(user(s), r') € UA}, where s has permissions

UrEroles(s){ P EP | (Elru 2 I’)(P, I'”) € PA }

 When a user assumes role r with subordinate role r during session, r and hence the
user assuming r gets the set of permissions associated with r, and hence with r’

Module 31 ECS 235B, Foundations of Computer and Information Security

11

RBAC, and RBAC,

* RBAC, adds constraints on values that components can assume to RBAC,
 Example: user can be in only one role at a time
 Example: make 2 roles mutually exclusive

* RBAC; provides both role hierarchies and constraints that determine
allowable values for relations and functions

* Combines RBAC,; and RBAC,

* Can be extended to manage role and privilege assignments

* A set of administrative roles AR and permissions AP defined disjointly from R and P
e Constraints allow ap € AP to be assigned to ar € ARonly,and p € Ptor € Ronly

Module 31 ECS 235B, Foundations of Computer and Information Security

12

Role Engineering

* Role engineering: defining roles and determining needed permissions

e Often used when two organizations using RBAC merge
* Roles in one organization rarely overlap with roles in other
* Job functions often do overlap

* Role mining: analyzing existing roles, permission assignments to
determine optimal assignment of permissions to roles

* NP-complete, but in practice optimal solutions can be approximated or
produced

Module 31 ECS 235B, Foundations of Computer and Information Security 13

