ECS 235B Module 39 Policy Composition I

Policy Composition I

- Assumed: Output function of input
 - Means deterministic (else not function)
 - Means uninterruptability (differences in timings can cause differences in states, hence in outputs)
- This result for deterministic, noninterference-secure systems

Compose Systems

- Louie, Dewey LOW
- Hughie HIGH
- *b_L* output buffer
 - Anyone can read it
- *b_H* input buffer
 - From HIGH source
- Hughie reads from:
 - *b*_{IH} (Louie writes)
 - *b_{LDH}* (Louie, Dewey write)
 - *b_{DH}* (Dewey writes)

Systems Secure

- All noninterference-secure
 - Hughie has no output
 - So inputs don't interfere with it
 - Louie, Dewey have no input
 - So (nonexistent) inputs don't interfere with outputs

Security of Composition

- Buffers finite, sends/receives blocking: composition not secure!
 - Example: assume b_{DH} , b_{LH} have capacity 1
- Algorithm:
 - 1. Louie (Dewey) sends message to b_{LH} (b_{DH})
 - Fills buffer
 - 2. Louie (Dewey) sends second message to b_{LH} (b_{DH})
 - 3. Louie (Dewey) sends a 0 (1) to b_L
 - 4. Louie (Dewey) sends message to b_{LDH}
 - Signals Hughie that Louie (Dewey) completed a cycle

Hughie

- Reads bit from b_H
 - If 0, receive message from b_{LH}
 - If 1, receive message from b_{DH}
- Receive on b_{LDH}
 - To wait for buffer to be filled

Example

- Hughie reads 0 from b_H
 - Reads message from b_{IH}
- Now Louie's second message goes into b_{LH}
 - Louie completes setp 2 and writes 0 into b_L
- Dewey blocked at step 1
 - Dewey cannot write to b_L
- Symmetric argument shows that Hughie reading 1 produces a 1 in b_L
- So, input from b_H copied to output b_L