
ECS 235B Module 53
Detecting Covert Channels

Module 53 ECS 235B, Foundations of Computer and Information Security 1



Detection

• Manner in which resource is shared controls who can send, receive 
using that resource
• Noninterference
• Shared Resource Matrix Methodology
• Information flow analysis
• Covert flow trees

Module 53 ECS 235B, Foundations of Computer and Information Security 2



Noninterference

• View “read”, “write” as instances of information transfer
• Then two processes can communicate if information can be 

transferred between them, even in the absence of a direct 
communication path
• A covert channel
• Also sounds like interference …

Module 53 ECS 235B, Foundations of Computer and Information Security 3



Example: SAT

• Secure Ada Target, multilevel security policy
• Approach:
• p(i, l) removes all instructions issued by subjects dominated by level l from 

instruction stream i
• A(i, s) state resulting from execution of i on state s
• s.v(s) describes subject s’s view of state s

• System is noninterference-secure iff for all instruction sequences i, 
subjects s with security level l(s), states s,

A(p(i, l(s)), s).v(s) = A(i, s).v(s)

Module 53 ECS 235B, Foundations of Computer and Information Security 4



Theorem

• Version of the Unwinding Theorem

• Let S be set of system states. A specification is noninterference-secure if, for each 
subject s at security level l(s), there exists an equivalence relation º: S´S such 
that
• for s1, s2 Î S, when s1 º s2, s1.v(s) = s2.v(s)
• for s1, s2 Î S and any instruction i, when s1 º s2, A(i, s1) º A(i, s2)
• for s Î S and instruction stream i, if p(i, l(s)) is empty, A(p(i, l(s)), s).v(s) = 
s.v(s)

Module 53 ECS 235B, Foundations of Computer and Information Security 5



Intuition

• System is noninterference-secure if:
• Equivalent states have the same view for each subject
• View remains unchanged if any instruction is executed
• Instructions from higher-level subjects do not affect the state from the 

viewpoint of the lower-level subjects

Module 53 ECS 235B, Foundations of Computer and Information Security 6



Analysis of SAT

• Focus on object creation instruction and readable object set
• In these specifications:
• s subject with security level l(s)
• o object with security level l(o), type t(o)
• s current state
• Set of existing objects listed in a global object table T(s)

Module 53 ECS 235B, Foundations of Computer and Information Security 7



Specification 1

• object_create:
[ s¢ = object_create(s,o,l(o),t(o),s) Ù s¢ ≠ s ]

Û
[ o Ï T(s) Ù l(s) ≤ l(o) ]

• The create succeeds if, and only if, the object does not yet exist and 
the clearance of the object will dominate the clearance of its creator
• In accord with the “writes up okay” idea

Module 53 ECS 235B, Foundations of Computer and Information Security 8



Specification 2

• readable object set: set of existing objects that subject could read
• can_read(s, o, s) true if in state s, o is of a type that s can read (ignoring 

permissions)

• o Ï readable(s, s) Û [ o Ï T(s) Ú ¬(l(o) ≤ l(s)) Ú ¬(can_read(s, o, s))]
• Can’t read a nonexistent object, one with a security level that  the 

subject’s security level does not dominate, or object of the wrong 
type

Module 53 ECS 235B, Foundations of Computer and Information Security 9



Specification 3

• SAT enforces tranquility
• Adding object to readable set means creating new object

• Add to readable set:
[o Ï readable(s, s) Ù o Î readable(s, s¢)] Û
   [s¢ = object_create(s,o,l(o),t(o),s) Ù o Ï T(s) Ù l(s¢) ≤ l(o) ≤ l(s) Ù       
      can_read(s, o, s¢)]

• Says object must be created, levels and discretionary access controls 
set properly

Module 53 ECS 235B, Foundations of Computer and Information Security 10



Check for Covert Channels

• s1, s2 the same except:
• o exists only in latter
• ¬(l(o) ≤ l(s))

• Specification 2:
• o Ï readable(s, s1) { o doesn’t exist in s1}
• o Ï readable(s, s2) { ¬(l(o) ≤ l(s)) }

• Thus s1 º s2
• Condition 1 of theorem holds

Module 53 ECS 235B, Foundations of Computer and Information Security 11



Continue Analysis

• s¢ issues command to create o:
• with l(o) = l(s); and
• of type with can_read(s, o, s1¢)

• s1¢ state after object_create(s¢, o, l(o), t(o), s1)

• Specification 1
• s1¢ differs from s1 with o in T(s1)

• New entry satisfies:
• can_read(s, o, s1¢)
• l(s¢) ≤ l(o) ≤ l(s), where s¢ created o

Module 53 ECS 235B, Foundations of Computer and Information Security 12



Continue Analysis

• o exists in s2 so:
s2¢ = object_create(s¢, o, s2) = s2

• But this means
  ¬[ A(object_create(s¢, o, l(o), t(o), s2), s2) º
     A(object_create(s¢, o, l(o), t(o), s1), s1) ]
• Because create fails in s2 but succeeds in s1

• So condition 2 of theorem fails
• This implies a covert channel as system is not noninterference-secure

Module 53 ECS 235B, Foundations of Computer and Information Security 13



Example Exploit

• To send 1:
• High subject creates high object
• Recipient tries to create same object but at low

• Creation fails, but no indication given
• Recipient gives different subject type permission to read, write object

• Again fails, but no indication given
• Subject writes 1 to object, reads it
• Read returns nothing

Module 53 ECS 235B, Foundations of Computer and Information Security 14



Example Exploit

• To send 0:
• High subject creates nothing
• Recipient tries to create same object but at low

• Creation succeeds as object does not exist
• Recipient gives different subject type permission to read, write object

• Again succeeds
• Subject writes 1 to object, reads it

• Read returns 1

Module 53 ECS 235B, Foundations of Computer and Information Security 15



Use

• Can analyze covert storage channels
• Noninterference techniques reason in terms of security levels (attributes of 

objects)

• Covert timing channels much harder
• You would have to make ordering an attribute of the objects in some way

Module 53 ECS 235B, Foundations of Computer and Information Security 16



SRMM

• Shared Resource Matrix Methodology
• Goal: identify shared channels, how they are shared
• Steps:
• Identify all shared resources, their visible attributes [rows]
• Determine operations that reference (read), modify (write) resource 

[columns]
• Contents of matrix show how operation accesses the resource

Module 53 ECS 235B, Foundations of Computer and Information Security 17



Example

• Multilevel security model
• File attributes:
• existence, owner, label, size

• File manipulation operations:
• read, write, delete, create
• create succeeds if file does not exist; gets creator as owner, creator’s label
• others require file exists, appropriate labels

• Subjects:
• High, Low

Module 53 ECS 235B, Foundations of Computer and Information Security 18



Shared Resource Matrix

read write delete create

existence R R R, M R, M

owner R M

label R R R M

size R M M M

Module 53 ECS 235B, Foundations of Computer and Information 
Security

Slide 18-19



Covert Storage Channel

• Properties that must hold for covert storage channel:
1. Sending, receiving processes have access to same attribute of shared object;
2. Sender can modify that attribute;
3. Receiver can reference that attribute; and
4. Mechanism for starting processes, properly sequencing their accesses to 

resource

Module 53 ECS 235B, Foundations of Computer and Information Security 20



Example

• Consider attributes with both R, M in rows
• Let High be sender, Low receiver
• create operation both references, modifies existence attribute
• Low can use this due to semantics of create

• Need to arrange for proper sequencing accesses to existence 
attribute of file (shared resource)

Module 53 ECS 235B, Foundations of Computer and Information Security 21



Use of Channel

• 3 files: ready, done, 1bit
• Low creates ready at High level
• High checks that file exists
• If so, to send 1, it creates 1bit; to send 0, skip
• Delete ready, create done at High level

• Low tries to create done at High level
• On failure, High is done
• Low tries to create 1bit at level High

• Low deletes done, creates ready at High level

Module 53 ECS 235B, Foundations of Computer and Information Security 22



Covert Timing Channel

• Properties that must hold for covert timing channel:
1.Sending, receiving processes have access to same attribute of shared object;
2.Sender, receiver have access to a time reference (wall clock, timer, event 

ordering, …);
3.Sender can control timing of detection of change to that attribute by receiver; 

and
4.Mechanism for starting processes, properly sequencing their accesses to 

resource

Module 53 ECS 235B, Foundations of Computer and Information Security 23



Example

• Revisit variant of KVM/370 channel
• Sender, receiver can access ordering of requests by disk arm scheduler 

(attribute)
• Sender, receiver have access to the ordering of the requests (time reference)
• High can control ordering of requests of Low process by issuing cylinder 

numbers to position arm appropriately (timing of detection of change)
• So whether channel can be exploited depends on whether there is a 

mechanism to (1) start sender, receiver and (2) sequence requests as desired

Module 53 ECS 235B, Foundations of Computer and Information Security 24



Uses of SRM Methodology

• Applicable at many stages of software life cycle model
• Flexbility is its strength

• Used to analyze Secure Ada Target
• Participants manually constructed SRM from flow analysis of SAT model
• Took transitive closure
• Found 2 covert channels

• One used assigned level attribute, another assigned type attribute

Module 53 ECS 235B, Foundations of Computer and Information Security 25



Summary

• Methodology comprehensive but incomplete
• How to identify shared resources?
• What operations access them and how?

• Incompleteness a benefit
• Allows use at different stages of software engineering life cycle

• Incompleteness a problem
• Makes use of methodology sensitive to particular stage of software 

development

Module 53 ECS 235B, Foundations of Computer and Information Security 26



Information Flow Analysis

• When exception occurs due to value of variable, information leaks 
about the value – a covert channel
• Same for synchronization and IPC primitives, because one process controls 

when it sends message or blocks to receive one
• Shared variables are not covert channel as they are intended to share  values

• Method for identifying covert storage channels in source code
• Assertion: these arise when processes can view, alter kernel variables
• So identify these variables 

• May be directly referenced or indirectly referenced via system calls

Module 53 ECS 235B, Foundations of Computer and Information Security 27



Step 1

• Identify kernel functions, processes for analysis
• Processes function at privileged level, but carry out actions for ordinary users
• Ignore those executing on behalf of administrators (they can leak information 

directly)
• Same with system calls available only to system administrator

Module 53 ECS 235B, Foundations of Computer and Information Security 28



Step 2

• Identify kernel variables user process can view and/or alter
• Process must control how variable is altered
• Process must be able to detect that variable was altered

• Detection criteria
• Value of a variable is obtained from system call
• Calling process can detect at least 2 different states of that variable

• Examples
• If system call assigns fixed value to a particular variable, process cannot 

control how that variable is altered
• If value of x causes an error, state of x can be determined from the error 

indicator

Module 53 ECS 235B, Foundations of Computer and Information Security 29



Directly vs. Indirectly Visible

x directly visible to caller as it is 
returned directly to caller

x := func(abc, def);
if x = 0 then
 x := x + 10;
return x;

y not directly visible to caller, but 
indirectly visible as its state observed 
through z

y := func(abc, def);
if y = 0 then
 z := 1;
else
 z := 0;
return z;

Module 53 ECS 235B, Foundations of Computer and Information Security 30



Step 3

• Analyze variables looking for covert channels
• Use method similar to that of SRM
• Discard primitives associated with variables that can only be altered or only 

be viewed
• Assume recipient’s clearance does not dominate sender’s, and compare 

resulting primitives to model of access control 

Module 53 ECS 235B, Foundations of Computer and Information Security 31



Covert Flow Trees

• Information flow through shared resources modeled using tree
• Flow paths identified, and analyzed to see if each is legitimate

• 5 types of nodes
• Goal symbols: states that must exist for information to flow
• Operation symbol: symbol representing primitive operation
• Failure symbol: information cannot be sent along the path containing it
• And symbol: goal reached when these hold for all children

• If the child is a goal, then the goal is reached; and
• The child is an operation

• Or symbol: goal reached when either of these hold for any children
• If the child is a goal, then the goal is reached; or
• The child is an operation

Module 53 ECS 235B, Foundations of Computer and Information Security 32



More on Goal Symbols

• Modification goal: reached when attribute is modified
• Recognition goal: reached when modification of attribute is detected
• Direct recognition goal: reached when subject can detect modification of 

attribute by direct reference or calling a function that returns it
• Inferred recognition goal: reached when subject can detect modification of 

attribute without directly referencing it or calling a function that references 
attribute directly
• Inferred-via goal: reached when information passed from one attribute to 

others using specified primitive operation
• Recognized-new-state goal: reached when an attribute that was modified 

when information passed using it is specified by inferred-via goal

Module 53 ECS 235B, Foundations of Computer and Information Security 33



Example Program

procedure Lockfile(f: file): boolean;  (* lock file if not locked; return *)
begin      (* false if locked, true otherwise *)
 if not f.locked and empty(f.inuse) then
  f.locked := true;
 Lockfile := not f.locked;
end;
procedure Unlockfile(f:  file);   (* unlock file *)
begin
 if f.locked then
  f.locked :=  false;
end;
function Filelocked(f:  file):  boolean; (* return state of file locking *)
begin
 Filelocked := f.locked;
end;

Module 53 ECS 235B, Foundations of Computer and Information Security 34



Example Program
procedure Openfile(f:  file); (* open file if not locked and *)

begin     (* permissions allow it *)

 if not f.locked and read_access(process_id, f) then

  (* add the process ID to the inuse set *)

  f.inuse = f.inuse + process_id;

end;

function Fileopened(f:  file):  boolean;(* if permissions allow process to read file, *)
begin     (* say if open; else return random value.     *)

 if not read_access(process_id, f) then

  Fileopened := random(true, false);

 else

  Fileopened :=  not isempty(f.inuse);

end;

Module 53 ECS 235B, Foundations of Computer and Information Security 35



Step 1

• Determine attributes that primitive operations reference, modify, 
return

 

Module 53 ECS 235B, Foundations of Computer and Information Security

Lockfile Unlockfile Filelocked Openfile Fileopened

reference locked,inuse locked locked locked,inuse inuse

modify locked ∅ ∅ inuse ∅
return ∅ ∅ locked ∅ inuse

36



Step 2

• Construct the flow tree; controlled by type of goal
• Construction ends when all paths terminate in either operation 

symbol of failure symbol
• If loops occur, a parameter defines number of times path may be traversed

Module 53 ECS 235B, Foundations of Computer and Information Security 37



Step 2 (con’t)

• Topmost goal: requires attribute be modified and the modification be 
recognized
• 1 child (and) with 2 goals (modification, recognition goal symbols)

• Modification goal: requires primitive operation to modify attribute
• 1 child (or) with 1 child operation symbol per operation for all operations that 

modify attribute

• Recognition goal: subject directly recognize or infer change in 
attribute
• 1 child (or) with 2 children (direct recognition, inferred recognition goals)

Module 53 ECS 235B, Foundations of Computer and Information Security 38



Step 2 (con’t)

• Direct recognition goal: operation accesses attribute
• 1 child (or) with 1 child operation symbol per operation for each operation that returns 

attribute

• Inferred recognition goal: modification referred on basis of 1 or more attributes
• 1 child (or) with 1 child inferred-via symbol per operation for each operation that references 

an attribute and modifies an attribute

• Inferred-via goal: value of attribute inferred via some operation and new state of 
attribute recognized
• 1 child (and) with 2 children (operation, recognize-new-state goal symbols)

• Recognize-new-state goal: value of attribute inferred via some operation and new 
state of attribute recognized, requiring a recognition goal for attribute
• 1 child (or) and for each attribute enabling inference of modification of attribute in question, 

1 child (recognition goal symbol)

Module 53 ECS 235B, Foundations of Computer and Information Security 39



Example: Goal State and Modification Branch

• The next few slides build covert flow tree for attribute locked

Module 53 ECS 235B, Foundations of Computer and Information Security

Covert storage channel
via attribute locked

Modification of
attribute locked

Recognition of
attribute locked

+●

Modification of
attribute locked

Lockfile Unlockfile

goal 
state

and 
node

or 
node

40



Example: Recognition Branch

Module 53 ECS 235B, Foundations of Computer and Information Security

+

Recognition of
attribute locked

Direct recognition of
attribute locked

Indirect recognition of
attribute locked

+ +

Lockfile
Indirect attribute locked

via attribute inuse

41



Example: Indirect Branch

Module 53 ECS 235B, Foundations of Computer and Information Security

Recognition of
attribute inuse

●

Indirect attribute locked
via attribute inuse

Openfile

42



Example: Recognize New Goal State Branch

Module 53 ECS 235B, Foundations of Computer and Information Security

+

Recognition of
attribute inuse

Direct recognition of
attribute inuse

Indirect recognition of
attribute locked

+ +

Fileopened FALSE

43



Example: Analysis

• Put those parts of the tree together in the obvious way
• First list: ((Lockfile), (Unlockfile))

• As both modify attribute locked and lie on “modified” branch
• Second list: ((Filelocked), (Openfile, Fileopened))

• From direct recognition of modification of inuse attribute; second, from indirect 
recognition of modification of attribute locked

• These result in 4 paths of communication:
• Lockfile followed by Filelocked
• Unlockfile followed by Filelocked
• Lockfile followed by Openfile, then Fileopened
• Unlockfile followed by Openfile, then Fileopened

Module 53 ECS 235B, Foundations of Computer and Information Security 44



Example: Analysis

• First two sequences in combination represent direct covert storage 
channel
• High process transmits information to Low process by locking, unlocking file

• Last two sequences represent indirect covert storage channel
• High process locks file to send 0, unlocks to send 1
• Low process tries to open the file, then uses Fileopened to see if it succeeded
• If opened, file was not locked and it’s a 1; if not opened, file is locked, and it’s 

a 0

Module 53 ECS 235B, Foundations of Computer and Information Security 45



Summary

• Covert flow trees, SRM come from idea that covert channels require 
shared resources that one process can modify and another view
• Both can be used at any point in life cycle
• Covert flow trees identify explicit sequences of operations causing 

information to flow
• SRM identifies channels, not sequences of operations

Module 53 ECS 235B, Foundations of Computer and Information Security 46


