ECS 235B Module 51
Isolation

Module 51 ECS 235B, Foundations of Computer and Information Security

Isolation

* Constrain process execution in such a way it can only interact with
other entities in a manner preserving isolation
* Hardware isolation
* Virtual machines
* Library operating systems
e Sandboxes
* Modify program or process so that its actions will preserve isolation
* Program rewriting
* Compiling
* Loading

Module 51 ECS 235B, Foundations of Computer and Information Security

Hardware Isolation

* Ensure the hardware is disconnected from any other system
* This includes networking, including wireless

e Example: SCADA systems

« 15t generation: serial protocols, not connected to other systems or networks; no
security defenses needed, focus being on malfunctions

« 2"d generation: serial networks connected to computers not connected to Internet

3" generation: TCP/IP protocol running on networks connected to Internet; need
security defenses for attackers coming in over Internet

* Example: electronic voting systems
* Physical isolation protects systems from attackers changing votes remotely
* Required in many U.S. states, such as California: never connect them to any network

Module 51 ECS 235B, Foundations of Computer and Information Security

Virtual Machine

* Program that simulates hardware of a machine
 Machine may be an existing, physical one or an abstract one

» Uses special operating system, called virtual machine monitor (VMM) or
hypervisor, to provide environment simulating target machine

* Types of virtual machines
* Type 1 hypervisor: runs directly on hardware
* Type 2 hypervisor: runs on another operating system

* Existing OSes do not need to be modified
* Run under VMM, which enforces security policy
 Effectively, VMM is a security kernel

Module 51 ECS 235B, Foundations of Computer and Information Security

VMM as Security Kernel

VMM deals with subjects (the VMs)
* Knows nothing about the processes within the VM

VMM applies security checks to subjects
e By transitivity, these controls apply to processes on VMs

* Thus, satisfies rule of transitive confinement

Module 51 ECS 235B, Foundations of Computer and Information Security

Example 1: KVM/370

* KVM/370 is security-enhanced version of VM/370 VMM
* Goal: prevent communications between VMs of different security classes

* Like VM/370, provides VMs with minidisks, sharing some portions of those
disks

* Unlike VM/370, mediates access to shared areas to limit communication in
accordance with security policy

Module 51 ECS 235B, Foundations of Computer and Information Security

Example 2: VAX/VMM

e Can run either VMS or Ultrix

* 4 privilege levels for VM system
* VM user, VM supervisor, VM executive, VM kernel (both physical executive)

* VMM runs in physical kernel mode
* Only it can access certain resources

* VMM subjects: users and VMs

Module 51 ECS 235B, Foundations of Computer and Information Security

Example 2

* VMM has flat file system for itself

* Rest of disk partitioned among VMs

* VMs can use any file system structure
* Each VM has its own set of file systems

* Subjects, objects have security, integrity classes
» Called access classes

* VMM has sophisticated auditing mechanism

Module 51 ECS 235B, Foundations of Computer and Information Security

Example 3: Xen Hypervisor

e Xen 3.0 hypervisor on Intel virtualization technology
* Two modes, VMX root and nonroot operation

 Hardware-based VMs (HVMs) are fully virtualized domains, support
unmodified guest operating systems and run in non-root operation
mode

e Xen hypervisor runs in VMX root mode

* 8 levels of privilege
* 4 in VMX root operation mode
* 4 in VMX root operation mode
* No need to virtualize one of the privilege levels!

Module 51 ECS 235B, Foundations of Computer and Information Security

Xen and Privileged Instructions

* Guest operating system executes privileged instruction
* But this can only be done as a VMX root operation

* Control transfers to Xen hypervisor (called VM exit)
* Hypervisor determines whether to execute instruction

 After, it updates HVM appropriately and returns control to guest
operating system (called VM entry)

Module 51 ECS 235B, Foundations of Computer and Information Security

10

Problem

* Physical resources shared
* System CPU, disks, etc.

* May share logical resources
* Depends on how system is implemented

* Allows covert channels

Module 51 ECS 235B, Foundations of Computer and Information Security

11

Contalner

* Unlike VM, all containers on a system share same kernel, execute
instructions natively (no emulation)

* Each container contains libraries, applications needed to execute the
program(s) contained in it

* |solates contents from other containers

Module 51 ECS 235B, Foundations of Computer and Information Security

12

Example: Docker

* Widely used in Linux systems

e Container with all libraries, programs, other data for contained
software

* Runs as a daemon that launches containers, monitors them, controls
levels of isolation using Linux kernel features
* Containers have own namespace, file system, reduced set of capabilities

e Control network access; each container can have this set as appropriate, and
each assigned its own IP address

* root user of container differs from that of system

Module 51 ECS 235B, Foundations of Computer and Information Security 13

Alternate Approach

* VMs present a full system (hardware and operating system)

* But process in the VM may be able to optimize use of system resources better
than the VM

* Example: VM operating system assumes disk drive, but it’s really SSD

* Proposed: a kernel with only 2 functions:

* Use hardware protections to prevent processes from accessing another’s
memory, or overwriting it

* Manage access to shared physical resources
* Everything else is done at user level

Module 51 ECS 235B, Foundations of Computer and Information Security 14

Library Operating System

* A library, or set of libraries, that provide operating system
functionality at the user level

* Goal is to minimize overhead of context switching and provide processes with
as much flexibility as possible

* Example: V++ Cache Kernel

* Cache kernel tracks OS objects such as address spaces, and handles process
co-ordination (like scheduling) -- runs in privileged mode

* Application kernel manages process resources such as paging, when on page
fault it loads new page mapping descriptor into Cache Kernel — runs in user
mode

Module 51 ECS 235B, Foundations of Computer and Information Security 15

Example: Drawbridge

* Library OS developed for Windows 7
e Supports standard Windows applications (Excel, 1IS), gives access to features
like DirectX

 Security monitor provides application binary interface (ABI),
virtualizing system resources

* Processes use library OS to access ABI; all interactions with operating system
go through that interface

* ABI has calls to manage virtual memory, processes and threads, etc.

* Library OS provides application services like frameworks, graphics
engines

Module 51 ECS 235B, Foundations of Computer and Information Security

16

Example: Drawbridge (con’t)

* Kernel dependencies handled using Windows NT emulator at lowest
level of library OS

 Effect: all server dependencies, Windows subsystems moved into user space

* Human-computer interactions use emulated device drivers tunneling
input, output between desktop and security monitor

* Provides process isolation

* Experiment: run malware that deleted all registry keys
e Under Drawbridge, only the process with the malware was affected
* Without Drawbridge, all processes affected

* Experiment: try attack vectors causing Internet Explorer to escape its normal
protected mode (so writing to disk was unconstrainted, for example)

* Drawbridge kept Internet Explorer properly confined

Module 51 ECS 235B, Foundations of Computer and Information Security

17

Sandboxes

* An environment in which actions are restricted in accordance with
security policy

* Limit execution environment as nheeded

* Program not modified
* Libraries, kernel modified to restrict actions

* Modify program to check, restrict actions
* Like dynamic debuggers, profilers

Module 51 ECS 235B, Foundations of Computer and Information Security

18

Examples Limiting Environment

* Java virtual machine
* Security manager limits access of downloaded programs as policy dictates

e Sidewinder firewall
* Type enforcement limits access
 Policy fixed in kernel by vendor

* Domain Type Enforcement
* Enforcement mechanism for DTEL
* Kernel enforces sandbox defined by system administrator

Module 51 ECS 235B, Foundations of Computer and Information Security

19

Moditying Programs

* Add breakpoints or special instructions to source, binary code
* On trap or execution of special instructions, analyze state of process

 Variant: software fault isolation
* Add instructions checking memory accesses, other security issues
e Any attempt to violate policy causes trap

Module 51 ECS 235B, Foundations of Computer and Information Security

20

Example: Janus

* Implements sandbox in which system calls checked
* Fframework does runtime checking
* Modules determine which accesses allowed

e Configuration file
* |Instructs loading of modules
* Also lists constraints

Module 51 ECS 235B, Foundations of Computer and Information Security

21

Configuration File

basic module

basic

define subprocess environment variables

putenv IFS="”\t\n “ PATH=/sbin:/bin:/usr/bin TZ=PST8PDT

deny access to everything except files under /usr
path deny read,write *

path allow read,write /usr/*

allow subprocess to read files in library directories
needed for dynamic loading

path allow read /lib/* /usr/lib/* /usr/local/lib/*

needed so child can execute programs

path allow read,exec /sbin/* /bin/* /usr/bin/*

Module 51 ECS 235B, Foundations of Computer and Information Security

22

How It Works

* Framework builds list of relevant system calls
* Then marks each with allowed, disallowed actions

* When monitored system call executed

* Framework checks arguments, validates that call is allowed for those arguments
* |If not, returns failure
* Otherwise, give control back to child, so normal system call proceeds

Module 51 ECS 235B, Foundations of Computer and Information Security

23

Use

* Reading MIME Mail: fear is user sets mail reader to display attachment using
Postscript engine
* Has mechanism to execute system-level commands
* Embed a file deletion command in attachment ...

* Janus configured to disallow execution of any subcommands by Postscript engine
* Above attempt fails

Module 51 ECS 235B, Foundations of Computer and Information Security 24

Example: Capsicum

* Framework developed to sandbox an application

* Capability provides fine-grained rights for accessing, manipulating
underlying file

* To enter sandbox (capability mode), process issues cap _enter

* Given file descriptor, create capability with cap _new
* Mask of rights indicates what rights are to be set; if capability exists, mask must be
subset of rights in that capability

* At user level, library provides interface to start sandboxed process and
delegate rights to it

* All nondelegated file descriptors closed
* Address space flushed
* Socket returned to creator to enable it to communicate with new process

Module 51 ECS 235B, Foundations of Computer and Information Security

25

Example: Capsicum (con’t)

* Global namespaces not available

* So system calls that depend on that (like open(2)) don’t work
* Need to use a modified open that takes file descriptor for containing directory

e Other system calls modified appropriately

» System calls creating memory objects can create anonymous ones, not named ones (as
those names are in global namespace)

e Subprocesses cannot escalate privileges
* But a privileged process can enter capability mode

* All restrictions applied in kernel, not at system call interface

Module 51 ECS 235B, Foundations of Computer and Information Security

26

Program Confinement and TCB

* Confinement mechanisms part of trusted computing bases
* On failure, less protection than security officers, users believe
* “False sense of security”

* Must ensure confinement mechanism correctly implements desired
security policy

Module 51 ECS 235B, Foundations of Computer and Information Security

27

Program Modification

* Source, binary code transformed to implement confinement
constraints

e Can be done in several ways:
* Code rewriter, used before compiling to alter source code
* Compiler, transforming code as it compiles it
* Binary code rewriter, used on the executable

* Linking loader, used to transform linkages between program and library
functions, system calls to validate interactions

Module 51 ECS 235B, Foundations of Computer and Information Security

28

Rewriting

* Software fault isolation: put untrusted modules in special virtual
segments

* Code modified so control flow remains in that segment when module invoked
* All memory accesses in segment are to data in that segment

Module 51 ECS 235B, Foundations of Computer and Information Security 29

Implementation

* Each virtual segment has a unique segment identifier in upper part of
virtual address

* Unsafe instruction is one that accesses an address that cannot be verified to
be in module’s segment

* Segment matching: analyze program, identify all unsafe instructions
and wrap them so they are checked at run time

* |f check shows address not in module, trap it

 Alternative: set upper bits of any virtual address to segment identifier
* |llegal memory accesses handled in usual way

Module 51 ECS 235B, Foundations of Computer and Information Security 30

Implementation (con’t)

* Threat: untrusted module issues system call to close file that trust3ed
modules rely on

* Causes program crash or other undesirable actions

* Trusted arbitration code places in its own segment

* This accepts RPC requests from other modules, validates them, and translates
them into system calls

e Results returned via RPC

* Untrusted modules rewritten so system calls done vis the arbitration
code (ie, using RPC to that module)

Module 51 ECS 235B, Foundations of Computer and Information Security 31

Rewriting

* Can put security-sensitive parts into separate trusted process
* Application rewritten so untrusted parts invoke trusted parts via IPC
* Both trusted, untrusted parts must be started to run application

* Example: Nizza architecture
* Untrusted process executed on VM

* AppCore, a trusted process, executed in trusted computing environment
* Analyze application to identify security-sensitive components

* Place these components into a standalone process (AppCore). May need to be altered to
conform to security policy

* Transform rest of process to use AppCore to execute security-sensitive components

Module 51 ECS 235B, Foundations of Computer and Information Security 32

Compiling

* Compiler implements a security policy so resulting executable
provides desired isolation
* Example: type-safe languages, in which compiler verifies use of types is
consistent
* Certifying compiler includes proof that program satisfies specified
security properties
* Proof can be validated before execution

Module 51 ECS 235B, Foundations of Computer and Information Security

33

Transforming Compiler

e CCured imposes type safety on C programs by adding semantics to
constructs that can produce undefined results

» Safe pointer of type t points to the address of an object of type t, or 0 (NULL
pointer)

* Sequence pointer points into memory area of objects of type t; so check is
that it is a pointer of type t, points to object of type t in that memory area

* Dynamic pointer can point to untyped areas of memory, or memory of
arbitrary type (this is tagged with type of values currently in that area)

* Type inference algorithm used to construct CCured program honoring
type rules

Module 51 ECS 235B, Foundations of Computer and Information Security 34

Certitying Compiler

* Touchstone works on type-safe subset of C
 All array references are checked to ensure they are in bounds

 Compiler translates program into assembly

* VCGen generates verification conditions

* Works on per-function basis using symbolic execution

* Type specifications declare types of arguments (preconditions) and return values
(postconditions)

* Builds a predicate based on machine instructions

* On a return instruction, emits a predicate that includes check on instantiation of
preconditions, predicate built from assembly language, and a check on

postconditions

* Predicate can be proved iff program satisfies postcondition and registers preserved
on entry are not changed

* Theorem prover verifies proof

Module 51 ECS 235B, Foundations of Computer and Information Security

35

Loading

* Like sandboxing, but framework embedded in libraries and not a
separate process

* When called, a constrained library applies security policy rules to
determine whether it should take desired action

* Example: Aurasium for Android apps
* Goal: prevent exfiltration of sensitive data or misuse of resources

* Adds code to monitor all interactions with phone’s resources; these can be
considerably more granular than default permissions set at installation

Module 51 ECS 235B, Foundations of Computer and Information Security

36

Aurasium

* Goal: prevent exfiltration of sensitive data or misuse of resources on
Android phone by apps

* Adds code to monitor all interactions with phone’s resources; these can be
considerably more granular than default permissions set at installation

* First part: tool that inserts code to enforce policies when app calls on
phone resources, such as SMS messages

e Second part: use modified Android standard C libraries that
determine whether app’s requested system call should be blocked

* App S|gnatures verified before Aurasium transforms app; then
Aurasium signs app

* Issue is that when Aurasium transforms app, original signature no longer valid

Module 51 ECS 235B, Foundations of Computer and Information Security 37

