
ECS 235B Module 35
Introduction to Noninterference

Module 35 ECS 235B, Foundations of Computer and Information Security 1



Interference

• Think of it as something used in communication
• Holly/Lara example: Holly interferes with the CPU utilization, and Lara detects 

it — communication

• Plays role of writing (interfering) and reading (detecting the 
interference)

Module 35 ECS 235B, Foundations of Computer and Information Security 2



Model

• System as state machine
• Subjects S = { si }
• States S = { si }
• Outputs O = { oi }
• Commands Z = { zi }
• State transition commands C = S ´ Z

• Note: no inputs
• Encode either as selection of commands or in state transition commands

Module 35 ECS 235B, Foundations of Computer and Information Security 3



Functions

• State transition function T: C ´ S ® S
• Describes effect of executing command c in state s

• Output function P: C ´ S ® O
• Output of machine when executing command c in state s

• Initial state is s0

Module 35 ECS 235B, Foundations of Computer and Information Security 4



Example: 2-Bit Machine

• Users Heidi (high), Lucy (low) 
• 2 bits of state, H (high) and L (low)
• System state is (H, L) where H, L are 0, 1

• 2 commands: xor0, xor1 do xor with 0, 1
• Operations affect both state bits regardless of whether Heidi or Lucy issues it

Module 35 ECS 235B, Foundations of Computer and Information Security 5



Example: 2-bit Machine

• S = { Heidi, Lucy }
• S = { (0,0), (0,1), (1,0), (1,1) }
• C = { xor0, xor1 }

Input States (H, L)
(0,0) (0,1) (1,0) (1,1)

xor0 (0,0) (0,1) (1,0) (1,1)
xor1 (1,1) (1,0) (0,1) (0,0)

Module 35 ECS 235B, Foundations of Computer and Information Security 6



Outputs and States

• T is inductive in first argument, as
T(c0, s0) = s1; T(ci+1, si+1) = T(ci+1,T(ci,si))

• Let C* be set of possible sequences of commands in C
• T*: C* ´ S ® S and

cs = c0…cn Þ T*(cs,si) = T(cn,…,T(c0,si)…)

• P similar; define P*: C* ´ S ® O similarly

Module 35 ECS 235B, Foundations of Computer and Information Security 7



Projection

• T*(cs,si) sequence of state transitions
• P*(cs,si) corresponding outputs
• proj(s, cs, si) set of outputs in P*(cs,si) that subject s authorized to see
• In same order as they occur in P*(cs,si)
• Projection of outputs for s

• Intuition: list of outputs after removing outputs that s cannot see

Module 35 ECS 235B, Foundations of Computer and Information Security 8



Purge

• G Í S, G a group of subjects
• A Í Z, A a set of commands
• pG(cs) subsequence of cs with all elements (s,z), s Î G deleted
• pA(cs) subsequence of cs with all elements (s,z), z Î A deleted
• pG,A(cs) subsequence of cs with all elements (s,z), s Î G and z Î A 

deleted

Module 35 ECS 235B, Foundations of Computer and Information Security 9



Example: 2-bit Machine

• Let s0 = (0,1)
• 3 commands applied:
• Heidi applies xor0
• Lucy applies xor1
• Heidi applies xor1

• cs = ( (Heidi, xor0), (Lucy, xor1), (Heidi, xor1) )
• Output is 011001
• Shorthand for sequence (0,1) (1,0) (0,1)

Module 35 ECS 235B, Foundations of Computer and Information Security 10



Example

• proj(Heidi, cs, s0) = 011001
• proj(Lucy, cs, s0) = 101
• pLucy(cs) = (Heidi, xor0), (Heidi, xor1)
• pLucy,xor1(cs) = (Heidi, xor0), (Heidi, xor1)
• pHeidi (cs) = (Lucy, xor1)
• pLucy,xor0(cs) = (Heidi, xor0), (Lucy, xor1), (Heidi, xor1)
• pHeidi,xor0(cs) = pxor0(cs) = (Lucy, xor1), (Heidi, xor1)
• pHeidi,xor1(cs) = (Heidi, xor0), (Lucy, xor1)
• pxor1(cs) = (Heidi, xor0)

Module 35 ECS 235B, Foundations of Computer and Information Security 11



Noninterference

• Intuition: If set of outputs Lucy can see corresponds to set of inputs 
she can see, there is no interference
• Formally: G, G¢ Í S, G ≠ G¢; A Í Z; users in G executing commands in A 

are noninterfering with users in G¢ iff for all cs Î C*, and for all s Î G¢,
proj(s, cs, si) = proj(s, pG,A(cs), si)

• Written A,G :| G¢

Module 35 ECS 235B, Foundations of Computer and Information Security 12



Example: 2-Bit Machine

• Let cs = ( (Heidi, xor0), (Lucy, xor1), (Heidi, xor1) ) and s0 = (0, 1)
• As before

• Take G = { Heidi }, G¢ = { Lucy }, A = Æ
• pHeidi(cs) = (Lucy, xor1)
• So proj(Lucy, pHeidi(cs), s0) = 0

• proj(Lucy, cs, s0) = 101
• So { Heidi } :| { Lucy } is false
• Makes sense; commands issued to change H bit also affect L bit

Module 35 ECS 235B, Foundations of Computer and Information Security 13



Example

• Same as before, but Heidi’s commands affect H bit only, Lucy’s the L 
bit only
• Output is 0H0L1H

• pHeidi(cs) = (Lucy, xor1)
• So proj(Lucy, pHeidi(cs), s0) = 0

• proj(Lucy, cs, s0) = 0
• So { Heidi } :| { Lucy } is true
• Makes sense; commands issued to change H bit now do not affect L bit

Module 35 ECS 235B, Foundations of Computer and Information Security 14


