ECS 235B Module 39 Policy Composition I ## Policy Composition I - Assumed: Output function of input - Means deterministic (else not function) - Means uninterruptability (differences in timings can cause differences in states, hence in outputs) - This result for deterministic, noninterference-secure systems #### Compose Systems - Louie, Dewey LOW - Hughie HIGH - *b_L* output buffer - Anyone can read it - *b_H* input buffer - From HIGH source - Hughie reads from: - *b*_{IH} (Louie writes) - *b_{LDH}* (Louie, Dewey write) - *b_{DH}* (Dewey writes) #### Systems Secure - All noninterference-secure - Hughie has no output - So inputs don't interfere with it - Louie, Dewey have no input - So (nonexistent) inputs don't interfere with outputs #### Security of Composition - Buffers finite, sends/receives blocking: composition not secure! - Example: assume b_{DH} , b_{LH} have capacity 1 - Algorithm: - 1. Louie (Dewey) sends message to b_{LH} (b_{DH}) - Fills buffer - 2. Louie (Dewey) sends second message to b_{LH} (b_{DH}) - 3. Louie (Dewey) sends a 0 (1) to b_L - 4. Louie (Dewey) sends message to b_{LDH} - Signals Hughie that Louie (Dewey) completed a cycle ### Hughie - Reads bit from b_H - If 0, receive message from b_{LH} - If 1, receive message from b_{DH} - Receive on b_{LDH} - To wait for buffer to be filled #### Example - Hughie reads 0 from b_H - Reads message from b_{IH} - Now Louie's second message goes into b_{LH} - Louie completes setp 2 and writes 0 into b_L - Dewey blocked at step 1 - Dewey cannot write to b_L - Symmetric argument shows that Hughie reading 1 produces a 1 in b_L - So, input from b_H copied to output b_L