
ECS 235B Module 40
Nondeducibility

Module 40 1ECS 235B, Foundations of Computer and Information Security

Nondeducibility

• Noninterference: do state transitions caused by high level commands
interfere with sequences of state transitions caused by low level
commands?
• Really case about inputs and outputs:
• Can low level subject deduce anything about high level outputs from a set of

low level outputs?

Module 40 2ECS 235B, Foundations of Computer and Information Security

Example: 2-Bit System

• High operations change only High bit
• Similar for Low

• s0 = (0, 0)
• Sequence of commands:
• (Heidi, xor1), (Lara, xor0), (Lara, xor1), (Lara, xor0), (Heidi, xor1), (Lara, xor0)
• Both bits output after each command

• Output is: 00101011110101

Module 40 3ECS 235B, Foundations of Computer and Information Security

Security

• Not noninterference-secure w.r.t. Lara
• Lara sees output as 0001111
• Delete High outputs and she sees 00111

• But Lara still cannot deduce the commands deleted
• Don’t affect values; only lengths

• So it is deducibly secure
• Lara can’t deduce the commands Heidi gave

Module 40 4ECS 235B, Foundations of Computer and Information Security

Event System

• 4-tuple (E, I, O, T)
• E set of events
• I Í E set of input events
• O Í E set of output events
• T set of all finite sequences of events legal within system

• E partitioned into H, L
• H set of High events
• L set of Low events

Module 40 5ECS 235B, Foundations of Computer and Information Security

More Events …

• H Ç I set of High inputs
• H Ç O set of High outputs
• L Ç I set of Low inputs
• L Ç O set of Low outputs
• TLow set of all possible sequences of Low events that are legal within

system
• pL:T®TLow projection function deleting all High inputs from trace
• Low observer should not be able to deduce anything about High inputs from

trace tLow Î Tlow

Module 40 6ECS 235B, Foundations of Computer and Information Security

Deducibly Secure

• System deducibly secure if for all traces tLow Î TLow, the corresponding
set of high level traces contains every possible trace t Î T for which
pL(t) = tLow
• Given any tLow, the trace t Î T producing that tLow is equally likely to be any

trace with pL(t) = tLow

Module 40 7ECS 235B, Foundations of Computer and Information Security

Example: 2-Bit Machine

• Let xor0, xor1 apply to both bits, and both bits output after each
command
• Initial state: (0, 1)
• Inputs: 1H0L1L0H1L0L

• Outputs: 10 10 01 01 10 10
• Lara (at Low) sees: 001100
• Does not know initial state, so does not know first input; but can deduce

fourth input is 0

• Not deducibly secure

Module 40 8ECS 235B, Foundations of Computer and Information Security

Example: 2-Bit Machine

• Now xor0, xor1 apply only to state bit with same level as user
• Inputs: 1H0L1L0H1L0L

• Outputs: 1011111011
• Lara sees: 01101
• She cannot deduce anything about input
• Could be 0H0L1L0H1L0L or 0L1H1L0H1L0L for example

• Deducibly secure

Module 40 9ECS 235B, Foundations of Computer and Information Security

Security of Composition

• In general: deducibly secure systems not composable
• Strong noninterference: deducible security + requirement that no

High output occurs unless caused by a High input
• Systems meeting this property are composable

Module 40 10ECS 235B, Foundations of Computer and Information Security

Example

• 2-bit machine done earlier does not exhibit strong noninterference
• Because it puts out High bit even when there is no High input

• Modify machine to output only state bit at level of latest input
• Now it exhibits strong noninterference

Module 40 11ECS 235B, Foundations of Computer and Information Security

Problem

• Too restrictive; it bans some systems that are obviously secure
• Example: System upgrade reads Low inputs, outputs those bits at

High
• Clearly deducibly secure: low level user sees no outputs
• Clearly does not exhibit strong noninterference, as no high level inputs!

Module 40 12ECS 235B, Foundations of Computer and Information Security

Remove Determinism

• Previous assumption
• Input, output synchronous
• Output depends only on commands triggered by input

• Sometimes absorbed into commands …
• Input processed one datum at a time

• Not realistic
• In real systems, lots of asynchronous events

Module 40 13ECS 235B, Foundations of Computer and Information Security

Generalized Noninterference

• Nondeterministic systems meeting noninterference property meet
generalized noninterference-secure property
• More robust than nondeducible security because minor changes in

assumptions affect whether system is nondeducibly secure

Module 40 14ECS 235B, Foundations of Computer and Information Security

Example

• System with High Holly, Low Lucy, text file at High
• File fixed size, symbol ✧ marks empty space
• Holly can edit file, Lucy can run this program:

 while true do begin
 n := read_integer_from_user;
 if n > file_length or char_in_file[n] = ✧ then
 print random_character;
 else
 print char_in_file[n];
 end;

Module 40 15ECS 235B, Foundations of Computer and Information Security

Security of System

• Not noninterference-secure
• High level inputs—Holly’s changes—affect low level outputs

• May be deducibly secure
• Can Lucy deduce contents of file from program?
• If output meaningful (“This is right”) or close (“Thes is riqht”), yes
• Otherwise, no

• So deducibly secure depends on which inferences are allowed

Module 40 16ECS 235B, Foundations of Computer and Information Security

Composition of Systems

• Does composing systems meeting generalized noninterference-secure
property give you a system that also meets this property?
• Define two systems (cat, dog)
• Compose them

Module 40 17ECS 235B, Foundations of Computer and Information Security

First System: cat

• Inputs, outputs can go left or
right
• After some number of inputs,

cat sends two outputs
• First stop_count
• Second parity of High inputs,

outputs

cat

HIGH HIGH

LOW
stop_count

LOW

0 or 1

Module 40 18ECS 235B, Foundations of Computer and Information Security

Noninterference-Secure?

• If even number of High inputs, output could be:
• 0 (even number of outputs)
• 1 (odd number of outputs)

• If odd number of High inputs, output could be:
• 0 (odd number of outputs)
• 1 (even number of outputs)

• High level inputs do not affect output
• So noninterference-secure

Module 40 19ECS 235B, Foundations of Computer and Information Security

Second System: dog

• High outputs to left
• Low outputs of 0 or 1 to right
• stop_count input from the left
• When it arrives, dog emits 0 or 1

dog

HIGH

HIGH LOW

stop_count

LOW
0 or 1

Module 40 20ECS 235B, Foundations of Computer and Information Security

Noninterference-Secure?

• When stop_count arrives:
• May or may not be inputs for which there are no corresponding outputs
• Parity of High inputs, outputs can be odd or even
• Hence dog emits 0 or 1

• High level inputs do not affect low level outputs
• So noninterference-secure

Module 40 21ECS 235B, Foundations of Computer and Information Security

Compose Them

• Once sent, message arrives
• But stop_count may arrive before all inputs have generated corresponding

outputs
• If so, even number of High inputs and outputs on cat, but odd number on
dog

• Four cases arise

cat

HIGH

LOW

0 or 1

dog

HIGH

HIGH LOW

stop_count
LOW

0 or 1

Module 40 22ECS 235B, Foundations of Computer and Information Security

The Cases

• cat, odd number of inputs, outputs; dog, even number of inputs, odd number of
outputs
• Input message from cat not arrived at dog, contradicting assumption

• cat, even number of inputs, outputs; dog, odd number of inputs, even number of
outputs
• Input message from dog not arrived at cat, contradicting assumption

Module 40 23ECS 235B, Foundations of Computer and Information Security

The Cases

• cat, odd number of inputs, outputs; dog, odd number of inputs, even number of
outputs
• dog sent even number of outputs to cat, so cat has had at least one input from left

• cat, even number of inputs, outputs; dog, even number of inputs, odd number of
outputs
• dog sent odd number of outputs to cat, so cat has had at least one input from left

Module 40 24ECS 235B, Foundations of Computer and Information Security

The Conclusion

• Composite system catdog emits 0 to left, 1 to right (or 1 to left, 0 to right)
• Must have received at least one input from left

• Composite system catdog emits 0 to left, 0 to right (or 1 to left, 1 to right)
• Could not have received any from left (i.e., no HIGH inputs)

• So, High inputs affect Low outputs
• Not noninterference-secure

Module 40 25ECS 235B, Foundations of Computer and Information Security

