

April 6, 2000 ECS 253 – Spring 2000 Page 1

Last modified at 11:22 pm on Saturday, May 13, 2000

Outline for April 6, 2000

1. Greetings and felicitations!
a. Handouts

2. ACM and primitive operations
a. Go over subjects, objects (includes subjects), and state (

S

,

O

,

A

) where

A

 is ACM
b. Transitions modify ACM entries; primitive operations follow
c.

enter

r

into

A

[

s

,

o

]
d.

delete

r

from

A

[

s

,

o

]
e.

create subject

s’

 (note

A

[

s’

,

x

] =

A

[

x

,

s’

] = ø for all

x

)
f.

create object

o’

(note

A

[

x

,

o’

] = ø for all

x

)
g.

destroy subject

s’

h.

destroy object

o’

3. commands
a.

command

c

(

s

1, ...,

sk

,

o

1, ...,

ok

)

if

r

1

in

A

[

s

1,

o

1]

and

r

2

in

A

[

s

2,

o

2]

and

...

rm

in

A

[

sm

,

om

]

then

op

1;

op

2;
...;

opn

;

end.

b. Example 1: creating a file

command

create_file

(

p

,

f

)

create object

f

;

enter

Own

into

A

[

p

,

f

]

enter

Read

into

A

[

p

,

f

]

enter

Write

into

A

[

p

,

f

]

end.

c. Example 2:granting one process read rights to a file

command

grant_read

(

p

,

q

,

f

)

if

Own

in

A

[

p

,

f

]

then
enter

Read

into

A

[

q

,

f

]

end.

4. What is the safety question?
a. An unauthorized state is one in which a generic right

r

 could be leaked into an entry in the ACM that did not
previously contain

r

. An initial state is safe for

r

 if it cannot lead to a state in which

r

 could be leaked.
b. Question: in a given arbitrary protection system, is safety decidable?

5. Mono-operational protection systems: decidable
a. Theorem: there is an algorithm that decides whether a given mono-operational system and initial state is

safe for a given generic right.
b. Proof: finite number of command sequences; can eliminate

delete

,

destroy

.
Ignore more than one

create

 as all others are conditioned on access rights in the matrix.

(One exception: no
subjects; then we need one

create subject

).
Bound:

s

 number of subjects (possibly one more than in original),

o

 number of objects (same),

g

 number of
generic rights; number of command sequences to inspect is at most 2

gso

.

6. General case: It is undecidable whether a given state of a given protection system is safe for a given generic right.
a. Represent TM as ACM; reduce halting problem to it

April 6, 2000 ECS 253 – Spring 2000 Page 2

Last modified at 11:22 pm on Saturday, May 13, 2000

7. Take-Grant
a. Introduce as counterpoint to NRU result
b. Show bridges (as a combination of terminal and initial spans)
c. Show islands (maximal subject-only tg-connected subgraphs)
d. can•share(

r

,

x

,

y

, G

0) iff there is an edge from x to y labelled r in G0, or all of the following hold: (1) there
is a vertex y’’ with an edge from y’ to y labelled r; (2) there is a subject y’ which terminally spans to y’’, or
y’ = y’’; (3) there is a subject x’ which initially spans to x, or x’ = x; and (4) there is a sequence of islands
I1, ..., In connected by bridges for which x’ is in I1 and y’ is in In .

e. Describe can•steal; don’t state theorem

