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Role-Based Access Control

• Access depends on function, not identity
• Example:

• Allison, bookkeeper for Math Dept, has access to financial records.
• She leaves.
• Betty hired as the new bookkeeper, so she now has access to those records

• The role of “bookkeeper” dictates access, not the identity of the individual.
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Definitions

• Role r: collection of job functions
• trans(r): set of authorized transactions for r

• Active role of subject s: role s is currently in
• actr(s)

• Authorized roles of a subject s: set of roles s is authorized to assume
• authr(s)

• canexec(s, t) iff subject s can execute transaction t at current time
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Axioms

Let S be the set of subjects and T the set of transactions.
• Rule of role assignment: ("s Î S)("t Î T) [canexec(s, t) ® actr(s) ≠ Æ].
• If s can execute a transaction, it has a role
• This ties transactions to roles

• Rule of role authorization: ("s Î S) [actr(s) Í authr(s)].
• Subject must be authorized to assume an active role (otherwise, any subject 

could assume any role)
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Axiom

• Rule of transaction authorization: 
("s Î S)("t Î T) [canexec(s, t) ® t Î trans(actr(s))].

• If a subject s can execute a transaction, then the transaction is an authorized 
one for the role s has assumed
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Containment of Roles

• Trainer can do all transactions that trainee can do (and then some). 
This means role r contains role r¢ (r > r¢). So:

("s Î S)[ rÎ authr(s) Ù r > r¢ ® r¢ Î authr(s) ]
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Separation of Duty

• Let r be a role, and let s be a subject such that r Î auth(s). Then the 
predicate meauth(r) (for mutually exclusive authorizations) is the set 
of roles that s cannot assume because of the separation of duty 
requirement.
• Separation of duty:

("r1, r2 Î R) [ r2 Î meauth(r1) ® [ ("s Î S) [ r1Î authr(s) ® r2 Ï authr(s) ] ] ]
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RBAC Hierarchy

• RBAC0: basic model (you just saw it)
• RBAC1: adds role hierarchies to RBAC0

• RBAC2: adds constraints to RBAC0

• RBAC3: adds both role hierarchies, constraints to RBAC0
• It combines RBAC1 and RBAC2
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RBAC0, Formally

• Set of users U, roles R, permissions P, sessions S
• Relation PA ⊆ P × R mapping permissions to roles
• Relation UA ⊆ U × R mapping users to roles
• Function user: S ➝ U mapping each session to a user
• Function roles: S ➝ 2R mapping each session s ∈ S to a set of roles 

roles(s) ⊆ { r ∈ R | (user(s), r) ∈ UA }, where s has permissions
 ⋃r∈roles(s){ p ∈ P | (p, r) ∈ PA }

• When a user assumes role r during session, r and hence the user assuming r 
gets the set of permissions associated with r
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RBAC1, Intuitively

• Add containment of roles to RBAC0 (this is the hierarchy)
• It’s a partial ordering

• Each role less powerful than its containing role
• Containing role contains job functions (permissions) of the contained role

• Can define private roles in which one role is subordinate to two 
others, and those two are not related

ombudsman line management

employee
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RBAC1, Formally

• Set of users U, roles R, permissions P, sessions S
• Partial order RH ⊆ R × R

• Write (r1, r2) ∈ R as r1 ≥ r2
• Relation PA ⊆ P × R mapping permissions to roles
• Relation UA ⊆ U × R mapping users to roles
• Function user: S ➝ U mapping each session to a user
• Function roles: S ➝ 2R mapping each session s ∈ S to a set of roles roles(s) 
⊆ { r ∈ R | (∃r’ ≥ r)(user(s), r’) ∈ UA }, where s has permissions

 ⋃r∈roles(s){ p ∈ P | (∃r’’ ≥ r)( p, r’’) ∈ PA }
• When a user assumes role r with subordinate role r’ during session, r and hence the 

user assuming r gets the set of permissions associated with r, and hence with r’
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RBAC2 and RBAC3

• RBAC2 adds constraints on values that components can assume to RBAC0
• Example: user can be in only one role at a time
• Example: make 2 roles mutually exclusive

• RBAC3 provides both role hierarchies and constraints that determine 
allowable values for relations and functions
• Combines RBAC1 and RBAC2

• Can be extended to manage role and privilege assignments
• A set of administrative roles AR and permissions AP defined disjointly from R and P
• Constraints allow ap ∈ AP to be assigned to ar ∈ AR only, and p ∈ P to r ∈ R only
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Role Engineering

• Role engineering: defining roles and determining needed permissions
• Often used when two organizations using RBAC merge
• Roles in one organization rarely overlap with roles in other
• Job functions often do overlap

• Role mining: analyzing existing roles, permission assignments to 
determine optimal assignment of permissions to roles
• NP-complete, but in practice optimal solutions can be approximated or 

produced
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