ECS 235B Module 34
Policy Composition

Module 34 ECS 235B, Foundations of Computer and Information Security



Composition of Policies

* Two organizations have two security policies

* They merge
* How do they combine security policies to create one security policy?
* Can they create a coherent, consistent security policy?

Module 34 ECS 235B, Foundations of Computer and Information Security



The Problem

 Single system with 2 users
* Each has own virtual machine
* Holly at system high, Lara at system low so they cannot communicate directly

* CPU shared between VMs based on load
* Forms a covert channel through which Holly, Lara can communicate

Module 34 ECS 235B, Foundations of Computer and Information Security



Example Protocol

* Holly, Lara agree:
* Begin at noon
e Lara will sample CPU utilization every minute

* To send 1 bit, Holly runs program
* Raises CPU utilization to over 60%

e To send O bit, Holly does not run program
e CPU utilization will be under 40%

* Not “writing” in traditional sense
* But information flows from Holly to Lara

Module 34 ECS 235B, Foundations of Computer and Information Security



Policy vs. Mechanism

* Can be hard to separate these

* In the abstract: CPU forms channel along which information can be
transmitted

 Violates *-property
* Not “writing” in traditional sense

* Conclusion:

* Bell-LaPadula model does not give sufficient conditions to prevent
communication, or

* System is improperly abstracted; need a better definition of “writing”

Module 34 ECS 235B, Foundations of Computer and Information Security



Composition of Bell-LaPadula

* Why?
* Some standards require secure components to be connected to form secure
(distributed, networked) system

 Question
 Under what conditions is this secure?

* Assumptions

* Implementation of systems precise with respect to each system’s security
policy

Module 34 ECS 235B, Foundations of Computer and Information Security



Issues

 Compose the lattices

* What is relationship among labels?
* |If the same, trivial
* |f different, new lattice must reflect the relationships among the levels

Module 34 ECS 235B, Foundations of Computer and Information Security



Example

(HIGH, { EAST, WEST })

N

(HIGH, { EAST })

(TS, { EAST, SOUTH } )

pd

(HIGH, { WEST })

(TS, { SOUTH })

(TS, { EAST })

~ 7

(LOW )

Module 34

('S, { EAST, SOUTH })

N

(S, { EAST }) (S, { SOUTH })

N

(LOW )

ECS 235B, Foundations of Computer and Information Security



Analysis

e Assume S<HIGH < TS
 Assume SOUTH, EAST, WEST different

* Resulting lattice has:
* 4 clearances (LOW < S < HIGH < TS)
» 3 categories (SOUTH, EAST, WEST)

Module 34 ECS 235B, Foundations of Computer and Information Security



Same Policies

* If we can change policies that components must meet, composition is
trivial (as above)

* If we cannot, we must show composition meets the same policy as
that of components; this can be very hard

Module 34 ECS 235B, Foundations of Computer and Information Security 10



Different Policies

e What does “secure” now mean?
* Which policy (components) dominates?

* Possible principles:
* Any access allowed by policy of a component must be allowed by composition
of components (autonomy)

* Any access forbidden by policy of a component must be forbidden by
composition of components (security)

Module 34 ECS 235B, Foundations of Computer and Information Security 11



Implications

 Composite system satisfies security policy of components as
components’ policies take precedence

* If something neither allowed nor forbidden by principles, then:
* Allow it (Gong & Qian)
e Disallow it (Fail-Safe Defaults)

Module 34 ECS 235B, Foundations of Computer and Information Security

12



Example

e System X: Bob can’t access Alice’s files
e System Y: Eve, Lilith can access each other’s files

* Composition policy:
 Bob can access Eve’s files
e Lilith can access Alice’s files

e Question: can Bob access Lilith’s files?

Module 34 ECS 235B, Foundations of Computer and Information Security

13



Solution (Gong & Qian)

* Notation:
* (g, b): a can read b’s files
* AS(x): access set of system x
* Set-up:
« AS(X) =
* AS(Y) ={ (Eve, Lilith), (Lilith, Eve) }
e AS(XUY) ={ (Bob, Eve), (Lilith, Alice), (Eve, Lilith), (Lilith, Eve) }

Module 34 ECS 235B, Foundations of Computer and Information Security

14



Solution (Gong & Qian)

 Compute transitive closure of AS(XUY):
* AS(XUY)* ={(Bob, Eve), (Bob, Lilith), (Bob, Alice), (Eve, Lilith), (Eve, Alice),
(Lilith, Eve), (Lilith, Alice) }

* Delete accesses conflicting with policies of components:
* Delete (Bob, Alice)

* (Bob, Lilith) in set, so Bob can access Lilith’s files

Module 34 ECS 235B, Foundations of Computer and Information Security

15



ldea

* Composition of policies allows accesses not mentioned by original
policies

* Generate all possible allowed accesses
* Computation of transitive closure

 Eliminate forbidden accesses
* Removal of accesses disallowed by individual access policies

* Everything else is allowed
* Note: determining if access allowed is of polynomial complexity

Module 34 ECS 235B, Foundations of Computer and Information Security

16



