Outline for April 11, 2000

- 1. Greetings and felicitations!
 - a. Homework
 - b. Handouts
- General case: It is undecidable whether a given state of a given protection system is safe for a given generic right.
 a. Represent TM as ACM; reduce halting problem to it
- 3. Take-Grant
 - a. Introduce as counterpoint to HRU result
 - b. Show bridges (as a combination of terminal and initial spans)
 - c. Show islands (maximal subject-only tg-connected subgraphs)
 - d. can•share(r, \mathbf{x} , \mathbf{y} , \mathbf{G}_0) iff there is an edge from \mathbf{x} to \mathbf{y} labelled r in \mathbf{G}_0 , or all of the following hold: (1) there is a vertex \mathbf{y} '' with an edge from \mathbf{y} ' to \mathbf{y} labelled r; (2) there is a subject \mathbf{y} ' which terminally spans to \mathbf{y} '', or \mathbf{y} ' = \mathbf{y} ''; (3) there is a subject \mathbf{x} ' which initially spans to \mathbf{x} , or \mathbf{x} ' = \mathbf{x} ; and (4) there is a sequence of islands $I_1, ..., I_n$ connected by bridges for which \mathbf{x} ' is in I_1 and \mathbf{y} ' is in I_n .
 - e. Describe can•steal; don't state theorem
- 4. Decidability vs. Undecidability
 - a. Notion of type; subject, object types
 - b. Attenuation:
 - c. If attenuating acyclic, it's decidable; so that is sufficient. Open question: is it necessary?