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Composition of Policies

* Two organizations have two security policies

* They merge
* How do they combine security policies to create one security policy?
* Can they create a coherent, consistent security policy?
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The Problem

 Single system with 2 users
* Each has own virtual machine
* Holly at system high, Lara at system low so they cannot communicate directly

* CPU shared between VMs based on load
* Forms a covert channel through which Holly, Lara can communicate
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Example Protocol

* Holly, Lara agree:
* Begin at noon
e Lara will sample CPU utilization every minute

* To send 1 bit, Holly runs program
* Raises CPU utilization to over 60%

e To send O bit, Holly does not run program
e CPU utilization will be under 40%

* Not “writing” in traditional sense
* But information flows from Holly to Lara
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Policy vs. Mechanism

* Can be hard to separate these

* In the abstract: CPU forms channel along which information can be
transmitted

 Violates *-property
* Not “writing” in traditional sense

* Conclusion:

* Bell-LaPadula model does not give sufficient conditions to prevent
communication, or

* System is improperly abstracted; need a better definition of “writing”
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Composition of Bell-LaPadula

* Why?
* Some standards require secure components to be connected to form secure
(distributed, networked) system

 Question
 Under what conditions is this secure?

* Assumptions

* Implementation of systems precise with respect to each system’s security
policy
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Issues

 Compose the lattices

* What is relationship among labels?
* |If the same, trivial
* |f different, new lattice must reflect the relationships among the levels
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Analysis

e Assume S<HIGH < TS
 Assume SOUTH, EAST, WEST different

* Resulting lattice has:
* 4 clearances (LOW < S < HIGH < TS)
» 3 categories (SOUTH, EAST, WEST)
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Same Policies

* If we can change policies that components must meet, composition is
trivial (as above)

* If we cannot, we must show composition meets the same policy as
that of components; this can be very hard
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Different Policies

e What does “secure” now mean?
* Which policy (components) dominates?

* Possible principles:
* Any access allowed by policy of a component must be allowed by composition
of components (autonomy)

* Any access forbidden by policy of a component must be forbidden by
composition of components (security)
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Implications

 Composite system satisfies security policy of components as
components’ policies take precedence

* If something neither allowed nor forbidden by principles, then:
* Allow it (Gong & Qian)
e Disallow it (Fail-Safe Defaults)
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Example

e System X: Bob can’t access Alice’s files
e System Y: Eve, Lilith can access each other’s files

* Composition policy:
 Bob can access Eve’s files
e Lilith can access Alice’s files

e Question: can Bob access Lilith’s files?
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Solution (Gong & Qian)

* Notation:
* (g, b): a can read b’s files
* AS(x): access set of system x
* Set-up:
« AS(X) =
* AS(Y) ={ (Eve, Lilith), (Lilith, Eve) }
e AS(XUY) ={ (Bob, Eve), (Lilith, Alice), (Eve, Lilith), (Lilith, Eve) }
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Solution (Gong & Qian)

 Compute transitive closure of AS(XUY):
* AS(XUY)* ={(Bob, Eve), (Bob, Lilith), (Bob, Alice), (Eve, Lilith), (Eve, Alice),
(Lilith, Eve), (Lilith, Alice) }

* Delete accesses conflicting with policies of components:
* Delete (Bob, Alice)

* (Bob, Lilith) in set, so Bob can access Lilith’s files
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ldea

* Composition of policies allows accesses not mentioned by original
policies

* Generate all possible allowed accesses
* Computation of transitive closure

 Eliminate forbidden accesses
* Removal of accesses disallowed by individual access policies

* Everything else is allowed
* Note: determining if access allowed is of polynomial complexity
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