January 13, 2000 ECS 251 — Winter 2000 Page 1

Process Synchronization and Cooperation

1. Pardlelism
a. concurrent vs. sequential
b. logica vs. physical concurrency
C. process creation: static vs. dynamic
2. Proper nesting
a SP
b. definition of proper nesting
c. precedence graph
3. Precedencerelation <
predecessor process
proces domain, range
equivalent systems of processes
determinate system of processes
Bernstein conditions
mutually non-interfering system
Theorem: mutually noninterfering systems are determinate
. maximally parallel system
4. Basic concurrency language constructs
a. cobegin/coend
b. fork/join/quit
5. Critical section problems
a. producer consumer
b. readerswriters; first gives readers priority, second gives writers priority
c. dining philosophers
6. Software solutionss
a Dekker's, Peterson’s
b. bakery algorithm
7. Hardware solutionss
a. disableinterrupts
b. testand set
8. Basic language constructs
a. semaphores
b. sequencers and eventcounters
c. simultamepus primitives SP, SV, P-or
d. sendreveive
9. Higher-level language constructs
abstract data types
comparison of constructs: constraints, expressive power, ease of use, portability, process failure
monitors
crowd monitors
invariant expressions
path expressions
predicate path expressions
CsP
RPC
ADA™

S@ P oW

T T@omoa0 o

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000

ECS 251 — Winter 2000

Page 2

I ntroduction

| mproper Nesting Example

One of the limits on the use of parbegin/parend, and any related constructs, is that the program involved must be prop-

erly nested. Not all programs are. For example, consider the program represented by the following graphs.

The Program as Graphs

precedence graph

process flow graph

®

pl
2
p 05
o b7
6
o3\ |’
p8

Using fork/join Primitives

The program equivalent to these precedence and process flow graphsis:
=2
=3

t6

t8

S1;
p2: S2,
p5: S5;
p7: S7,
p3: S3;
p4: 4,
p6: S6;
p8: S8;

where Si isthe program for pi.

Using parbegin/parend Primitives

fork p2;
fork p3:
join té,
join t8,
join t8,
join té,
join t8,
qui t

fork pb5;
fork p4;

quit;

fork p7; quit;
quit;

quit;
quit;
quit;
quit;

To seeif thisis possible, we must determine if the above program is properly nested. If not, we clearly cannot repre-
sent it using parbegin and parend, which require a block structure, and hence proper nesting.
Let S(a,b) represent the serial execution of processes a and b, and P(a,b) the parallel execution of processesa and b.
Then aprocess flow graph is properly nested if it can be described by P, S, and functional composition. For example,

the program

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 3

par begi n
pl: a:=b+1
p2: c:=d+1
par end
p3: e = a + c;

would be written as

S(P(p1,p2),p3)
We now prove:
Claim. The exampleis not properly nested.
Proof: For something to be properly nested, it must be of the form S(pi,pj) or P(pi,pj) at the most interior level.
Clearly the example's most interior level is not P(pi,pj) asthere are no constructs of that form in the graph.
In the graph, all serially connected processes pi and pj have at |east 1 more process pk starting or finishing at the node
nij between pi and pj; but if Spi,pj) isin theinnermost level, there can be no such pk (else amore interior P or Sis
needed, contradiction). Hence, it's not S(pi,pj)) either.

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 4

Maximally Parallel Systems

I ntroduction

A maximally parallel systemis a determinate system for which the removal of any pair from the precedence relation
< makes the two processes in the pair interfering processes.

Example

The system S= ([, <) is composed of the set of processes [1={ py, -, Pg } and the precedence relation

<={ (p1,P2), (P1.P3), (P1.P4), (P2:P5), (P3.P5), (P2:P6): (P4:P7): (P4.Pg), (P5.P8) (Pe:Pg): (P7:P9), (Ps.Pg) }-
The processes have the following domains and ranges:

process P1 P2 P3 Pa Ps Ps p7 Ps Pg
domain 1 4 3 1 3 6 5 1,3 1,4,6
range 2,3 4 2,3 1 3 6 5 4 2,3

Transitive closure of <
In the following, abullet is placed whenever the processin the row precedes the processin the column under <.
P1 P2 P3 P4 Ps Pes p7 Ps Po
pl]]]
P2 *
P3 ¢
p4 . . .
Ps *
Pe °
p7 *
Ps ¢
For pq, we have p; < pp and p, < ps, SO Py < Ps. AS Ps < Pg, P1 < Pg- AS Pg < Pg, P1 < Pg. The table becomes:
P1 P2 P3 P4 Ps Pes p7 Ps Po
pl L[] L[] L[] L] L[] L[] L[] L[]
P2 ¢
P3 *
Py . . .
Ps *
Pes *
p7 °
Ps *
Continuing on in this fashion, the table finally becomes:
P1 P2 P3 P4 Ps Pes p7 Ps Po

pl . o . o . . . o

pz ° ° °
p3]]]
p4]] 3 3
Ps * *
Ps ¢ ¢
p7 *
Ps *

giving the transitive closure of < to be:

< ={ (PP, (P1P3), (P1.Pa). (P1.P5). (P1.PE). (PL.P7). (P1.Pg). (P1.Pg). (P2.Ps), (P2.Pg). (P2.P9). (P3.Ps). (P3.Pg).
(P3,Pg), (P4,Pe), (P4:P7), (P4:Pg), (P4,Pg). (P5,Pg), (P5.Pa), (Pe:P8), (Ps:P9). (P7:Pg), (Pg.Pg) }

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 5

Bernstein Conditions

For the system to be determinate, the Bernstein conditions must hold. This means that two processes which write into
the same memory location cannot be executed concurrently. Also, if aprocess reads from alocation that another pro-
cess writes to, those two processes cannot be concurrent. So wefirst list those processes which cannot be concurrent
by computing the elements of the three setslisted below. Note that the range of p; isthe set of memory locations that

p; writesto, and the domain of p; isthe set of memory locations that p; reads from.
range(p;) n range(p) = { (P1.P3), (P1.Ps). (P1.P9). (P2.P8), (P3.Ps), (P3.Pg). (Ps,Po) }
domain(p;) n range(py) = { (P1.P4), (P2,Pg), (P3,Ps), (P3.Pg), (P5.P9), (Ps:Po) }
range(p;) n domain(py) = { (P1,P3), (P1,Ps), (P1.Pg): (P2:Pa), (P3.Ps5), (P3.Pg), (Pa:Pg), (P4.Pa), (P5.P8), (Ps:Po) }

The Equivalent Maximally Parallel System

The only precedences that are actually required by the system are those that enforce the Bernstein conditions. The
complete set of precedences that exist in the system is given by the set <, sotaki ng those elements of <" inthe three
sets above gives us the precedence relation < * for the maximally parallel system equivalent to the original system:
<" ={ (P1,P3), (PL.P4); (P1.Ps), (P1.Pg); (P1.P9), (P2:Pg), (P2:P9), (P3.Ps), (P3:Pg)s (P3.Pe), (P4:Pg): (Pa:Pa), (Ps:Pg);

(P5.Pg), (Pe:Pa). (Pe.Po) }
Now, note that several of these elements areimplied by others, since precedenceis transitive; for example, (p;,p4) and

(p4.pg) Means (pq,pg) holds. Eliminating these redundent precedences, this set becomes:
{ (P1.P3). (P1.P4), (P2.Pg). (P3.Ps5), (P4.Pg), (Ps.Pg). (Ps:Pa), (Pg:Pg) }

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 6

Bakery Algorithm

I ntroduction

This algorithm solves the critical section problem for n processesin software. The basic ideaisthat of abakery; cus-
tomers take numbers, and whoever has the lowest number gets service next. Here, of course, “service” meansentry to
the critical section.

Algorithm
1 var choosi ng: shared array [0..n-1] of bool ean;
2 nunber: shared array [0..n-1] of integer;
3 repeat
4 choosing[i] := true;
5 nunber[i] := max(nunber[0], nunber[1], .., nunber[n-1]) + 1;
6 choosing[i] := fal se;
7 for j := 0to n-1 do begin
8 whil e choosing[j] do (* nothing *);
9 whil e nunber[j] <> 0 and
10 (number[j], j) < (nunber[i],i) do
11 (* nothing *);
12 end;
13 (* critical section *)
14 nunmber[i] := 0;
15 (* remminder section *)
16 until false;
Comments
lines 1-2: Here, choosi ng[i] istrueif P; ischoosing anumber. The number that P; will use to enter the
critical sectionisinnumnber [i];itisOif P;isnot trying to enter its critical section.
lines 4-6: These three lines first indicate that the process is choosing a number (line 4), then try to assign a

unique number to the process P; (line 5); however, that does not always happen. Afterwards, P;
indicatesit is done (line 6).
lines 7-12: Now we select which process goes into the critical section. P; waits until it has the lowest number

of al the processes waiting to enter the critical section. If two processes have the same number, the
one with the smaller name — the value of the subscript — goesin; the notation “(a,b) < (c,d)” means
trueif a<corif botha=cand b <d(lines9-10). Note that if a processis not trying to enter the
critical section, its number is0. Also, if aprocess is choosing a number when P; triesto look at it,

P; waits until it has done so before looking (line 8).
line 14: Now P; is no longer interested in entering its critical section, so it setsnunber[i] toO.

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 7

Bogus Bakery Algorithm

I ntroduction

Why does Lamport's Bakery algorithm used a variable called choosi ng (seethe algorithm, lines 1, 4, 6, and 8)? It
isvery instructive to see what happens if you leave it out. This gives an example of mutual exclusion being violated
if you don't put choosi ng in. But first, the algorithm (with the linesinvolving choosi ng commented out) so you
can see what the modification was:

Algorithm
1 var (*choosing: shared array [0..n-1] of bool ean; *)
2 nunmber: shared array [0..n-1] of integer
3 r epeat
4 (* choosing[i] := true; *)
5 nunber[i] := max(nunber[O0], nunber[1], .,nunber[n-1]) + 1
6 (* choosing[i] := fal se; *)
7 for j := 0to n-1 do begin
8 (¢ whi l e choosing[j] do ; *)
9 whil e nunber[j] <> 0 and
10 (nunmber[j], j) < (nunber[i],i) do
11 (* nothing *);
12 end;
13 (* critical section *)
14 nunmber[i] := 0;
15 (* remminder section *)
16 until false;

Proof of Violation of Mutual Exclusion

Suppose we have two processes just beginning; call them py and p;. Both reach line 5 at the same time. Now, we'll
assume both read number [0] and nunber [1] before either addition takes place. Let p; complete the line,
assigning 1to nunber [1] , but py block before the assignment. Then p; gets through thewhi | e loop at lines 9-11
and enters the critical section. While in the critical section, it blocks; py unblocks, and assigns 1 to nunber [0] at
line 5. It proceeds to the while loop at lines 9-11. When it goes through that loop for j =1, the condition online9is
true. Further, the condition on line 10 isfalse, so py enters the critical section. Now pgy and p; are both in the critical
section, viuolating mutual exclusion.

Thereason for choosi ng isto prevent thewhi | e loop inlines 9-11 from being entered when process | is setting
itsnunber [j] . Notethat if theloop isentered and then process| reachesline 5, one of two situations arises. Either
nunber [j] hasthevalue 0 when thefirst test is executed, in which case processi moves on to the next process, or
nunber [j] hasanon-zero value, in which case at some point nunber [j] will be greater than nunber [i]
(since processi finished executing statement 5 before process | began). Either way, processi will enter the critical
section before process j, and when process j reaches the whi | e loop, it will loop at least until processi leavesthe
critical section.

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 8

Test and Set Solution

I ntroduction

This algorithm solves the critical section problem for n processes using a Test and Set instruction (called TaS here).
This instruction does the following function atomically:
function TaS(var Lock: boolean): boolean;

begin
TaS := Lock;
Lock :=true;
end;
Algorithm
1 var wai ting: shared array [0..n-1] of bool ean;
2 Lock: shared bool ean;
3 j: 0..n-1;
4 key: bool ean;
5 r epeat (* process P *)
6 waiting[i] := true;
7 key := true;
8 while waiting[i] and key do
9 key := TaS(Lock);
10 waiting[i] := false;
11 (* critical section goes here *)
12 j =i + 1 nod n;
13 while (j <> i) and not waiting[j] do
14 j :=j +1 nod n;
15 if j =i then
16 Lock := fal se
17 el se
18 waiting[j] := false;
19 until false;
Comments
lines 1-2: These are global to all processes, and are all initializedto f al se.
lines 3-4: These are local to each process P; and are uninitialized.
lines 5-10: Thisis the entry section. Basically, wai ti ng[i] istrue aslong as P; is trying to get into its

critical section; if any other processisin that section, then Lock will also be true, and P; will loop
in lines 8-9. Once P; can go on, it is no longer waiting for permission to enter, and sets wai t -
i ng[i] tofal se (line 10); it then proceeds into the critical section. Note that Lock is set to
t r ue by the TaSinstructionin line 9 that returnsf al se.

lines 12-18: Thisisthe exit section. When P; leavesthe critical section, it must choose which other waiting pro-
cess may enter next. It starts with the process with the next higher index (line 12). It checks each
process to see if that process is waiting for access (lines 13-14); if no-one s, it ssimply releases the
lock (by setting Lock to f al se; lines 15-16). However, if some other process P is waiting for
entry, P; simply shangeswai ti ng[j] tof al se toalow P; to enter the critical section (lines 17-
18).

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 9

Classical Synchronization Problems

I ntroduction

This handout states three classical synchronization problems that are often used to compare language constructs that
implement synchronization mechanisms and critical sections.

The Producer-Consumer Problem

In this problem, two processes, one called the producer and the other called the consumer, run concurrently and share
acommon buffer. The producer generatesitemsthat it must pass to the consumer, who is to consume them. The pro-
ducer passes items to the consumer through the buffer. However, the producer must be certain that it does not deposit
an item into the buffer when the buffer is full, and the consumer must not extract an item from an empty buffer. The
two processes also must not access the buffer at the same time, for if the consumer tries to extract an item from the
slot into which the producer is depositing an item, the consumer might get only part of theitem. Any solution to this
problem must ensure none of the above three events occur.

A practical example of this problem is electronic mail. The process you use to send the mail must not insert the letter
into afull mailbox (otherwise the recipient will never seeit); similarly, the recipient must not read aletter from an
empty mailbox (or he might obtain something meaningless but that looks like a letter). Also, the sender (producer)
must not deposit aletter in the mailbox at the same time the recipient extracts aletter from the mailbox; otherwise, the
state of the mailbox will be uncertain.

Because the buffer has a maximum size, this problem is often called the bounded buffer problem. A (Iess common)
variant of it is the unbounded buffer problem, which assumes the buffer isinfinite. Thiseliminates the problem of the
producer having to worry about the buffer filling up, but the other two concerns must be dealt with.

The Readers-Writers Problem

In this problem, a number of concurrent processes require access to some object (such asafile) Some processes
extract information from the object and are called readers; others change or insert information in the object and are
called writers. The Bernstein conditions state that many readers may access the object concurrently, but if awriter is
accessing the object, no other processes (readers or writers) may access the object. There are two possible policies
for doing this:

First Readers-Writers Problem. Readers have priority over writers; that is, unless awriter has permission to access
the object, any reader requesting access to the object will get it. Note this may result in awriter waiting indefinitely
to access the object.

Second Readers-Writers Problem. Writers have priority over readers; that is, when awriter wishes to access the
object, only readers which have already obtained permission to access the object are allowed to complete their access,
any readers that request access after the writer has done so must wait until the writer is done. Note this may result in
readers waiting indefinitely to access the object.

So there are two concerns. first, enforce the Bernstein conditions among the processes, and secondly, enforcing the
appropriate policy of whether the readers or the writers have priority.

A typical example of this occurs with databases, when several processes are accessing data; some will want only to
read the data, othersto changeit. The database must implement some mechanism that solves the readers-writers
problem.

The Dining Philosophers Problem

In this problem, five philosophers sit around acircular table eating spaghetti and thinking. In front of each philoso-
pher is aplate and to the left of each plateisafork (so there are five forks, one to the right and one to the left of each
philosopher's plate; see the figure). When a philosopher wishesto eat, he picks up the forksto the right and to the left
of hisplate. When done, he puts both forks back on the table. The problem isto ensure that no philosopher will be
allowed to starve because he cannot ever pick up both forks.

There aretwo issues here: first, deadlock (where each philosopher picks up one fork so none can get the second) must
never occur; and second, no set of philosophers should be able to act to prevent another philosopher from ever eating.

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 10

A solution must prevent both.

Figure. The Dining Philosopher's Table

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 11

Producer/Consumer Problem

I ntroduction

This algorithm uses semaphores to solve the producer/consumer (or bounded buffer) problem.

Algorithm
1 var buffer: array [0..n-1] of item
2 full, enmpty, nutex: senaphore;
3 nextp, nextc: item
4 begin
5 full := 0;
6 enpty = n;
7 mutex := 1;
8 par begi n
9 r epeat (* producer process *)
10 (* produce an itemin nextp *)
11 down(enpty);
12 down(mut ex) ;
13 (* deposit nextp in buffer *)
14 up(nut ex) ;
15 up(full);
16 until fal se;
17 repeat (* consuner process *)
18 down(full);
19 down(mut ex) ;
20 (* extract an itemin nextc *)
21 up(nut ex) ;
22 up(enpty);
23 (* consune the itemin nextc *)
24 until false;
25 par end;
26 end.
Comments
lines 1-3 Here, buf f er isthe shared buffer, and contains n spaces; f ul | isasemaphore the value of which
is the number of filled slots in the buffer, enpt y is a semaphore the value of which is the number
of emoty dotsin the buffer, and nut ex is a semaphore used to enforce mutual exclusion (so only
one process can access the buffer at atime). next p and next ¢ are theitems produced by the pro-
ducer and consumed by the consumer, respectively.
line5-7 This just initializes all the semaphores. It is the only time anything other than a down or an up
operation may be done to them.
line 10 Since the buffer is not accessed while the item is produced, we don't need to put semaphores around
this part.
lines11-13 Depositing an item into the buffer, however, does require that the producer process obtain exclusive

access to the buffer. First, the producer checks that there is an empty slot in the buffer for the new
item and, if not, waits until there is (down(enpt y)). When there s, it waits until it can obtain
exclusive access to the buffer (down(mut ex)). Once both these conditions are met, it can safely
deposit the item.

lines 14-15 Asthe producer is done with the buffer, it signals that any other process needing to access the buffer
may do so (up(nut ex)). Itthenindicatesit has put another item into the buffer (up(ful I')).

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 12

lines 18-20 Extracting an item from the buffer, however, does require that the consumer process obtain exclu-
sive access to the buffer. First, the consumer checks that there is a dot in the buffer with an item
deposited and, if not, waits until thereis (down(f ul 1)). When thereis, it waitsuntil it can obtain
exclusive access to the buffer (down(mut ex)). Once both these conditions are met, it can safely
extract the item.

lines 21-22 As the consumer is done with the buffer, it signals that any other process needing to access the
buffer may do so (up(mut ex)). It then indicates it has extracted another item into the buffer
(up(enpty)).

line 23 Since the buffer is not accessed while the item is consumed, we don't need to put semaphores

around this part.

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 13

I ntroduction

First ReadersWriters Problem

This algorithm uses semaphores to solve the first readers-writers problem.

Algorithm

var

begi n

par be

30 paren
31 end.

Comments

lines1-2

lines 4-6

line9
lines 10-15

wt, nutex: semaphore;
readcount: i nteger;

readcount := O;
wt = 1;
mutex := 1
gin
r epeat (* reader process *)
(* do sonething *)
down(mut ex) ;
readcount := readcount + 1;
if readcount = 1 then
down(wrt);
up(mut ex) ;
(* read the file *)
down(mut ex) ;

readcount := readcount - 1;

if readcount = 0 then
up(wrt);

up(mut ex) ;

(* do sonething el se *)
until false;

repeat (* witer process *)
(* do sonething *)
down(wrt);
(* wite to the file *)
up(wrt);

(* do sonething el se *)
until false;
d;

Here, r eadcount contains the number of processes reading the file, and mut ex is a semaphore
used to provide mutual exclusion when r eadcount isincremented or decremented. The sema
phorewr t iscommon to both readers and writers and ensures that when one writer is accessing the
file, no other readers or writers may do so.

This just initializes all the semaphores. It is the only time anything other than a down or an up
operation may be doneto them. Asno readers are yet reading thefile, r eadcount isinitialized to
0.

Since the file is not accessed here, we don't need to put semaphores around this part.

Since the value of the shared variable r eadcount is going to be changed, the process must wait
until no-one else is accessing it (down(mut ex)). Since this process will read from the file,

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000

ECS 251 — Winter 2000 Page 14

lines 16-20

line 24
lines 25-26

line 27

r eadcount isincremented by 1; if thisisthe only reader that will accessthefile, it waits until any
writers have finished (down(wrt)). It then indicates other processes may access r eadcount

(down(mut ex)) and proceeds to read from thefile.

Now the reader is done reading the file (for now.) It must update the value of r eadcount toindi-
cate this, so it waits until no-one else is accessing that variable (down(nut ex)) and then decre-
mentsr eadcount . If no other readers are waiting to read (r eadcount = 0), it signalsthat any
reader or writer who wishesto accessthe filemay do so (up(wrt)). Finaly,itindicatesitisdone
withr eadcount (up(nut ex)).

Since the fileis not accessed here, we don't need to put semaphores around this part.

The writer process waits (down(wr t)) until no other processis accessing thefile; it then proceeds
to write to the file.

When the writer is done writing to thefile, it signals that anyone who wishes to access the file may
doso (up(wrt)).

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000

ECS 251 — Winter 2000 Page 15

I ntroduction

First Readers-Writers Problem

This algorithm uses SP and SV to solve the first readers-writers problem.

Algorithm

var

begi n

Comments

lines 1-2

lines 3-5

lines 7-8

lines9-11

line 12
lines 15-16

lines17-18

nmut ex: semaphor e;
readcount: i nteger;

readcount := NREADERS
mutex := 1
par begi n
r epeat (* reader process *)
(* do sonething *)
SP(readcount, 1, 1);
SP(mutex, 1, 0);
(* read the file *)
SV(readcount, 1);
(* do sonething el se *)
until false
repeat (* witer process *)
(* do sonething *)
SP(rmutex, 1, 1; readcount, NREADERS, 0)
(* wite to the file *)
SV(mutex, 1);
(* do sonething el se *)
until false
par end;
end.

Here, readcount contains the number of processes not currently reading (or trying to read) thefile,
and mutex is a semaphore used to provide mutual exclusion when the file is being written.

Thisjust initializes all the semaphores. It isthe only time anything other than aP or aV operation
may be done to them. As no readers are yet trying to read the file, readcount is initialized to the
number of reader processes (the constant NREADERS).

Thisfirst r epeat loop contains the code for a reader process. Since the file is not accessed here,
we don't need to put semaphores around this part.

First we atomically decrement readcount by 1, since a process is trying to read the file. We then
check that no writers are writing to the file by testing mutex. Note the value of mutex is not
changed.

Now the reader is done reading the file (for now.) It signalsthat one less reader is (trying to) read
thefile by incrementing readcount by 1.

This second r epeat loop contains the code for a writer process. Since the file is not accessed
here, we don't need to put semaphores around this part.

The writer process waits until two conditions are met simultaneously: no other writers are access-
ing the file (so mutex is 1, or false) and no readers are accessing the file (so readcount is NREAD-

ERS). It then atomically sets mutex to O (or true), indicating a writer process is accessing the file,
but does not change readcount.

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 16

line 19 When the writer is done writing to thefile, it signals that anyone who wishes to access the file may
do so by making mutex 1, or false.

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 17

General Priority Problem

I ntroduction

Thisuses SP and SV to solve the general priority problem, in which many different processes each with a different
priority is attempting to gain access to aresource.

Algorithm
1 var resource: semaphore;
2 prisem array[1.. NUMPRCCS] of senaphore;
3 begin
4 resource := 1;
5 for(i = 1; i <= NUWPRCCS; i ++)
6 prisenfi] := 1,
7 r epeat (* the nunproc'th process *)
8 (* do sonething *)
9 SP(prisenf nunproc], 1, 1);
10 SP(resource, 1, 1;
11 prisen{0], 1, O; ., prisenfnunmproc-1], 1, 0);
12 (* access the resource *)
13 SV(resource, 1; priseninunproc], 1);
14 (* do sonething el se *)
15 until fal se;
16
17 end
Comments
lines 1-2 Here, resource is 1 when the resource is not being used, and priseni] is 1 when processi does not
want access to the resource. We assume that the lower the index into prisem, the higher the process
priority.
lines 3-6 Thisjust initializes al the semaphores. It isthe only time anything other than an SP or an SV oper-
ation may be done to them. As the resource is not yet assigned, resource is set to 1 (false); as no
process wants access to it, each semaphores prisem| i] areaso setto 1 (false).
lines7 on A liberty with notation now; this loop is replicated in each process. We will assume that the vari-
able procno contains the number of the current process (that is, the index into prisem).
line8 Since the resource is not accessed here, we don't need to put semaphores around this part.
lines 9-12 First we atomically decrement prisem numproc] by 1, to indicate that this process wishesto gain

access to the resource. We then check atomically (and simultaneously) that no other process has
access, and that no process with ahigher priority iswaiting for access. If these are both true, access
to the resourceis granted, so resourceis set to O (false), and the process proceeds.

line 13 Now the process is done accessing the resource (for now.) It signals that by setting both resource
and the appropriate element of the semaphore array to 1 (false).

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 18

send/recelve Chart

I ntroduction

These charts summarize the actions of the send and receive primitives using both blocking and non-blocking mode
and explicit and implicit naming.

Charts

This chart summarizes how naming and blocking affects the send primitive.
send blocking non-blocking
explicit send message to receiver; wait until message | send message to receiver
naming accepted
implicit broadcast message; wait until all processes broadcast message
naming accept message

This chart summarizes how naming and blocking affects the receive primitive.

receive blocking non-blocking

explicit wait for message from named sender if there is amessage from the named sender,
naming get it; otherwise, proceed

implicit wait for message from any sender if there is a message from any sender, get it;
naming otherwise, proceed

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000

ECS 251 — Winter 2000 Page 19

I ntroduction

Producer Consumer Problem

This algorithm uses blocking send and receive primitives to solve the producer/consumer (or bounded-buffer) prob-
lem. In this solution, the buffer size depends on the capacity of the link.

Algorithm
1 var
2
3 begin
4
5
6
7
8 end;
9
10 begin
11
12
13
14
15 end;
16 begin
17
18
19
20
21 end.
Comments
linel
lines 2-8
lines 9-15
lines 17-20

nextp, nextc: item

procedure producer;

while true do begin
(* produce itemin nextp *)
send(" Consurmer process”, nextp);
end;

procedure consuner;

while true do begin
recei ve(“Producer process”, nextc);
(* consune itemin nextc *)

end;
par begi n
Consuner process: Cconsuner;
Producer process: producer;
par end

Here, next p is the item the consumer produces, and next ¢ the item that the consumer con-
sumes.

This procedure simply generates items and sends them to the consumer process (named Consum
er process). Suppose the capacity of thelink isnitems. If nitemsare waiting to be consumed,
and the producer triesto send the n+1-st item, the producer will block (suspend) until the consumer
has removed one item from the link (i.e., done areceive on the producer process). Note the name
of the consumer process is given explicitly, so this is an example of “explicit naming” or “direct
communication.” Also, since the send is blocking, it ias an example of “synchronous communica-
tion.”

This code simply receives items from the producer process (named Pr oducer pr ocess) and
consumes them. |f when the receive statement is executed there are no items in the link, the con-
sumer will block (suspend) until the producer has put an item from the link (i.e., done asend to the
consumer process). Note the name of the producer process is given explicitly; again this is an
example of “explicit naming” or “direct communication.” Also, since the receiveis blocking, it is
an example of “synchronous communication.”

This starts two concurrent processes, the Consumner pr ocess and the Pr oducer pr ocess.

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000

ECS 251 — Winter 2000 Page 20

I ntroduction

Producer Consumer Problem

This algorithm uses a monitor to solve the producer/consumer (or bounded-buffer) problem.

Algorithm

buffer: monitor;

var

slots: array [0..n-1] of item
count, in, out: integer;
notenmpty, notfull: condition;

1
2
3
4
5 procedure entry deposit(data: item;
6
7
8
9

begi n
if count = n then
notfull.wait;
slots[in] := data;
10 in:=in + 1 nod n;
11 count := count + 1;
12 not enpty. si gnal ;
13 end;
14 procedure entry extract(var data: itemn;
15 begin
16 if count = 0 then
17 not enpty. wait;
18 data : = slots[out];
19 out := out + 1 nod n;
20 count := count - 1;
21 notfull.signal;
22 end;
23 begin
24 count :=0; in :=0; out := 0;
25 end.
Comments
lines 2-4 Here, sl ot s is the actual buffer, count the number of itemsin the buffer, and i n and out the
indices of the next element of sl ot s where a deposit is to be made or from which an extraction is
to be made. There are two conditions we care about: if the buffer is not full (represented by the
condition variable not f ul 1), and if the buffer is not empty (represented by the condition variable
not enpty).
line5 The keyword ent r y meansthat this procedure may be called from outside the monitor. Itiscalled
by placing the name of the monitor first, then a period, then the function name; so,
buf fer. deposit(..).
lines 7-8 This code checks to see if there is room in the buffer for a new item. If not, the process blocks on
the condition not f ul | ; when some other process does extract an element from the buffer, then
there will be room and that process will signal on the condition not f ul | , allowing the blocked
one to proceed. Note that while blocked on this condition, other processes may access procedures
within the monitor.
lines9-11 This code actually deposits the item into the buffer. Note that the monitor guarantees mutual exclu-
sion.
line 12 Just as a producer will block on a full buffer, a consumer will block on an empty one. This indi-

cates to any such consumer process that the buffer is no longer empty, and unblocks exactly one of

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000

ECS 251 — Winter 2000 Page 21

line 14

lines 16-17

lines 18-20

line21

lines 23-25

them. If there are no blocked consumers, thisis effectively a no-op.

As with the previous procedure, this is caled from outside the monitor by
buffer.extract(..).

This code checks to seeif there is any unconsumed item in the buffer. If not, the process blocks on
the condition not enpt y; when some other process does deposit an element in the buffer, then
there will be something for the consumer to extract and that producer process will signal on the
condition not enpt y, allowing the blocked one to proceed. Note that while blocked on this condi-
tion, other processes may access procedures within the monitor.

This code actually extracts the item from the buffer. Note that the monitor guarantees mutual
exclusion.

Just as a consumer will block on an empty buffer, a producer will block on afull one. This indi-
cates to any such producer process that the buffer is no longer full, and unblocks exactly one of
them. If there are no blocked producers, thisis effectively ano-op.

Thisistheinitialization part.

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 22

First ReadersWriters Problem

I ntroduction

This algorithm uses a monitor to solve the first readers-writers problem.

Algorithm

1 readerwiter: nonitor

2 var readcount: i nteger;

3 writing: bool ean;

4 oktoread, oktowrite: condition;
5 procedure entry begi nread;

6 begin

7 readcount := readcount + 1;
8 if witing then

9 oktoread. wait;

10 end;

11 procedure entry endread;

12 begin

13 readcount := readcount - 1

14 if readcount = 0 then

15 okt owrite. signal

16 end;

17 procedure entry beginwite;

18 begin

19 if readcount > 0 or witing then
20 oktowite.wait;

21 witing := true;

22 end;

23 procedure entry endwite;

24 var i: integer;

25 begin

26 witing := fal se;

27 if readcount > 0 then

28 for i := 1 to readcount

29 okt or ead. si gnal

30 el se

31 oktowrite. signal

32 end;

33 begin

34 readcount := 0; witing := fal se;
35 end.

Comments

lines 1-4 Here, r eadcount containsthe number of processesreading thefile, andwr i ti ng istruewhena

writer iswriting to the file. Okt or ead and okt owr i t e correspond to the logical conditions of
being able to access thefile for reading and writing, respectively.

lines 7-9 In this routine, the reader announces that it is ready to read (by adding 1 to r eadcount). If a
writer is accessing the file, it blocks on the condition variable okt or ead; when done, the writer
will signal on that condition variable, and the reader can proceed.

lines 13-15 In this routine, the reader announces that it is done (by subtracting 1 from r eadcount). If no

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 23

more readers are reading, it indicates awriter may go ahead by signalling on the condition variable

oktowrite.

lines 19-21 In thisroutine, the writer first seesif any readers or writers are accessing thefile; if so, it waits until
they are done. Then it indicates that it is writing to the file by setting the boolean wri ti ng to
true.

lines 26-31 Here, the writer first announcesit is done by settingwri t i ng tof al se. Since readers have pri-

ority, it then checks to see if any readers are waiting; if so, it signals all of them (as many readers
can access the file simultaneoudly). If not, it signals any writers waiting.

line 34 Thisinitializes the variables.

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000

ECS 251 — Winter 2000 Page 24

I ntroduction

Monitorsand Semaphores

Thishandout describes how to express monitorsin terms of semaphores. If an operating system provided semaphores
as primitives, thisis what a compiler would produce when presented with a monitor.

Algorithm
1 var
2

mut ex, urgent, xcond: senmaphore;
urgent count, xcondcount: integer;

The body of each procedure in the monitor is set up like this:

3 down(xmut ex) ;
4 (* procedure body*)
5 i f urgentcount > 0 then
6 up(urgent)
7 el se
8 up(mut ex) ;
Each x. wai t within the procedure is replaced by:
9 xcondcount := xcondcount + 1;
10 i f urgentcount > 0 then
11 up(urgent)
12 el se
13 up(mut ex) ;
14 down(xcond);
15 xcondcount := xcondcount - 1;
Each x. si gnal within the procedureis replaced by:
16 urgentcount := urgentcount + 1;
17 i f xcondcount > O then begin
18 up(xcondsenj ;
19 down(urgent);
20 end;
21 urgentcount := urgentcount - 1,
Comments
linel The semaphore mut ex isinitialized to 1 and ensures that only one process at atime is executing
within the monitor. The semaphore ur gent is used to enforce the requirement that processes that
si gnal (and asaresult are suspended) are to be restarted before any new process enters the mon-
itor. The semaphore xcond will be used to block processes doing wai t son the condition variable
x. Notethat if there is more than one such condition variable, a corresponding semaphore for each
condition variable must be generated. Both ur gent and xcond areinitialized to 0.
line2 Theinteger ur gent count indicates how many processes are suspended as aresult of asi gnal
operation (and are therefore waiting on the semaphore ur gent); the counter xcondcount is
associated with the condition variable x, and indicates how many processes are suspended on that
condition (i.e., suspended on the semaphore xcond).
lines 3-8 Since only one process at atime may be in the monitor, the process entering the monitor procedure
must wait until no other processisusing it (down(mut ex)). On exit, the process signals others
that they may attempt entry, using the following order: if any other process has issues a signal and
been suspended (i.e., ur gent count _ 0), the exiting process indicates that one of those isto be
continued (up(ur gent)). Otherwise, one of the processes trying to enter the monitor may do so
(up(mut ex)).
lines 9-15 First, the process indicates it will be executing an x. wai t by adding 1 to xcondcount . It then

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 25

signals some other process that that process may proceed (using the same priority as above). It sus-
pends on the semaphore xcond. When restarted, it indicates it is done with the x. wai t by sub-
tracting 1 from xcondcount , and proceeds. Note that the down(xcond) will always suspend
the process since, unlike semaphores, if no process is suspended on x. wai t , then x. si gnal is
ignored. So when thisis executed, the value of the semaphore xcond isaways 0.

lines 16-21 First, the process indicates it will be executing an x. si gnal by adding 1 to ur gent count . It
then checksif any processiswaiting on condition variable x (xcondcount > 0), and if so signals
any such process (up(xcondsem) before suspending itself (down(ur gent)). When restarted,
the processindicatesit is no longer suspended (by subtracting 1 from ur gent count).

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 26

Monitorsand Priority Waits

I ntroduction

Thisis an example of amonitor using priority waits. It implements asimple alarm clock; that is, a process calls
al ar ntl ock. wakene(n) , and suspends for n seconds. Note that we are assuming the hardware invokes the pro-
ceduret i ck to update the clock every second.

Algorithm

1 al arntl ock: mnonitor;

2 var now. i nteger;

3 wakeup: condition;

4 procedure entry wakene(n: integer);

5 begin

6 al arnsetting := now + n;

7 whil e now < al arnsetting do

8 wakeup. wai t (al arnsetting);
9 wakeup. si gnal ;

10 end;
11 procedure entry tick;
12 begin
13 now : = now + 1;
14 wakeup. si gnal ;
15 end.
Comments
lines 2-3 Here, now is the current time (in seconds) and is updated once a second by the proceduret i ck.
When a process suspends, it will do await on the condition wakeup.
line6 This computes the time at which the processis to be awakened.
lines 7-8 The process now checks that it is to be awakened later, and then suspends itself.
line9 Once a process has been woken up, it si gnal s the process that is to resume next. That process

checksto seeif it istime to wake up; if not, it suspends again (hence the whi | e loop above, rather
thanani f statement). If itistowake up, it si gnal sthe next process...

line 14 This is done once a second (hence the addition of 1 to now). The processes to be woken up are
queued in order of remaining time to wait with the next one to wake up first. So, whenti ck sig-
nals, the next one to wake up determinesif it isin fact time to wake up. If not, it suspends itself; if
S0, it proceeds.

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 27

First ReadersWriters Problem

I ntroduction

This uses crowd monitors to solve the first readers/writers problem.

Algorithm

1 readerwiter: crowd nonitor

2 var Readers: crowd read

3 Witers: crowd read, wite;

4 readcount: i nteger;

5 writing: bool ean

6 oktoread, oktowrite: condition
7 guard procedure entry beginread;

8

9

begi n
readcount := readcount + 1;

10 if witing then
11 oktoread. wait;
12 enter Readers;
13 end;
14 guard procedure entry endread;
15 begin
16 | eave Readers;
17 readcount := readcount - 1
18 if readcount = 0 then
19 okt owrite. signal
20 end
21 guard procedure entry begi nwrite;
22 begin
23 if readcount > 0 or witing then
24 oktowite.wait;
25 witing := true;
26 enter Witers;
27 end;
28 guard procedure entry endwite;
29 var i: integer;
30 begin
31 | eave Witers;
32 witing := fal se;
33 if readcount > 0 then
34 for i := 1 to readcount
35 okt or ead. si gnal
36 el se
37 okt owrite. signal
38 end;
39 procedure entry read;
40 ...read fromshared data ...
41 end
42 procedure entry wite;
43 ...wite to shared data ...
44 end;
45 begi n
46 readcount := 0; witing := fal se;

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 28

47 end.
Comments
lines 2-3 These lines define which procedures can be called by members of the crowd; here, members of the

Readers crowd can call read, and members of the Writers crowd can call either read or write. Only
processes in those crowds can call read or write; should any other process do so, it will cause arun-
time error.

line7 The keyword guar d means this procedure is mutually exclusive (so only one process at atime may
be in the guarded procedures). Note this relaxes the definition of Hoare's monitor, in that multiple
proceses may now access the monitor simultaneously.

line 12 This puts the calling process into the Readers crowd; it may now call the procedure read.

line 16 This removes the calling process from the Readers crowd, so it may not call read until after it calls
beginread and executes line 12 again.

line 26 This puts the calling process into the Writers crowd; it may now call the procedures read and write.

line 31 This removes the calling process from the Readers crowd, so it may not call read or write until after
it calls beginread or beginwrite and executes lines 12 or 26 again.

line 39 Now any number of processes may access the read procedure simultaneously.

line 42 Although it may appear that any number of processes may access the write procedure simulta-

neously, note that all callers must first have invoked beginwrite — and only one such process will
be active at atime. So at most one process will call write.

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 29

Producer Consumer Problem

I ntroduction

This uses invariant expressions to solve the producer consumer problem.

Algorithm
1 buffer: invariant nodul e;
2 const n = 1024,
3 var slots: array [0..n-1] of item
4 in, out: 0..n-1;
5 i nvari ant deposit
6 Start Count (deposit) - FinishCount(extract) < n;
7 Cur rent Count (deposit) = 0;
8 i nvariant extract
9 Start Count (extract) - FinishCount(deposit) < 0
10 Current Count (extract) = 0;
11 procedure entry deposit(data: item;
12 begin
13 slots[in] := data;
14 in:=in + 1 nod n;
15 end;
16 procedure entry extract(var data: itemn;
17 begin
18 data : = slots[out];
19 out := out + 1 nod n;
20 end;
21 begin
22 in:=0; out := 0;
23 end.
Comments
lines 3-4 Here, dlotsis the actual buffer and in and out the indices of the next element of slots where a deposit
isto be made or from which an extraction is to be made.
line5 The next constraints apply to the procedure deposit.
line 6 This invariant checks that there is at least one dot in the buffer that is empty. If false, then deposit
must have been started at least n times more than extract finished.
line7 This ensures at most one process can be in deposit at atime (mutual exclusion).
line 8 The next constraints apply to the procedure extract.
line6 This invariant checks that there is at least one slot in the buffer that is full. If so, then deposit fin-
ished more times than extract started.
line7 This ensures at most one process can be in extract at atime (mutua exclusion).
line 11 As with the previous procedure, thisis called from outside the monitor by buffer.extract(...).
lines 12-15 This code actualy extracts the item from the buffer. Note that the invariant guarantees mutual
exclusion.
lines 23-25 Thisistheinitialization part.

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 30

First ReadersWriters Problem

I ntroduction

This uses invariant expressions to solve the first readers writers problem.

Algorithm

1 readerwiter: invariant nodul e

2 i nvari ant read

3 Current Count (wite) = O;

4 invariant wite

5 Current Count (wite) + CurrentCount(read) = 0;
6 procedure entry read;

7 ...read fromshared data ...

8

end;

9 procedure entry wite;

10 ..wite to shared data ...

11 end;

12 begin

13 end.
Comments
lines 2-3 This states the condition that must hold whenever the procedure read is executed; it requires that no

processes be executing write. Note this means readers will have priority over writers when areader
is presently reading; it says nothing about what happens if a reader and awriter call the module at

the sametime.

lines 4-5 This states the condition that must hold whenever the procedure write is executed; it requires that
no processes be executing either read or write.

lines 6-11 Here, the routines simply do the reading and writing.

lines 12-13 The initialization part of the module; as there are no variablesin it, this part is empty.

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000

ECS 251 — Winter 2000 Page 31

I ntroduction

Producer Consumer Problem

This algorithm uses open path expressions (in the form of Path Pascal) to solve the producer/consumer problem.

Algorithm

Comments

lines 1-2:

lines 3-4:

line5:
lines 7-8:

line 10:
line 14:

type buffer: object;

path n: (1:(deposit); 1:(extract)) end;

var slots: array [0..n-1] of item
in, out: integer;

procedure entry deposit(data: item;

begi n
slots[in] := data;
in:=in + 1 nod n;
end;
procedure entry extract(var data: itemn;
begi n
data := slots[out];
out := out + 1 nod n;
end;
begi n
in:=0; out := 0;
end.

This construct says that at most one invocation of deposit or one invocation of extract can run con-
currently (1: (..)), that for every call to extract at least one call to deposit must have returned, and
that the difference between the number of calls to deposit and the number of calls to extract must
never be more than n.

Here, dots is the actual buffer, and in and out the indices of the next element of slots where a
deposit is to be made or from which an extraction is to be made. Note that we need not keep track
of how many slots of the buffer contain something; the path constraint above ensures that neither an
extraction from an empty buffer nor insertion into a full buffer will ever take place.

Thisfunction is called by placing the name of the object first, then a period, then the function name;
so, buffer.deposit(...).

This code actually deposits the item into the buffer. Note that the path expression guarantees
mutual exclusion.

Again, thisis called by buffer.extract(...).

This code actualy extracts the item from the buffer. Again,the path expression guarantees mutual
exclusion.

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 32

Producer Consumer Process
I ntroduction
This uses Hoare's CSP language to solve the producer consumer problem.

Algorithm
This process manages the buffer; call it boundedbuffer.

1 buffer: (0..9) item
2 in, out: integer;
3 in:=0;
4 out := 0;
5 *[in < out + n; producer ? buffer(in nod n)
6 Bin:=in+1
7 - out < in; consumer ? nore()
8 B consuner ! buffer(out nod n);
9 out := out + 1
10]
Comments
lines 1-2: Here, buffer is the buffer, in the number of items put into the buffer, and out the number of items
extracted. The producer process outputs an item nextp to this process by:
bounded-buffer ! nextp;
and the consumer process outputs an item nextc to this process by:
bounded-buffer ! more(); bounded-buffer ? nextc;
(more() is there because CSP does not alow output commands in guards.)
lines 3-4: Thesejust initialize in and out.
lines 5-6: If there is room for another item in the buffer (in < out + n), wait for the producer to produce some-

thing and deposit it in an empty buffer dot (producer ? buffer(in mod n)) and indicate that dot is
now used (in:=in+ 1).

lines 7-9: If the buffer isfull (out < in), wait until the consumer asks for something (consumer ? more()), then
output the next element of the buffer (consumer ! buffer(out mod n)), and indicate it has been
extracted (out := out + 1).

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 33

Producer Consumer Problem

I ntroduction

This algorithm uses ADA to solve the producer/consumer (or bounded-buffer) problem.

Algorithm

This process (task, to ADA) manages the buffer.

1 task boundedbuffer is
2 entry deposit(data: in iten);
3 entry extract(data: out iteny;
4 end,
5 task body boundedbuffer is
6 buffer: array[0..n-1] of item
7
8
9

count: integer range 0..n := 0;
in, out: integer range 0..n-1 := 0;
begi n
10 | oop
11 sel ect
12 when count < n =>
13 accept deposit(data: in item do
14 buffer[in] := data;
15 end;
16 in:=(in + 1) nod n;
17 count := count + 1;
18 or when count > 0 =>
19 accept extract(data: out iten) do
20 data : = buffer[out];
21 end;
22 out := (out + 1) nod n;
23 count := count - 1;
24 end sel ect;
25 end | oop;
26 end.
The producer deposits an item into the buffer with
27 boundedbuf f er . deposi t (next p);
and the consumer extracts an item from the buffer with
28 boundedbuf f er. ext ract (nextc);
Comments
lines 1-4 This indicates that the procedures deposi t and extract may be called outside the task, and
that ext r act will return something in its parameter list (the out).
lines 6-8 As usud, buf f er isthe buffer, and count the number of items currently in the buffer; i n and
out aretheindices indicating where deposits go or where extractions come from.
lines 13-17 If thereisroom in the buffer (when count < n) thisprocess will accept arequest to deposit an
iteminit (accept deposit .);itthen updatesitsvariables.
lines 18-23 If thereisan item in the buffer (when count > 0) thisprocesswill accept arequest to extract an

item from the buffer (accept extract ..);theitemisreturned viathe parameter list. Thispro-
cedure then updates its variables.

line 24 If both of the above two when conditions are true, and both a producer and consumer has invoked a
procedure named by an accept statement (called “an open accept statement”), the system will

Last modified at 10:01 am on Thursday, January 13, 2000

January 13, 2000 ECS 251 — Winter 2000 Page 34

select one to be executed in some fair manner (such as first-come-first-serve). If only one of the
conditionsistrue, and the procedure named in an accept statement in the body of the when state-
ment is open, that one will be executed. If both of thewhen conditions are false, an error condition
occurs (this usually terminates the process.)

Last modified at 10:01 am on Thursday, January 13, 2000

