February 17, 2000 ECS 251 — Winter 2000 Page 1

Distributed Systems Fundamentals

1. Digtributed system?
a Whatisit?
b. Why useit?

2. System Architectures

a. minicomputer mode
b. workstation model
c. processor pool
3. Issues
a. global knowledge
b. naming
c. scaability
d. compatibility
e. process synchronization, communication
f. security
g. Structure
4. Networks
a goas
b. message, packet, subnet, session
c. switching: circuit, store-and-forward, message, packet, virtua circuit, dynamic routing
d. OSl model: PDUs, layering
i. physica: ethernet, aloha, etc.
ii. datalink layer: frames, parity checks, link encryption
iii. network layer: virtua circult vs. datagram, routing via flooding, static routes, dynamic routes, central-
ized routing vs. distributed routing; congestion solutions (packet discarding, isarithmic, choke packets)
iv. transport: services provided (UDP vs. TCP), functions to higher layers, addressing schemes (flat, DNS,
etc.), gateway fragmentation and reassembly
V. session: adds session characteristics like authentication
vi. presentation: compression, end-to-end encryption, virtual terminal
vii. application: user-level programs
5. Clocks
a. happened-before relation
b. Lamport’sdistributed clocks: a — b means C(a) < C(b)
c. Examplewhere C(a) < C(b) doesnot meana — b
d. Vector clocks and causal relation
e. ordering of messages so you receive them in the order sent
i. why
ii. for broadcast (1SIS): Birman-Schiper-Stephenson
iii. for point to point: Schiper-Eggli-Sandoz
6. Global state
a. Show problem of dicing state when something isin transit
b. Definelocal state; send(my;) U LS iff time of send(my;) < current time of LS; similar for receive
c. transit(LS, LS); inconsistent(LS, LS); consistent state is one with inconsistent set empty for all pairsLS,
LS
d. Consistent global state: Chandry-Lamport
7. Termination detection

a

Haung

Last modified at 11:37 pm on Thursday, February 17, 2000

February 17, 2000 ECS 251 — Winter 2000 Page 2

Lamport’s Clocks

I ntroduction

Lamport’s clocks keep a virtual time among distributed systems. The goal is to provide an ordering upon events
within the system.

Notation
* Pj process
» ;. clock associated with process P;

Protocol

1. Increment clock C; between any two successive eventsin process P;: C; — C; +d (d > 0)

2. Let event a bethe sending of amessage by process P;; it is given the timestamp t2 = C;(a). Let b be the receipt of
that message by P;. Then when P receives the message, Cj — max(C;, t8+d) (d>0)

Example

P ell el12 el3
1 @
e21 e22 e23 €24
P,
e31 €32
P5 ®

Assumeall clocks start at 0, and d is 1 (that is, each event incrememts the clock by 1). At event e;, Cy(e;5) = 2. Event
ey, isthe sending of amessage to P,. When P, receives the message (event ey3), itsclock C, = 2. The clock isreset to
3. Event ey, is P,'s sending a message to P3. That message isreceived at e3,. C5is 1 (as one event has passed). By
rule 2, Cz is reset to the maximum of Cy(Cy4)+1 and the current value of Cs, so C; becomes 5.

Problem

Clearly, if a - b, then C(a) < C(b). But if C(a) < C(b), doesa - b?

The answer, surprisingly, is not necessarily. In the above example, C5(e31) = 1< 2= C4(eyy). But e3; and e, are caus-
aly unrelated; that is, e3; L e, However, Cy(e17) < Cs(es3p), and clearly e;; — e3,. Hence one cannot say one way
or the other.

Last modified at 11:37 pm on Thursday, February 17, 2000

February 17, 2000 ECS 251 — Winter 2000 Page 3

Vector Clocks

I ntroduction

Thisis based upon Lamport’s clocks, but each process keeps track of what is believes the other processes’ interrnal
clocks are (hence the name, vector clocks). The goal isto provide an ordering upon events within the system.

Notation

* nprocesses

* P; process

» G, vector clock associated with process P;; jth element is Ci[j] and contains P;’s latest value for the current time
in process Py.

Protocol
1. Increment clock C; between any two successive events in process P;: Ci[i] — Cj[i] +d (d>0)

2. Let event a be the sending of a message by process P;; it is given the vector timestamp t? = C;(a). Let b be the
receipt of that message by P;. Then when P, receives the message, it updates its vector clock for all k=1, ..., n:

Ik — max(Cj[K], t3[K] + d) (d > 0)

Example
ell el12 el3
Pl .
e21 e22 e23 €24
P>
e31 e32
P3 ®

Hereisthe progression of time for the three processes:

€11- C1 = (1, 0, 0)

€31: Cg = (0, 0, 1)

e1: C,=(0,0, 1) ast? = C4(es;) = (0, 0, 1) and previously, C3was (0, 0, 1)
62:C2=(0,1,1)

€q0: Cl = (2, 0, O)

€3 Cr=(2,1, 1) ast? = Cy(ep) = (2,0, 0) and previously, C, was (0, 1, 1)
€4 C=(2.2,1)

e13: C1= (2,1, 1) ast? = Cy(ex) = (0, 1, 1) and previously, C, was (2, 0, 0)
€30: C3=(2, 2, 1) ast? = Cx(ey) = (2, 2, 1) and previously, C3was (0, 0, 1)
Noticethat C;(e17) < Cs(eszp), SO €11 — €3, but Cy(e;11) and Cx(e34) areincomparable, so e;4 and e3; are concurrent.

Last modified at 11:37 pm on Thursday, February 17, 2000

February 17, 2000 ECS 251 — Winter 2000 Page 4

Birman-Schiper-Stephenson Protocol

I ntroduction

The goal of this protocol isto preserve ordering in the sending of messages. For example, if send(m;) — send(my),
then for all processesthat receive both my and my, receive(m,) - receive(m). The basic ideais that m, isnot given to
the process until my is given. This means a buffer is needed for pending deliveries. Also, each message has an associ-

ated vector that contains information for the recipient to determine if another message preceded it. Also, we shall
assume all messages are broadcast. Clocks are updated only when messages are sent.

Notation

* N processes

* Pj process

» G, vector clock associated with process P;; jth element is Ci[j] and contains P;’s latest value for the current time
in process Py.

« tMvector timestamp for message m (stamped after local clock isincremented)

Protocol

P; sends a message to P

1. P, increments C;[i] and sets the timestamp t™ = C;[i] for message m.

P, receives a message from P;

1. WhenP,j #i, receives mwith timestamp t™, it delays the message’s delivery until both:
a Ci] =t"i] -1; and
b. foralksnandk#i, G[K 2 t"K].

2. When the message is delivered to P;, update P;’s vector clock

3. Check buffered messages to see if any can be delivered.

Example
ell e12
Py
e21 €22
P2
€31 32
P5 ®

Here is the protocol applied to the above situation:

631 P3 sends message a; C5 = (0, 0, 1); t2=(0, 0, 1)

e,1: P, receives message a. AsC, = (0, 0, 0), Co[3] =t3[3] —1=1-1=0and C,[1] = t3[1] and C,[2] = t}2] = 0. So
the message is accepted, and C, isset to (0, O, 1)

e1: Py receivesmessagea. AsC; =(0, 0, 0), C4[3] =t¥[3] —1=1-1=0and C4[1] >t 1] and C4[2] =t¥[2] = 0. So
the message is accepted, and C; isset to (0, O, 1)

e,5: P, sends message b; C, = (0, 1, 1); t° = (0, 1, 1)

Last modified at 11:37 pm on Thursday, February 17, 2000

February 17, 2000 ECS 251 — Winter 2000 Page 5

eyo: Py receives message b. As C; = (0, 0, 1), C4[2] =t°[2] =1 =1-1=0and Cy[1] = t°[1] and C,[3] =t7[2] = 0. So
the message is accepted, and C; isset to (0, 1, 1)

€3, P3 receives messageb. AsCy=(0,0, 1), C5[2] =t[2] —1=1—1=1and C,[1] = t°[1] and C4[3] 2t[2] = 0. So
the message is accepted, and Cyisset to (0, 1, 1)

Now, suppose t? arrived as event e;,, and t° as event e;;. Then the progression of time in P; goes like this:

e,1: Py receives message b. AsC; = (0, 0, 0), C4[2] =tP[2] —1=1—-1=0and C,[1] = t°[1], but C;[3] < t7[3], so the
message is held until another message arrives. The vector clock updating agorithm is not run.

1o Pq receivesmessagea. AsC; = (0, 0, 0), C1[3] =t33] —1=1-1=0, Cy[1] = t31], and C4[2] =t} 2]. The mes-
sageis accepted and C; is set to (0, 0, 1). Now the queueis checked. As C4[2] =tP[2] —1=1—-1=0, Cy[1] = t[1],
and C,[3] > t°[3], that message is accepted and C; isset to (0, 1, 1).

Last modified at 11:37 pm on Thursday, February 17, 2000

February 17, 2000 ECS 251 — Winter 2000 Page 6

Schiper-Eggli-Sandoz Protocol

I ntroduction

The goal of this protocol isto ensure that messages are given to the receiving processes in order of sending. Unlike
the Birman-Schiper-Stephenson protocol, it does not require using broadcast messages. Each message has an associ-
ated vector that contains information for the recipient to determine if another message preceded it. Clocks are updated
only when messages are sent.

Notation

* nprocesses

* P; process

» G, vector clock associated with process P;; jth element is Ci[j] and contains P;’s latest value for the current time
in process Py.

« tMvector timestamp for message m (stamped after local clock isincremented)

« t current time at process P;

« V; vector of P;'s previously sent messages; Vi[j] =t™, where P; is the destination process and t™ the vector times-
tamp of the message; Vi[j][K] is the kth component of V4[j].

« VMvector accompanying message m

Protocol

P; sends a message to P
1. P; sends message m, timestamped t™, and V;, to process P
2. P;satsVi[j] =t™
P; receives a message from P;
1. WhenPj,j #i, receivesm, it delays the message's delivery if both:
a VMj]isset; and
b. VMj] <t
2. Whenthe message is delivered to P;, update all set elements of V; with the corresponding elements of V™, except

for Vj[j], asfollows:

a. If Vj[K] and Vm[K] are uninitialized, do nothing.

b. If Vj[K] isuninitidlized and Vm[K] isinitialized, set Vj[K] = Vm[K].

c. If bothVj[K] and Vm[K] areinitialized, set Vj[K][K] = max(Vj[K][K'], Vm[K][K]) foral k' =1, ..., n
3. Update P;'s vector clock.
4. Check buffered messages to seeif any can be delivered.

Last modified at 11:37 pm on Thursday, February 17, 2000

February 17, 2000 ECS 251 — Winter 2000 Page 7

Example
ell el2
Pl el3
o V /
)
e23
e31 €32
P3

Here is the protocol applied to the above situation:

31 P3 sendsmessageato P, . C3= (0,0, 1); t2=(0,0,1),\A=(?2,? ?);V3=(2(0,0,1),?)

e,1: P, receives message a from P;. As V(2] is uninitialized, the message is accepted. V, isset to (2, 2, ?) and C, is
setto (0, 0, 1).

ey P, sendsmessageb to Py. C, = (0, 1, 1); = (0, 1, 1), VP = (2,2, ?); V, = ((0, 1, 1), 2, ?

e11: P1 sendsmessage cto P53. C; = (1,0, 0); t=(1,0,0), V¢ = (2,2, ?); V1 = (2 2 (1,0, 0)),

e,o: P receives message b from P,,. Asvb[l] isuninitialized, the message is accepted. V; issetto (?,?, ?) and C, is
setto (L, 1, 1).

e3,: P3 receives message ¢ from P;. AsV[3] is uninitialized, the message is accepted. V5 isset to (?, 2, ?) and C3is

setto (1, 0, 1). ell el2 el3

ey5 P, s M@ I O PL Gy = (0 Z I o= V= LD 7V, FO 10U D),

ey3: P receives message d from P, é%i\/d[l] < CéEE’ sothe tsagceptedo; issetto (0, 1, 1)) and C; is
setto (1,Ry1)

Now, suppose t® arrived as event goeslikethis:

epo: P, receives memggffr i ueuéjgg for later delivery

ej3: P; rélgivesrmessa F-PASY AHAHE he-Fressel eeepted =t Rd Cy is
setto (1, 1, 1). The message on the queue is now checked. As\/d[l] =(0,1,1)<(1,1,1) =Cyq, themessageis now
accepted. Vyissetto ((0,1, 1), 2, ?) and C isset to (1, 2, 1).

Last modified at 11:37 pm on Thursday, February 17, 2000

February 17, 2000 ECS 251 — Winter 2000 Page 8

Chandy-Lamport Global State Recording Protocol

I ntroduction

The goal of this distributed algorithm isto capture a consistent global state. It assumes al communication channels
are FIFO. It uses a distinguished message called a marker to start the algorithm.

Protocol

P; sends marker
1. Pirecordsitsloca state
2. For each Cj; on which P; has not already sent amarker, P; sends amarker before sending other messages.
P; receives marker from Pj
1. If Py hasnot recorded its state:
a Record the state of C;; as empty
b. Send the marker as described above
2. If Py hasrecorded its state LS
a Record the state of Cj; to be the sequence of messages received between the computation of LS and the
marker from C;;.

Example

Here, all processes are connected by communications channels Cij. Messages being sent over the channels are repre-
sented by arrows between the processes.

Snapshot s;:

P, records LS;, sends markers on Cq, and Cy3

P, receives marker from P, on Cy; it recordsiits state LS,, records state of C,, as empty, and sends marker on Cyq
and Cy3

P5 receives marker from P, on Cy3; it recordsits state LS;, records state of C,5 as empty, and sends markers on C3;
and Cs,.

P, receives marker from P, on C,q; asLS; isrecorded, it records the state of C,; as empty.

P, receives marker from Pz on Cgq; as LS, isrecorded, it records the state of Cg; as empty.

P, receives marker from P3 on Cgp; asLS; is recorded, it records the state of C3, as empty.

P5 receives marker from P, on Cog; as LSy is recorded, it records the state of Cog as empty.

Snapshot s,: now amessage isin transit on Cy, and Cy;.

P, records LS;, sends markers on C;, and Cy3

P, receives marker from P, on C, after the message from P, arrives; it records its state LS,, records state of Cy, as
empty, and sends marker on C,; and Co3

P3 receives marker from P, on Cy3; it recordsits state LS;, records state of C,5 as empty, and sends markers on Cs3;
and Cs,.

Last modified at 11:37 pm on Thursday, February 17, 2000

February 17, 2000 ECS 251 — Winter 2000 Page 9

P, receives marker from P, on C,¢; asLS; isrecorded, and a message has arrived since LS; was recorded, it records
the state of Cyq as containing that message.

P, receives marker from Pz on Cgy; as LS, isrecorded, it records the state of Cg; as empty.

P, receives marker from P on Cay; as LS, is recorded, it records the state of Cg, as empty.

P receives marker from P, on Cog; as LSz is recorded, it records the state of Cog as empty.

Last modified at 11:37 pm on Thursday, February 17, 2000

February 17, 2000 ECS 251 — Winter 2000 Page 10
, . . .
Huang's Ter mination Detection Protocol
I ntroduction
The goal of this protocol isto detect when a distributed computation terminates.
Notation
* nprocesses
» P; process; without loss of generdlity, let Py be the controlling agent
* W. weight of process P;; initialy, Wy = 1 and for all other i, W, = 0.
* B(W) computation message with assigned weight W
* C(W) control message sent from process to controlling agent with assigned weight W
Protocol
P; sends a computation message to P,
1. SetW’ and W, to values such that W’ + W =W, W, > 0, W, > 0. (W’ is the new weight of P;.)
2. Send B(W)) to P,
P, receives a computation message B(W) from P
1L W=W+W
2. If Pjisidle, P; becomes active
P; becomesidle:
1. Send C(W) to Pg
2. W=0
3. Pjbecomesidle
P; receives a control message C(W):
1. W=W+W
2. If W = 1, the computation has completed.
Example
Pl The picture shows a process Py, designated the controlling agent, with
Wy = 1. It asks P4 and P, to do some computation. It setsW; to 0.2, W, to
0.3, and W5 to 0.5. P, in turn asks P and P, to do some computations. It
P3 setsWs to 0.1 and W, to 0.1,
PO P2 When P5 terminates, it sends C(Ws) = C(0.1) to P,, which changesW, to
01+01=02
P4 When P, terminates, it sends C(W,) = C(0.2) to Pg, which changesW to
05+0.2=0.7.

When P4 terminates, it sends C(W,) = C(0.1) to Pg, which changesW to

0.7+0.1=08.

When P, terminates, it sends C(W,) = C(0.2) to Pg, which changesW to

08+02=1
Pg thereupon concludes that the computation is finished.

Total number of messages passed: 8 (one to start each computation, one to return the weight).

Last modified at 11:37 pm on Thursday, February 17, 2000

